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Abstract

Pre-trained language model (PLM) can be
stealthily misled to target outputs by back-
door attacks when encountering poisoned sam-
ples, without performance degradation on clean
samples. The stealthiness of backdoor attacks
is commonly attained through minimal cross-
entropy loss fine-tuning on a union of poisoned
and clean samples. Existing defense paradigms
provide a workaround by detecting and remov-
ing poisoned samples at pre-training or infer-
ence time. On the contrary, we provide a new
perspective where the backdoor attack is di-
rectly reversed. Specifically, maximum entropy
loss is incorporated in training to neutralize
the minimal cross-entropy loss fine-tuning on
poisoned data. We defend against a range of
backdoor attacks on classification tasks and sig-
nificantly lower the attack success rate. In ex-
tension, we explore the relationship between in-
tended backdoor attacks and unintended dataset
bias, and demonstrate the feasibility of the max-
imum entropy principle in de-biasing.

1 Introduction

In recent years, pre-trained language models
(PLMs) have been widely used in various natu-
ral language processing tasks attributing to their
superior performance (Howard and Ruder, 2018;
Radford et al., 2018). Considering the exten-
sive requirements in data and computation, the
pre-training process of PLMs are generally imple-
mented by third party companies and organizations
(Devlin et al., 2019; Yang et al., 2019).

However, backdoors are likely to be injected
into the PLM if users or third parties are not in a
secure condition (Gu et al., 2017; Liu et al., 2018b).
Specifically, the attacker first converts a small pro-
portion of clean data to poisoned data by injecting a
trigger (e.g., rare fixed tokens (Kurita et al., 2020)).

∗ Corresponding author: Zheng Lin.

Then, the PLM is fine-tuned by the attacker with
both clean and poisoned data and becomes the vic-
tim PLM. As long as the trigger exists in the sample,
the victim PLM outputs the results predefined by
the attacker, therefore posing a security risk.

Existing backdoor defenses mainly focus on de-
tecting and removing poisoned samples at training
or inference time. Training time defense requires
that all samples are monitored and poisoned sam-
ples are removed (Chen and Dai, 2021; Li et al.,
2021b). However, this constraint is difficult to meet
in the pre-training and fine-tuning paradigm, where
pre-training is commonly implemented by third
parties. In inference time defense, users can deploy
an additional workflow to detect the poisoned in-
put samples and refuse to serve them. However,
the detection of poisoned samples is complex as
the triggers chosen by the attacker are unknown
(Yang et al., 2021c; Qi et al., 2021b,d,c; Chan et al.,
2020). Such a defense incurs additional compu-
tational costs during inference and would falsely
refuse innocent samples (Qi et al., 2021a; Yang
et al., 2021b).

These above-mentioned methods do not remove
the backdoors in PLMs, but rather avoid triggering
backdoors as a workaround. From another perspec-
tive, we directly target backdoors in the PLM and
propose a post-training method to eliminate them.
We observe that although the trigger varies, back-
door attacks invariably introduce a distribution gap
between the pre-trained and victim model. Specif-
ically, fine-tuning of attackers distorts pre-trained
features (Kumar et al., 2021), i.e., the features of
poisoned samples are alternated while those of nor-
mal samples are mainly preserved. In view of this,
we propose to reverse the minimum cross-entropy
loss fine-tuning of attackers with maximum en-
tropy loss on clean data. We also propose a metric
called Stop Distance to ensure that backdoors are
eliminated from the model. Figure 1 illustrates the
rationale for how our approach works. A victim
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Figure 1: The pipeline of eliminating backdoors in PLMs with maximum entropy loss. The vector representations
of samples are reduced to two dimensions with t-SNE.

PLM maps poisoned samples closer to target la-
beled samples as shown in Figure 1a. The defender
can train the victim model with maximum entropy
loss on clean data. Such training mixes up the rep-
resentations of target and non-target labeled sam-
ples, along with the poisoned samples, as shown
in Figure 1b. The training with maximum entropy
loss is controlled by the Stop Distance we propose
and stops when the vector representations of differ-
ently labeled samples are close enough. The final
training on the clean dataset brings the PLM back
to normal, where the poisoned samples are close
to the non-target labeled samples and away from
target labeled samples, as shown in Figure 1c.

We utilize the proposed method to defend against
various backdoor attacks in pre-training and fine-
tuning paradigm. Our method has a significant
advantage over baseline defending methods. Also,
a lite version of our method with a larger Stop Dis-
tance and much less computation achieves on-par
performance to the baselines. The results indicate
that our method is both effective and flexible. Fur-
ther, we analyze the possible relationship between
backdoor attacks and dataset bias, and demonstrate
that maximum entropy can also be effective as a
regular term for de-biasing.

2 Related Work

2.1 Backdoor Attack and Defense

Backdoor attacks are conducted through data poi-
soning (Chen et al., 2017; Dai et al., 2019) in natu-
ral language processing initially. The widespread
application of transfer learning makes it easier for
attackers to inject backdoors into PLMs (Kurita
et al., 2020). The subsequent backdoor attacks in
transfer learning scenario are mainly concerned
with three aspects. (1) Stealthiness: triggers are
chosen from misspelled words (Chen et al., 2021),

word co-occurrence (Yang et al., 2021c), synonyms
(Qi et al., 2021d), syntax (Qi et al., 2021c), and
styles (Qi et al., 2021b; Chan et al., 2020) by the
attacker, and adversarial weight perturbations are
adopted to limit the magnitude of model modifica-
tion (Garg et al., 2020). (2) Generality: backdoor
attacks still work when the training dataset is un-
known (Yang et al., 2021a) and the downstream
task is unknown (Zhang et al., 2021). (3) Persis-
tence: Li et al. (2021a) weaken the impact of catas-
trophic forgetting on backdoor attacks. In addition,
the clean-label attack is also a promising research
direction (Yan et al.).

Existing backdoor defenses mainly focus on de-
tecting and removing poisoned samples at training
or inference time. Training time defense finds poi-
soned samples through keyword analysis (Chen
and Dai, 2021), PLM-based discriminator (Li et al.,
2021b) or clustering (Cui et al., 2022). Inference
time defense incorporates perplexity (Qi et al.,
2021a) or rare word-based perturbations (Yang
et al., 2021b) which requires additional compu-
tation.

2.2 Dataset Bias

Biases are commonly found in datasets of vari-
ous tasks, e.g., sentiment analysis (Dixon et al.,
2018), natural language inference (Gururangan
et al., 2018), fact verification (Schuster et al.,
2019), reading comprehension (Kaushik and Lip-
ton, 2018), etc. When training data are inadequate
or imbalanced, the model tends to focus on super-
ficial features and lose its generalizability outside
the domain. There are three common methods
of de-biasing. (1) Directly optimizing the biased
datasets by filtering out the overly simple samples
(Sakaguchi et al., 2020; Zellers et al., 2019). (2)
De-biasing through training method design, e.g.,
product of experts (Mahabadi et al., 2020) and con-
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(a) Between-group dissimilarity (b) ACC and ASR (c) Within-group dissimilarity

Figure 2: Visualization results of BadNets. The results of all experiments in this paper are averaged over five runs.

fidence regularization (Utama et al., 2020). (3)
Correcting the output of the biased model with
counterfactual inference (Qian et al., 2021). There
are similarities between dataset bias and backdoor
attacks, which will be investigated in Section 5.6.

3 Preliminaries

Backdoor attacks happen at model training, pos-
ing security risks to transfer learning and outsourc-
ing training scenarios of the pre-training and fine-
tuning paradigm. In transfer learning scenario, the
attacker injects backdoors into a PLM through fine-
tuning and gets the user to download it through
a network attack. Then the user fine-tunes it as
a text encoder on downstream tasks. It is worth
mentioning that backdoors cannot be eliminated
by such a standard fine-tuning (Kurita et al., 2020).
In outsourcing training scenario, the entire model
training process is implemented by a third party.
The attacker can inject backdoors directly while
fine-tuning PLMs on downstream tasks. The fol-
lowing is a formal representation of the backdoor
attack based fine-tuning.

In fine-tuning, a clean dataset D with text sample
x and the corresponding label y is used to train a
text classification model Fθ : X→ Y, where X is
the input space and Y is the output space. Backdoor
attackers will divide the dataset into two parts, the
candidate poison set Dp and the clean set Dc. The
samples in Dp are refactored by function g(∗) to
become poisoned samples embedded with triggers,
and the labels of these samples are tampered with
the attack target label. The attackers can then get
a poisoned set D∗p, with poisoned sample x∗ =
g(x) and attack target label y∗ = yt. Finally,
the victim model Fθ∗ is trained to convergence on
D′ = D∗p ∩ Dc. During inference, Fθ∗ will behave
properly on clean samples but produce the target
label on poisoned samples.

Two metrics are generally applied to evaluate

backdoor attacks, namely classification accuracy
(ACC) and attack success rate (ASR) (Yang et al.,
2021c). ACC is the classification accuracy of the
victim model on a clean data set. ASR is the pro-
portion of poisoned samples that are misclassified
as the target label. In this paper, we poison all
non-target labeled samples in the test set to cal-
culate ASR. We use both metrics to evaluate the
effectiveness of defense methods.

4 The Proposed Method

4.1 How Backdoor Attacks PLMs?

The PLM is often considered as an encoder in text
classification tasks. Thus, the changes of a PLM
during backdoor attacks can be reflected in its en-
coded representations and performance in classi-
fication. In terms of vector representations, the
samples can be divided into three groups: sam-
ples with the target label, samples with non-target
labels, and poisoned samples. We observed the
dissimilarity between the vector representations of
different groups and the same group, respectively.
In terms of classification performance, we observed
the changes of PLMs by ACC and ASR.

Specifically, we conduct visualization experi-
ments with BadNets (Gu et al., 2017; Kurita et al.,
2020) as shown in Figure 2. We randomly in-
sert a fixed token (randomly selected from “cf”,
“mn”, “bb”, “tq”, and “mb”) into each of 10% clean
samples in SST-2 training set(Socher et al., 2013).
These samples are then mixed with the remaining
90% samples and are used to fine-tune the uncased
BERTBase (Devlin et al., 2019). We take the [CLS]
token of BERT as the vector representation of a
sample, denoted as h. The centroid of a group
of n vector representations is 1

n

∑n
i=1 hi. The Eu-

clidean distance between centroids measures the
between-group dissimilarity, and the within-group
dissimilarity is measured by averaging the variance
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of each dimension.
The between-group dissimilarity is shown in

Figure 2a. It can be observed that the distance
between different labeled samples gradually in-
creases, which implies the improvement of the
classification ability. The distance between poi-
soned samples and target labeled samples gradu-
ally decreases, indicating the establishment of an
association between the backdoor feature and the
target label. ACC and ASR of the victim model
are shown in Figure 2b. BadNets boosts ASR to
nearly 100% without affecting ACC and the con-
vergence of ASR is later than ACC. Figure 2c plots
the within-group dissimilarity. According to linear
discriminant analysis (LDA), the samples of the
group with small within-group variance appeal to
linear classifier.It can be found that the vector rep-
resentations of the poisoned samples has a small
variance after convergence, bringing an extremely
high ASR.

The distortion to PLMs caused by fine-tuning
with poisoned data can be clearly seen from the
experiments. Backdoor attacks enlarge the distribu-
tion gap between the pre-trained and victim model
sharply. Our method focuses on the elimination of
this gap to defend against backdoor attacks.

4.2 Backdoor Elimination with Maximum
Entropy Loss

There are two main challenges in backdoor elim-
ination. (1) The inaccessibility of the poisoned
samples used by the attackers. (2) The inability to
verify if the backdoors have been eliminated.

We address the first challenge by focusing on
closing the distribution gap mentioned in Sec-
tion 4.1 instead of finding the poisoned samples.
The minimum cross-entropy loss training on poi-
soned samples during backdoor attack is the direct
cause of the distribution gap. Therefore, we con-
sider fine-tuning PLMs with maximum entropy loss
on clean data as the reversion of backdoor attacks.
The goal of cross-entropy loss used by backdoor
attackers is to align model prediction Q with the
distribution of training data labels P :

Lce = Ex∼p(x)(− log q(x))

∝ Ex∼p(x)(− log q(x))− Ex∼p(x)(− log p(x))

= DKL(P ||Q),
(1)

where P is the one-hot training data distribution
with Ex∼p(x)(− log p(x)) as a constant value, and

Q is the model prediction. For input x, q(x) is
calculated as

q(x) =
exp(Whx + b)

∑M
c=1 exp(Whc + b)

, (2)

where W and b are the parameters of the output
layer, hx is the vector representation of the input.
The training data distribution P is a Bernoulli dis-
tribution with an entropy of 0. Thus minimizing
Lce means minimizing the entropy of the model
prediction distribution tends to 0. On the contrary,
maximum entropy training can be used as the in-
verse operation of minimizing cross-entropy loss,
of which the objective is to maximize the entropy
of model prediction distribution as

Lmax = −
N∑

i=1

M∑

c=1

qc(xi) log qc(xi), (3)

where N is the size of training set and M is the
number of labels.

To address the challenge of backdoor elimina-
tion probing, we propose a new metric named Stop
Distance (SD) to control the degree of defense with
maximum entropy training. Specifically, an appro-
priate number of training steps is needed to ensure
the elimination of backdoors while maintaining
the classification ability of the model for normal
samples when we fine-tune PLMs with maximum
entropy loss. SD refers to the Euclidean distance
between the centroids of different labeled samples,
i.e., hi and hj , as SD = ‖hi − hj‖2. The informa-
tion entropy is maximized when the model predic-
tion probability in (2) follows the uniform distribu-
tion (see Appendix A for proof). The convergence
of the model output distortion toward a uniform
distribution implies the pulling in of the distance
between differently labeled vector representations.
Thus, SD is a convenient measure that quantifies
the extent to which the maximum entropy loss af-
fects the model.

We stop fine-tuning with maximum entropy loss
when SD is below a certain threshold. We exper-
imentally investigate the threshold in Section 5.5.
The experiments show that when SD is set small
enough, the ASR of backdoor attacks will drop to
a certain level accordingly.

4.3 Overall Procedure
The output layer for PLMs in text classification
tasks is necessary to calculate the maximum en-
tropy loss. However, we can only download PLMs
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used as text encoders in transfer learning scenar-
ios, so the output layers used by the attackers are
unavailable to us. Therefore, we freeze the param-
eters of PLMs and fine-tune an output layer with
clean data to simulate the behavior of attackers.

With the simulated output layer, we can fine-tune
the PLMs with the maximum entropy loss until SD
is below the threshold. For binary classification
tasks, SD is easy to calculate because there are
only two types of labels in the dataset. For multi-
class classification tasks, SD can be calculated by
randomly selecting two types of labels.

The maximum entropy loss mainly counteracts
the effect of minimizing cross-entropy loss during
backdoor attacks and has little effect on the pre-
trained feature extraction ability of PLMs. There-
fore, it is easy to recover the classification ability
of the model, and we simply fine-tune the model to
converge with cross-entropy loss on clean data.

5 Experiments

5.1 Experiment Setup

We conduct experiments in both transfer learning
and outsourcing training scenarios. In transfer
learning scenarios, the full clean data can be used
for backdoor elimination. In outsourcing scenarios,
only a small clean subset of data is assumed to be
available, and we set the percentage of clean data
in the outsourcing scenarios to 10%.

We implement the following six categories of
backdoor attacks. (1) BadNets (Gu et al., 2017),
(2) RIPPLe (Kurita et al., 2020), (3) RIPPLES (Ku-
rita et al., 2020), (4) SOS (Yang et al., 2021c), (5)
HiddenKiller (Qi et al., 2021c), (6) StyleBkd (Qi
et al., 2021b). All attack and defense methods are
evaluated on Stanford Sentiment Treebank (SST-
2) (Socher et al., 2013) 1 and AG’s News (Zhang
et al., 2015) 2. Following their work, the attack
target labels are “positive” and “world” for SST-2
and AG’s News respectively, and the attack target
model is uncased BERTBase. More details of the
attacks can be found in Appendix C.

5.2 Baseline Methods

We compare our method with two conventional
baselines and adapt two strong baselines from ad-
versarial training and image processing. (1) Stan-
dard fine-tuning (FT) (Devlin et al., 2019) (2) Fine-

1https://nlp.stanford.edu/sentiment/
2http://groups.di.unipi.it/~gulli/AG_corpus_

of_news_articles.html

tuning with a higher learning rate (Kurita et al.,
2020) (FTH) (3) FreeLB (Zhu et al., 2020) (4) Fine-
pruning (Liu et al., 2018a) (FP). For FT, we set the
learning rate to 2e-5. For FTH, we set the learning
rate to 5e-5. Since there is no direct method to
eliminate backdoors for PLMs in natural language
processing, we designed two baselines, FreeLB
and FP. FreeLB was proposed to enhance model
generalization with adversarial training during fine-
tuning. FP is a widely recognized backdoor elim-
ination method in image processing. A detailed
description of FreeLB and FP is provided in Ap-
pendix B. The training batch size is set to 32 in the
experiments for all methods. Existing inference-
time defense methods differ from our approach in
the evaluation mechanism. So we didn’t take these
methods as baselines.

5.3 Experimental Results

The results of backdoor elimination on SST-2 and
AG’s News in transfer learning scenario are shown
in Table 1. By controlling SD, we report the results
of our method with different computational costs.
Ours-lite is similar to other baseline methods in
terms of computational costs with an SD of 0.02,
while Ours has higher computational costs with
an SD of 0.01. It can be found that our method
can generally achieve better backdoor elimination
results under similar conditions of ACC. More in-
formation about the computational costs can be
found in Appendix D.1.

Due to the distribution difference between the
poisoned and clean datasets, FT slightly reduces
ASR of various backdoor attacks under the effect
of catastrophic forgetting (McCloskey and Cohen,
1989). FTH and FreeLB obtain lower ASR com-
pared to FT. We conjecture that this is because
both the higher learning rate and adversarial per-
turbations enhance the magnitude of parameter
changes during optimization, which in turn exac-
erbates catastrophic forgetting. FP achieves supe-
rior results to other baseline methods by pruning
backdoor-related structures. The experimental re-
sults of FP also support the view that backdoor
attacks exploit the spare learning capacity of deep
learning models. Thus, pruning can be used as a
defense against backdoor attacks (Liu et al., 2018a).
However, it is difficult to eliminate the backdoors in
PLMs by pruning alone, as shown in Appendix B.
We speculate that this is because we pruned the
weights based on gradients rather than pruning the
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Dataset Methods
BadNets RIPPLe RIPPLES SOS HiddenKiller StyleBkd

∆
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

SST-2

Victim 91.05 99.89 90.28 100.00 90.61 100.00 91.10 100.00 87.26 98.57 88.69 93.05 -
FT 91.82 94.52 91.65 99.71 91.59 100.00 91.63 100.00 91.74 51.38 91.33 77.84 11.34

FTH 91.75 56.75 91.42 75.81 91.75 96.03 91.58 99.82 91.91 34.85 91.54 64.13 27.35
FreeLB 91.69 60.83 92.04 96.10 91.55 99.74 91.78 99.98 91.75 47.19 91.86 69.09 19.76

FP 90.55 22.26 90.46 27.04 90.35 82.61 90.35 58.68 90.60 39.28 90.06 68.50 48.86
Ours-lite 90.88 21.54 90.74 33.22 91.26 79.17 91.37 85.15 90.35 41.51 91.40 48.52 47.07

Ours 90.75 19.45 90.23 23.57 91.00 82.28 91.38 62.52 91.30 37.13 91.44 45.85 53.45

AG

Victim 91.43 99.79 91.08 99.86 91.11 99.86 92.01 99.61 91.09 99.23 90.11 96.51 -
FT 91.68 89.68 91.63 87.83 91.72 75.04 91.70 99.58 91.59 68.59 91.61 81.38 15.46

FTH 91.67 42.30 91.68 55.27 91.80 41.13 91.85 86.37 91.79 28.72 91.87 58.73 47.06
FreeLB 91.69 47.61 91.89 53.21 91.69 31.02 91.89 94.42 91.92 45.90 91.88 60.24 43.74

FP 90.39 29.59 90.50 45.59 90.63 27.49 90.48 18.71 90.64 15.66 90.54 57.59 66.71
Ours-lite 90.87 13.99 91.01 30.00 90.99 29.20 90.82 20.74 91.26 19.26 91.21 40.73 73.49

Ours 90.83 8.97 90.73 23.65 90.75 21.89 90.60 10.54 90.37 6.77 90.91 32.44 81.77

Table 1: Backdoor elimination in transfer learning scenarios on SST-2 and AG’s News. ∆ indicates the average drop
of ASR when corresponding method is applied to defend against multiple attacks. Bolded values indicate optimal
results and underlined values indicate suboptimal results.

Dataset Methods
BadNets RIPPLe RIPPLES SOS HiddenKiller StyleBkd

∆
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

SST-2

Victim 91.05 99.89 90.28 100.00 90.61 100.00 91.10 100.00 87.26 98.57 88.69 93.05 -
FT 90.53 98.57 90.01 100.00 89.80 100.00 91.29 100.00 90.72 66.71 90.17 86.25 6.66

FTH 90.53 89.43 89.49 99.14 89.53 100.00 90.49 99.89 90.53 49.71 90.18 71.55 13.63
FreeLB 90.97 94.63 90.26 99.89 89.83 100.00 90.99 100.00 90.91 66.69 90.24 82.83 7.91

FP 88.49 22.63 87.74 36.01 88.14 88.46 88.71 49.69 88.07 54.21 87.98 66.53 45.66
Ours-lite 87.55 33.16 85.33 24.50 84.83 47.98 89.03 95.18 86.57 45.22 89.36 45.58 49.98

Ours 86.19 24.93 83.66 20.37 83.55 40.48 87.01 63.44 84.01 48.97 86.53 49.49 57.31

AG

Victim 91.43 99.79 91.08 99.86 91.11 99.86 92.01 99.61 91.09 99.23 90.11 96.51 -
FT 90.53 98.57 90.01 100.00 89.80 100.00 91.29 100.00 90.72 66.71 90.17 86.25 7.22

FTH 89.51 56.78 89.23 78.79 89.18 99.28 89.86 99.54 89.36 49.56 89.41 61.81 24.85
FreeLB 90.04 59.17 89.32 95.57 88.05 99.91 90.30 99.67 89.30 62.41 89.96 72.23 17.65

FP 88.39 26.97 88.35 39.49 88.16 44.04 88.75 7.01 88.53 8.53 88.40 52.30 69.42
Ours-lite 88.46 12.10 88.01 55.74 88.02 43.00 88.35 50.43 88.02 8.30 88.60 16.71 68.10

Ours 87.56 9.28 88.06 42.99 87.91 29.18 87.89 42.46 87.97 10.89 88.27 21.23 73.14

Table 2: Backdoor elimination in outsourcing attack scenarios on SST-2 and AG’s News.

neurons based on activation values, which causes
more damage to the classification ability of victim
models. Our method allows for a tradeoff between
the computational costs and the backdoor elimina-
tion effectiveness via SD. When the computational
costs of our method are similar to those of the base-
line methods, we can obtain a comparable backdoor
elimination effect to FP. Meanwhile, our method
outperforms FP on ACC, which is mainly due to
the weakening of FP for model learning capacity.
As the computational costs rise, our method can
sacrifice more accuracy on clean data to get even
better backdoor elimination results. It is worth not-
ing that our method performs less effectively under
RIPPLES and SOS. This is because RIPPLES is
not purely based on fine-tuning, but also employs
embedding surgery (Kurita et al., 2020). And SOS
only updates word embeddings of several trigger
words with a quite high learning rate, requiring a

much lower SD threshold to defend.

The results of the backdoor elimination on SST-2
and AG’s News in outsourcing attack scenarios are
shown in Table 2. In these scenarios, the scarcity of
data poses a great challenge for preserving clean ac-
curacy and eliminating backdoors. It can be found
that data scarcity has a greater negative impact on
FP and our method in ACC, and on the other base-
line methods in backdoor elimination. FP and our
method are closer to the practical demands. More
analysis on data size and backdoor elimination ef-
fects are shown in Appendix F.

According to the results, our method can elim-
inate the backdoor with a certain loss of clean ac-
curacy in both scenarios, and the trade-off between
backdoor elimination effect and clean accuracy can
be controlled by SD.
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(a) Between-group dissimilarity (b) ACC and ASR (c) Within-group dissimilarity

Figure 3: Visualization results during fine-tuning with maximum entropy loss.

(a) Between-group dissimilarity (b) ACC and ASR (c) Within-group dissimilarity

Figure 4: Visualization results during final training with cross-entropy.

5.4 Why Does Our Method Work?

To explain why our method is effective, we visu-
alize the defense process on the test set of SST-2
in Figure 3 and 4. Specifically, the changes of
PLMs during fine-tuning with maximum entropy
loss and final training with cross-entropy loss are
plotted. These two phases can be approximated as
the inverse operation of backdoor attacks.

Fine-tuning with maximum entropy loss sepa-
rates the normal samples from the poisoned sam-
ples. Figure 3a plots the Euclidean distance trend
between centroids of samples with the target label,
samples with the non-target labels, and poisoned
samples. It can be found that the centroids of all
groups are gradually close to each other because of
the maximum entropy loss. However, the centroid
of poisoned samples becomes relatively more dis-
tant from the centroids of normal samples because
there are no poisoned samples in the dataset. Fig-
ure 3b shows the classification ability of the model
for normal samples and poisoned samples. As the
centroid of differently labeled samples tends to be
consistent, the clean accuracy of the model tends to
be 50%. At the same time, the model showed oscil-
lations in attack success rate, as poisoned samples
lack constraints during training. In addition, the
variances of each dimension of the vector represen-
tations gradually converge as the training proceeds,

as shown in Figure 3c.
The final training with cross-entropy loss allows

the model to “forget” poisoned samples and im-
proves the classification ability on normal sam-
ples. During training, the centroid of samples with
the target label and the centroid of samples with
non-target labels are gradually separated. Mean-
while, the centroid of poisoned samples gradually
approaches the samples with non-target labels and
moves away from samples with the target label,
as shown in Figure 4a. Figure 4b illustrates the
classification ability of the model, which steadily
improves on normal samples and gets rid of the
influence of triggers. In addition, for poisoned sam-
ples, the variances of each dimension of their vector
representations increases, which intuitively means
that backdoor features are gradually not being used
as a basis for classification, as shown in Figure 4c.

5.5 Key Parameters Effects Experiments

To pursue both backdoor elimination effect and
classification ability in normal samples, we exper-
imentally explored the SD threshold values in a
variety of scenarios.

Figure 5 shows the effects of SD on ACC and
ASR, respectively. Although the figures for differ-
ent backdoor attacks vary widely, they all show the
same trend. As SD decreases, ASR gradually de-
creases and ACC slightly decreases, implying that
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Figure 5: The effects of SD on ACC and ASR, respectively.

our method can sacrifice a small amount of clas-
sification performance in exchange for robustness.
Due to the limitation of data size, the trend of the
curve is less pronounced in outsourcing scenarios,
as shown in Appendix E. The experimental results
show that setting SD threshold below 0.1 can ef-
fectively weaken the threat of multiple backdoor
attacks in both scenarios.

In both transfer learning and outsourcing sce-
narios, SD and training steps are logarithmically
related, with smaller SDs leading to more training
steps, as can be seen in Appendix E.

5.6 Backdoor Attacks and Dataset Bias

There are many similarities between dataset bias
and backdoor attacks. They both introduce “dirty”
data in the training phase, resulting in a lack of gen-
eralization of the models. They both allow shortcut
features to be associated with specific labels. The
difference between the two is that one is uninten-
tional and the other is intentional. To verify our
conjecture, we trained the model on the biased
dataset using the maximum entropy as the regular
term of the cross-entropy loss and tested it on the
unbiased dataset. Our experiments mainly follow
Mahabadi et al. (2020), see Appendix H for more
details.

Table 3 shows the results of the debiasing ex-
periments. The CE column in the table refers to
the BERT model trained using cross-entropy loss,
and the Max Entropy column refers to the BERT

Data CE Max Entropy ∆

ADD1 77.69 78.43 +0.74
DPR 50.70 50.99 +0.29
SPR 59.65 61.38 +1.73
FN+ 55.56 57.25 +1.69
JOCI 51.64 52.12 +0.48
MPE 67.05 67.59 +0.54

SCITAIL 74.33 74.92 +0.59
SICK 60.56 62.04 +1.48
GLUE 74.60 74.88 +0.28
QQP 68.50 68.65 +0.15

MNLI 74.88 74.92 +0.04
MNLI-M 74.60 74.88 +0.28

SNLI 90.73 90.91 +0.18

Table 3: Experiments results using maximum entropy
as a regular term to mitigate the bias of the dataset.

model trained using cross-entropy loss with max
entropy regular term. With max entropy regular
term, the performance of the model on various un-
biased datasets is improved, even on the test set of
SNLI. This experimental result supports our con-
jecture to some extent.

6 Conclusion

In this paper, we propose a simple and power-
ful backdoor elimination method for PLMs. By
fine-tuning PLMs with maximum entropy loss, our
method can effectively revert the backdoor attacks
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in PLMs. Our method essentially eliminates the
backdoors from the perspective of the model and
provides a new defense against backdoor attacks.
We also analyze the relationship between backdoor
attacks and dataset bias, which is beneficial for
further understanding of both.

Limitations

The limitations of our approach exist mainly in two
aspects. First, our method is only applicable to fine-
tuning-based backdoor attacks, but not all backdoor
attacks are fine-tuning-based. Second, although our
method can eliminate backdoors well, the computa-
tional cost of our method is much higher than that
of standard fine-tuning, and needs to be improved
in the future.
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A Maximum Entropy Loss and Model
Predictive Probability Distributions

Information entropy is calculated as

H(X) = −
n∑

i=1

q(xi)× log(q(xi)), (4)

where q(xi) > 0 and
∑n

i=1 q(xi) = 1.
Let

f(x) = −x× log(x). (5)

Take the second order derivative of f(x) as

f ′′(x) = −1

x
< 0. (6)

This function is concave and has

f(
x1 + x2

2
) ≥ f(x1) + f(x2)

2
, (7)

According to Jensen Inequality,

f(
x1 + x2 + ...+ xn

n
) ≥

f(x1) + f(x2) + ...+ f(xn)

n

. (8)

The condition for this equation to be equal is

x1 = x2 = ... = xx. (9)

Therefore,

H(x) = f(q(x1)) + f(q(x2)) + ...+ f(q(xn))

≤ n× f(
q(x1) + q(x2) + ...+ q(xn)

n
)
.

(10)
The equality holds if and only if

q(x1) = q(x2) = ... = q(xn). (11)

Therefore, the information entropy is maximum
when the model predicts a uniform distribution.

B Baseline Methods

B.1 FreeLB

FreeLB (Zhu et al., 2020) was proposed to enhance
model generalization with adversarial training dur-
ing fine-tuning. Based on projected gradient de-
scent (PGD) (Madry et al., 2018), FreeLB adds per-
turbations to the word embeddings by “free” train-
ing strategies (Shafahi et al., 2019; Zhang et al.,
2019) and achieves generalization improvement at

a small cost. Because FreeLB does not require ad-
ditional data and can exacerbate catastrophic forget-
ting (McCloskey and Cohen, 1989) by increasing
sample diversity, we use it as a baseline method.

The optimization objective of FreeLB is denoted
as

min
θ
E(Z,y)∼D[

1

K

K−1∑

t=0

max
δt∈It

L(fθ(X + δt), y)],

(12)
where the inner maximization indicates maximiz-
ing the effect of adversarial attack by optimizing
the perturbation δ, the outer minimization indi-
cates minimizing the training loss by optimizing
the model parameter θ, K denotes the number of
steps in PGD and I denotes the perturbation area
in PGD.

B.2 Fine-Pruning
Fine-Pruning (Liu et al., 2018a), which eliminates
backdoors in the model by pruning, was first pro-
posed in computer vision. Fine-Pruning obtained
good backdoor elimination effects based on the a
priori observation that backdoors exploit the spare
capacity in neural networks. We also take Fine-
Pruning as a baseline method.

Because of the differences between NLP models
and CV models, we made adaptations to the pre-
trained model in NLP. Specifically, we use a Tay-
lor expansion-based approach to do unstructured
pruning (Molchanov et al., 2019). We prune the
weights of each layer of the pre-trained neural net-
work proportionally according to the importance
scores calculated as

SW = Ex∼D|
∂L(x)

∂W
W |, (13)

where W is the weight matrixes in the neural net-
work, x is the samples from dataset D, and L is the
cross-entropy loss for classification. Theoretically,
SW approximates the change of L when removing
a specific weight.

We set the proportion of weights for each layer
to be pruned as hyperparameters and retrain the
model after the pruning.

B.3 Hyperparameter Settings of Fine-Pruning
The average results of defending against multiple
backdoor attacks using FP are shown in Fig 6 and
Fig 7. It can be found that a significant decrease in
ACC occurs when the pruning ratio reaches 60%
on SST-2. On AG’ News, the ratio is 70%. We
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Figure 6: ACC and ASR after pruning parameters of
different ratios on SST-2.

Figure 7: ACC and ASR after pruning parameters of
different ratios on AG’s News.

Figure 8: ACC and ASR after pruning parameters of
different ratios on SST-2.

therefore set the pruning ratio to 50% on SST-2
and 60% on AG’s News.

In addition, the experiments of pruning only
without retraining are shown in Figure 8. It can
be found that pruning without retraining leads to a
linear decrease in ACC with ASR.

C Details of Backdoor Attacks

C.1 Implementation of Backdoor Attacks
For BadNets, we poisoned 10% samples in the
training set. For SST-2, the words selected for
the embedding surgery step in RIPPLES are “fun”,
“good”, “best”, “refreshing”, “wonderful”, “beau-
tiful”, “remarkable”, “heart”, “fascinating” and
“powerful”. For AG’ news, the words selected are
“terrorism”, “un”, “muslim”, “pakistan”, “greece”,
“military”, “iraq”, “nuclear”, “israel” and “afp”.
For SOS, we set the ratio of poisoned samples
and the ratio of negative samples both to be 10%,
following (Yang et al., 2021c). For HiddenKiller,
we poisoned 30% samples in the training set. For
StyleBkd, we used “bible” as the trigger style and
poisoned 20% samples in the training set.

C.2 Details of the Datasets
Both SST-2 and AG’ News are commonly used
datasets for text classification tasks. Therefore, we
believe that the concerns about privacy and offen-
sive content are already well addressed by the cre-
ators and the previous works. In addition, the home
pages of both datasets express that these datasets
can be used for non-commercial purposes.

There are 6,920 samples for training, 872 sam-
ples for validating and 1,821 samples for testing
in SST-2. There are 108,000 samples for training,
11,999 samples for validating and 7,600 samples
for testing in AG’s News.

D Details of Backdoor Elimination
Experiments

D.1 Computational Costs
For statistical convenience, we approximated the
computational costs of FP and our method. FP’s
computational costs are mainly spent on the fine-
tuning after pruning. The computational costs of
our method are mainly spent on the stage of training
with maximum entropy loss. Therefore, we treat
the costs of these two parts as the cost of both
methods.

During experiments on SST-2 in transfer learn-
ing scenarios, SD of ours-lite is set to 0.02 to be
similar to the computational costs of baseline meth-
ods. The number of steps consumed by baseline
methods is 2170, and the number of steps con-
sumed by ours-lite is 2159. A single run takes 5
minutes on a singel NVIDIA GeForce RTX 3090
GPU. SD of ours is set to 0.01 to enhance the back-
door elimination effect, and the number of steps
consumed by ours is 3948.
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During experiments on AG’ news in transfer
learning scenarios, SD settings are the same as for
SST-2. The number of steps consumed by baseline
methods is 3480, and the number of steps con-
sumed by ours-lite is 2439. The number of steps
consumed by ours is 4489.

During experiments on SST-2 in outsourcing at-
tack scenarios, SD of ours-lite is set to 0.03. The
number of steps consumed by baseline methods is
2200, and the number of steps consumed by ours-
lite is 2269. SD of ours is set to 0.01, and the
number of steps consumed by ours is 7325.

During experiments on AG’ News in outsourcing
attack scenarios, SD of ours-lite is set to 0.02. The
number of steps consumed by baseline methods is
3500, and the number of steps consumed by ours-
lite is 3090. SD of ours is set to 0.01, and the
number of steps consumed by ours is 4969.

Although our method achieves good backdoor
elimination results, the computational costs of our
method are much higher compared to standard fine-
tuning and need to be improved in the future.

D.2 Implementation of Our Methods
We mainly use HuggingFace’s Transformers pack-
age 3 in our code.

E Key Parameters Influence Experiments
in Outsourcing Scenarios

Figure 9: The effects of SD on number of steps to
fine-tune with maximum entropy loss. For clarity, the
standard deviation of the data is not drawn in this figure.

Figure 9 shows the effects of SD on the number
of steps to fine-tune with maximum entropy loss in
transfer learning scenarios. A logarithmic relation-
ship can be found between SD and the number of
training steps. Though more steps are required to
bring different centroids closer to the same distance,

3https://huggingface.co/docs/transformers/
index

Figure 10: The effects of SD on number of steps in stage
two.

the same relationship is presented in the outsourc-
ing scenarios, which can be seen in Figure 10.

Figure 11 shows the effects of SD on ACC and
ASR, respectively. The effect of SD on the effec-
tiveness of backdoor elimination decreases signifi-
cantly when the data size is small. We suspect that
this is because we do not need to perform attack
scenario simulation in the outsourcing attack sce-
nario, so the maximum entropy loss works better.

F Performance with Different Clean Data
Sizes

To ensure that our approach works at multiple data
scales, we conduct backdoor elimination at differ-
ent data scales. We defend against BadNets with
different percentages of training data in SST-2. Fig-
ure 12 and 13 show the ACC and ASR of various
defense methods for different data sizes, respec-
tively. It can be found that FP and our method are
more affected by the data size in terms of ACC, but
always maintain a better defense.

G Another Baseline Method

Maximum entropy loss in our method plays a big
role in backdoor elimination by closing the distance
between centroids of differently labeled samples.
There are many ways to achieve the same effect.
But the maximum entropy loss has the best back-
door elimination effect.

There is another similar baseline method to
demonstrate the effectiveness of the maximum en-
tropy loss. We first variate all the semantic vectors
of samples in the training set onto a same Gaussian
distribution. Specifically, we feed the semantic vec-
tors produced by PLMs through a shallow MLP. It
is followed by two linear layers, which are used
to compute the mean and variance of the Gaussian
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(a) BadNets (b) RIPPLe (c) RIPPLES

(d) SOS (e) HiddenKiller (f) StyleBkd

Figure 11: The effects of SD on ACC and ASR, respectively.

Figure 12: ACC of various defense methods at different
data sizes.

Figure 13: ASR of various defense methods at different
data sizes.

distribution, respectively. Then we approximate
the distance between that distribution and a deter-
ministic Gaussian distribution by KL loss. As a
result, the semantic vectors of differently labeled
samples can be brought closer to a certain distance.

However, this variational-based method hardly
works for backdoor elimination. Table 4 shows

Backdoor Attack Variation Ours
ACC ASR ACC ASR

BadNets 91.38 59.74 90.88 21.54
RIPPLe 91.05 85.46 90.74 33.22

RIPPLES 91.21 86.16 91.26 79.17
SOS 91.39 99.93 91.37 85.15

HiddenKiller 91.11 40.59 90.35 41.51
StyleBkd 91.35 73.89 91.40 48.52

Table 4: Results of another similar baseline method to
defend against multiple backdoor attacks.

the effectiveness of the two methods for defending
against different backdoor attacks when SD is set
to 0.02. We also shows the effectiveness of the two
methods in defending against BadNets at different
SD in Figure 14. Our approach clearly outperforms
the variational-based approach.

Figure 14: ACC and ASR after using different methods
to bring the centroids of differently labeled samples
closer.
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H Backdoor Attacks and Dataset Bias

Following (Mahabadi et al., 2020), we conducted
debiasing experiments on 12 NLI datasets, includ-
ing SNLI (Bowman et al., 2015), MNLI (Williams
et al., 2018), Sentences Involving Compositional
Knowledge (SICK) (Marelli et al., 2014), AddOn-
eRTE (ADD1) (Pavlick and Callison-Burch, 2016),
Johns Hopkins Ordinal Commonsense Inference
(JOCI) (Zhang et al., 2017), Multiple Premise En-
tailmen (MPE) (Lai et al., 2017), SciTail (Khot
et al., 2018), and three datasets named Semantic
Proto-Roles (SPR) (Reisinger et al., 2015), Defi-
nite Pronoun Resolution (DPR) (Rahman and Ng,
2012), FrameNet Plus (FN+) (Pavlick et al., 2015)
in (White et al., 2017), and Quora Question Pairs
(QQP) interpreted as an NLI task (Gong et al.,
2018). We use the same dataset partitioning ra-
tio as (Wang et al., 2017). We train on the training
set of SNLI and search for hyperparameters on the
validation set of other datasets. Then results are re-
ported on the test sets of other datasets. The search
range of the weight parameter α is 1e-1, 1e-2, 1e-3,
1e-4, 1e-5, and the search range of the number of
training epochs is 10 epochs.
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