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Abstract

By focusing the pre-training process on
domain-specific corpora, some domain-specific
pre-trained language models (PLMs) have
achieved state-of-the-art results. However, it is
under-investigated to design a unified paradigm
to inject domain knowledge in the PLM fine-
tuning stage. We propose KnowledgeDA, a uni-
fied domain language model development ser-
vice to enhance the task-specific training pro-
cedure with domain knowledge graphs. Given
domain-specific task texts input, KnowledgeDA
can automatically generate a domain-specific
language model following three steps: (i) local-
ize domain knowledge entities in texts via an
embedding-similarity approach; (ii) generate
augmented samples by retrieving replaceable
domain entity pairs from two views of both
knowledge graph and training data; (iii) select
high-quality augmented samples for fine-tuning
via confidence-based assessment. We imple-
ment a prototype of KnowledgeDA to learn lan-
guage models for two domains, healthcare and
software development. Experiments on domain-
specific text classification and QA tasks ver-
ify the effectiveness and generalizability of
KnowledgeDA.

1 Introduction

Although general NLP models such as GPT-3
(Brown et al., 2020) have demonstrated great po-
tential, they may not consistently perform well in
domain-specific tasks like healthcare (Kwon et al.,
2019) and programming (Liu et al., 2019b). This
is because most pre-trained language models are
trained on general-domain corpora, e.g., OpenWeb-
Text (Radford et al., 2019) and C4 (Raffel et al.,
2022). However, the words or knowledge entities
frequently used in a specific domain are typically
different from those in a general domain. For in-
stance, scientific texts use different words than gen-
eral texts, with only a 42% overlap (Beltagy et al.,
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2019). Consequently, general PLMs struggle to
capture many important domain entities that rarely
appear in general corpora. Therefore, it is neces-
sary to develop a suitable training mechanism for
domain-specific NLP tasks.

In general, two steps are needed for domain-
specific NLP model development: (i) language
model pretraining and (ii) task-specific model train-
ing (Gu et al., 2021). Most existing studies fo-
cus on pretraining. In particular, to learn domain-
specific word embeddings, they retrain PLMs with
domain-specific corpora, including ClinicalBERT
(Alsentzer et al., 2019), BioBERT (Lee et al., 2020),
SciBERT (Beltagy et al., 2019), etc. In contrast,
how to improve the second step (i.e., task-specific
training) is under-investigated. A common prac-
tice is directly fine-tuning the task-specific model
with annotated data (Gu et al., 2021). However, it
is difficult to obtain abundant annotated data for
a domain-specific task, as labeling often requires
domain experts’ knowledge (Yue et al., 2020); with-
out sufficient data, direct fine-tuning may not lead
to a satisfactory performance due to overfitting (Si
et al., 2020). Some studies propose task-dependent
methods to train task-specific models by introduc-
ing some types of domain knowledge (Zhu et al.,
2022), but they are hard to be generalized to other
tasks (Tushev et al., 2022).

Then, a research question appears: can we intro-
duce domain knowledge to task-specific model
training in a unified way? To answer the question,
two main issues need to be addressed: (i) where
to find a unified format of domain knowledge? (ii)
how to improve the task-specific training of various
domains’ models in a unified way?

On one hand, the domain knowledge graph (KG)
is an effective and standardized knowledge base
for a specific domain (Abu-Salih, 2021). KGs have
been constructed for various domains such as cy-
bersecurity (Jia et al., 2018), social-impact fund-
ing (Li et al., 2020b), and healthcare (Li et al.,
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2020a; Zhang et al., 2020), which emphasizes
the wide availability of domain KGs. Hence, do-
main KG could be a feasible source for unified
domain knowledge. On the other hand, data aug-
mentation (DA) is a data-space approach to enrich
training data to avoid overfitting regardless of the
task-specific model structure. They are often task-
agnostic (Longpre et al., 2020), i.e., not specified
to any particular task. This property inspires us that
it may be possible to design a unified DA process to
introduce domain knowledge to task-specific model
training. However, current DA methods in NLP are
mostly proposed for general texts (Wei and Zou,
2019), and the performance on domain-specific
tasks is limited (Feng et al., 2021). In general,
domain-specific DA is still an under-researched
direction (Feng et al., 2021).

To fill this research gap, by exploiting do-
main KGs, we propose KnowledgeDA, a novel and
unified three-step procedure to perform domain-
specific DA: (i) domain knowledge localization
to map phrases in the text to entities in the do-
main KG; (ii) domain knowledge augmentation
to fully utilize the KG and the training data to
achieve domain-specific augmentation; and (iii)
augmentation quality assessment to single out high-
quality augmented data for fine-tuning the task-
specific model. Specifically: (i) To the best of our
knowledge, this is one of the pioneering efforts to-
ward proposing a unified development process for
domain-specific NLP models, especially focusing
on task-specific model training. (ii) KnowledgeDA
consists of three core steps, domain knowledge lo-
calization, domain knowledge augmentation, and
augmentation quality assessment. We implement
a prototype of KnowledgeDA, which can automati-
cally learn domain-specific models given domain-
specific texts, especially in healthcare domain. (iii)
Experiments are run on text classification and QA
tasks (English and Chinese) mainly in healthcare.
Results show that KnowledgeDA can obtain ∼ 4%
improvement compared to direct fine-tuning, and
significantly outperform existing DA methods (Wei
and Zou, 2019; Yue and Zhou, 2020). The source
codes are available1.

2 Related Work

Domain-specific Knowledge-augmented NLP
Methods. To improve domain-specific NLP model
development, a general strategy is introducing do-

1https://github.com/RuiqingDing/KnowledgeDA

main knowledge (Zhu et al., 2022). For zero
and few-shot text classification tasks, KPT (Hu
et al., 2022) incorporates external knowledge into
the projection between a label space and a label
word space. For text generation, KG-BART (Liu
et al., 2021) proposes a novel knowledge graph aug-
mented pre-trained language generation model to
promote the ability of commonsense reasoning. For
question answering and dialogue, some work use
external knowledge bases to inject commonsense,
like KaFSP (Li and Xiong, 2022), KG-FiD (Yu
et al., 2022), etc. Besides task-dependent methods,
there are also some unified training strategies to
incorporate knowledge (domain-specific corpora)
into PLMs, leading to domain-specific PLMs such
as BioBERT (Lee et al., 2020), SciBERT (Beltagy
et al., 2019), ClinicalBERT (Alsentzer et al., 2019),
and UmlsBERT (Michalopoulos et al., 2021). Also,
there are three primary techniques to integrate
knowledge graphs and PLMs: (i) pre-training a
PLM from scratch by using KG or other struc-
tural knowledge/texts (Feng et al., 2022; Huang
et al., 2022); (ii) adapting a given PLM to incor-
porate KG information with new network layers
in task-specific training/fine-turning (Zhang et al.,
2022b; Yasunaga et al., 2022; Kang et al., 2022);
(iii) augmenting training data with KGs during task-
specific training/fine-tuning, e.g., PHICON (Yue
and Zhou, 2020). Our work also attempts to im-
prove the domain-specific NLP model development
in a unified manner. Different from PLM, we fo-
cus on task-specific NLP model fine-tuning (Gu
et al., 2021). Hence, our proposed KnowledgeDA
can be used with domain-specific PLMs together
to construct NLP models.

Text Data Augmentation (DA). DA has received
increasing interest, especially low-resource sit-
uations(Feng et al., 2021). In general, there
are three types of text DA methods: (i) Rule-
based techniques, e.g., EDA (Wei and Zou, 2019),
adopt token-level random perturbation operations
including random insertion, deletion, and swap;
(ii) Interpolation-based techniques, pioneered by
MIXUP (Zhang et al., 2018), interpolate the inputs
and labels of two or more real examples. Follow-
ups include SwitchOut (Wang et al., 2018), Mix-
Text (Chen et al., 2020), etc; (iii) Generator-based
techniques, e.g., LAMBADA (Anaby-Tavor et al.,
2020) and GPT3Mix (Yoo et al., 2021), learn gener-
ators by fine-tuning the large language generation
models (e.g., GPT) on the training data to generate
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new samples. Basically, three types of methods can
be used together as they augment data from diverse
perspectives. However, regardless of the type, most
existing studies do not explicitly introduce domain
knowledge. PHICON (Yue and Zhou, 2020) at-
tempts to use the domain-entity dictionary for text
DA, which replaces an entity mention in a sentence
with another same-category entity. Compared to
PHICON, KnowledgeDA further considers relation-
ships in the domain KG; besides, KnowledgeDA
introduces other newly-designed components, e.g.,
augmentation quality assessment, to ensure high-
quality augmentation.

3 The KnowledgeDA Framework

3.1 Workflow of KnowledgeDA

To facilitate the development of domain-specific
NLP models, we propose a unified domain KG
service, KnowledgeDA, which can achieve explicit
domain knowledge injection by domain-specific
DA. Challenges to be addressed include:

C1. How to discover domain knowledge in
texts? Detecting entities in a text is the first step to
link the text with a knowledge base. A domain en-
tity may have multiple expressions, e.g., lungs and
pulmonary share a similar meaning in the health-
care domain. It is important to deal with synonyms.

C2. How to ensure that the augmented texts
retain the domain information and are semanti-
cally correct? We aim to achieve interpretable data
augmentation through explicit domain knowledge
injection. The domain information and the seman-
tic correctness of augmented samples are desirable
to be kept after data augmentation.

C3. How to ensure the quality of augmented
texts? As PLMs grow larger, simple DA method
becomes less beneficial (Feng et al., 2021). It is
essential to select beneficial samples from all the
augmented samples for efficient fine-tuning.

To address the above challenges, we design
corresponding modules in KnowledgeDA (shown
in Figure 1): (i) domain knowledge localization,
which locates the mentions of domain KG enti-
ties in texts; (ii) domain knowledge augmentation,
which incorporates a dual-view DA strategy by con-
sidering both domain KG and training data; (iii)
augmentation quality assessment, which retains
beneficial augmented samples for fine-tuning using
a confidence-based strategy. When the task data
and the PLM (e.g., BERT) are given, KnowledgeDA
can automatically conduct data augmentation based

on built-in domain KGs and output the final domain
task-specific model.

3.2 Module 1: Domain Knowledge
Localization

Detecting entities in texts can identify domain-
specific objects and the relations between them.
Considering that an entity may correspond to mul-
tiple mentions (Florian et al., 2004), exact string
matching will lead to a low matching rate. Al-
though there are some open entity detection tools,
like TAGME (Ferragina and Scaiella, 2010) and
BLINK (Wu et al., 2020), and some studies achieve
supervised non-exact matching of entities and men-
tions (Hu et al., 2019), the performance on domain-
specific entities can not be guaranteed. Then, we
use an annotation-free string-similarity-based strat-
egy (Bunescu and Pasca, 2006; Karadeniz and
Özgür, 2019) to discover non-exact but correct
mappings between mentions in the text and en-
tities in the KG. Specifically, we calculate the inner
product of word embeddings as string similarity
(Wu et al., 2020).

As seen in Figure 1, we follow the NLP pre-
processing pipeline and match the processed text
with KG. During preprocessing, we add the entity
strings in KG to the dictionary of tokenizer to avoid
word segmentation errors, e.g., ‘cerebral embolis’
should be treated as a medical term rather than
being splitted into two words. Also, we use POS
Tagger and Lemmatizer to convert each token to
the canonical form (lemma), e.g., the lemma for
‘coughed’ is ‘cough’. While knowledge localiza-
tion, we extract the entities’ embeddings and the
mentions’ embeddings from the PLM, and then cal-
culate the similarity between them. We consider
the pair of a mention and the most similar KG en-
tity as a match if the similarity score is larger than
a threshold λ (0.9 in our implementation).

An example in healthcare is illustrated in Fig-
ure 2. Without similarity match, we will ignore that
scour and diarrhea are analogous. Through local-
ization, some relations between entities can be also
constructed, e.g., fever and scour are symptoms of
pneumonia and respiratory syndrome. These will
be used in the next module for data augmentation.

3.3 Module 2: Dual-view Domain Knowledge
Augmentation

After locating the domain knowledge, i.e., en-
tity mentions in the text, the next step is to replace
these mentions with other relevant entity words for
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Figure 1: Overview of KnowledgeDA: the user only needs to upload the task text data (i.e., training data) and specifies the
pre-trained language models (e.g., BERT). All the domain knowledge injection procedures are automatically conducted. Finally,
a well-performed domain-specific NLP model will be obtained from KnowledgeDA.

Figure 2: An example of domain knowledge localization
in the healthcare domain. The words in red indicate that the
entities and the mentions are exactly same, and the words in
blue indicate that the mention (scour) and the entity (diarrhea)
share similar word embeddings.

domain-specific data augmentation. Here, we pro-
pose a dual-view strategy to conduct the relevant
entity retrieval by considering both KG and the
training text data.

View 1: KG-based Entity Retrieval (KGER)
A direct strategy for domain KG-based DA is to

replace the entity with another same-category en-
tity, e.g., replacing ‘William’ with ‘Mike’ as both
are person names (Yue and Zhou, 2020). How-
ever, it may suffer from two pitfalls: (i) Although
the original and replaced entities are in the same
category, they can be totally different, such as pneu-
monia and fracture (both are diseases), which may
negatively impact the downstream tasks, e.g., clas-
sifying a medical transcription to the relevant de-
partment2; (ii) When two or more entities appear in
a text, they may have certain valuable relationships
(e.g., disease and symptom), but replacing these
entities separately would ignore this information.

To address the above issues, we propose two
principles for KGER: (i) entity relevance, refers

2https://www.kaggle.com/datasets/tboyle10/medicaltranscriptions

to ensuring that the retrieved entity is similar to
the original entity, not just with the same category;
(ii) relation consistency, means keeping the rela-
tionships unchanged between multiple replaced en-
tities in one text. We formulate a domain KG as
G = {E,R, T,C}, where E, R, T , and C are the
sets of entities, relations, triples, and entities’ cat-
egories, respectively. Specifically, T = TR

⋃
TC ,

where TR = {(h, r, t)|h, t ∈ E, r ∈ R} and
TC = {(e,BelongTo, c)|e ∈ E, c ∈ C}.

Given an entity e, we can get its category c, in-
volved triples Te = {(e, r, t) ∈ TR}⋃{(h, r, e) ∈
TR}, and the adjacent entities Ee = {e′|(e, r, e′) ∈
Te, (e, r, e

′) ∈ Te}. To obtain more same-category
entities, we further retrieve the involved triples of
Ee, named Te2, and put Te and Te2 together as the
candidate triples (i.e., 2-hop triples around e).

That is: (1) If only one entity exists, or multiple
entities exist but do not have direct KG relations
in the text, we randomly select a same-category
entity e′ from the candidate triples to replace each
original entity e. Note that e′ must be within 2-hop
around e, ensuring the entity relevance. (2) If there
exist certain pairs of entities with KG relations, we
would seek the same relation-type triple from the
candidate triples for replacing the pair of entities
together, following the relation consistency.

For instance, ‘I have a fever and scour. Could
it be pneumonia?’ (shown in Figure 3), fever
and scour are the symptoms of pneumonia. So we
need to search for suitable triples to satisfy relation
consistency. For instance, diarrhea and sore throat
are the symptoms of respiratory syndrome, so the
augmented text could be ‘I have a diarrhea and
sore throat. Could it be respiratory syndrome?’.
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Figure 3: Dual-view knowledge augmentation with a healthcare text as an example. KGER: 1. retrieve 2-hop relevant entities
in the full KG; 2. replace entities following two principles, ‘entity relevance’ and ‘relation consistency’. TrainER: 1. mask
entity with the category to represent the expressions pattern; 2. text clustering to select samples with the same label but different
clusters (i.e., S3 & S4); 3. collect the candidate triples from selected samples; 4. augment data by replacing relevant entities.

View 2: Training Data-based Entity Retrieval
(TrainER)

In View 1, we mainly retrieve relevant entities
that are close in the KG. However, entity pairs far
away in the KG may be helpful for the specific task
if being replaced with each other. For example, for
the task to detect the medical query intent, ‘blood
routine examination’ and ‘CT’ is the entity pair that
could be replaced with each other for augmentation
because they most probably appear in the queries
about diagnosis and cause analysis, but they are
distant from each other in the medical KG, like
CMedicalKG 3.

To find such task-specific valuable replacement
entity pairs which may not be near in the KG, we
design a new View 2, Training Data-based Entity
Retrieval (TrainER), to retrieve task-specific en-
tity pairs from training data. REINA (Wang et al.,
2022a) has verified that retrieving from training
data to enrich model inputs (concatenating the orig-
inal input and retrieved training data) may generate
significant gains. Inspired by this idea, TrainER
aims to extract gainful entity pairs from the training
data for augmentation.

In general, a good entity pair for replacement
may satisfy at least two properties: (i) label con-
sistency, indicates that the two entities in the pair
should be contained in two training texts with the
same task label; (ii) expression diversity, means
that the two texts containing the two entities should
have different expression patterns, so as to enrich
the training data diversity. Specifically, to reach
label consistency, for an entity e in a text t, we

3https://github.com/liuhuanyong/QASystemOnMedicalKG

would retrieve a same-category entity e′ from an-
other text t′ if t and t′ have the same label. To
achieve expression diversity, we first cluster all the
training texts into different clusters with diverse
expression patterns. Then, for an entity e in a text
t, the replaced entity e′ will be retrieved from t′

only if t and t′ are not in the same cluster. Figure 3
elaborates on the process of TrainER.

To conduct training data clustering to differenti-
ate expression patterns, we first mask entities with
their categories to extract the expression templates
for each training text. For instance, ‘what is pneu-
monia?’ and ‘what is fracture’ share the same
expression template ‘what is [disease]?’, as both
sentences have the same pattern regardless of the
specific entity (i.e., disease). Then, we run a cluster-
ing algorithm on the masked texts, i.e., expression
templates, to identify diverse expression patterns.
The K-means clustering (Arthur and Vassilvitskii,
2007) is applied due to its high efficiency and effec-
tiveness in empirical experiments; the feature of a
masked text is represented by TF-IDF vectorization
(Jones, 2004). Same as the relation consistency
principle in KGER, if there are certain entity pair
with KG relations in the original text, we will re-
trieve the entity pair with the same relation from
other training texts.

3.4 Module 3: Augmentation Quality
Assessment

After Module 1 & 2, we obtain a set of aug-
mented texts. A straightforward way is to fine-tune
task-specific models with these texts like most prior
studies (Zhang et al., 2015; Wei and Zou, 2019).
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Recent work (Zhou et al., 2022) has found that
not all the augmented texts are equivalently effec-
tive; thus, selecting high-quality ones may further
improve the model performance.

Inspired by this finding, KnowledgeDA includes
a quality assessment module to justify the quality
of each augmented text. Prior work (Anaby-Tavor
et al., 2020; Zhou et al., 2022) uses the prediction
confidence as the quality metric and selects top-
K high-confidence augmented samples for fine-
tuning, because this ensures the label correctness
of augmented texts. However, we argue that it may
not significantly improve the model performance
since high confidence means that the pattern inside
the augmented sample has already been encoded in
the original model (without augmentation).

Hence, we first fine-tune PLM (e.g., BERT) on
the task texts; then use this plain fine-tuned model
M to predict the augmented texts and obtain the
confidence scores. Instead of selecting top-K con-
fident samples, we pick K augmented samples
whose confidence is close to a predefined threshold
δ. Note that δ should not be a too small number,
as we still want to ensure the correctness of the
training labels for augmented texts; meanwhile, δ
should not be too large, as a very high-confident
sample would contribute little new knowledge to
the model. Based on this idea, we design a novel
confidence-based data filtering strategy to retain
gainful augmented samples.

The task data D = {(xi, yi)}ni=1 and the plain
fine-tuned model M (without augmentation) are
known, where xi is a string of text, and the la-
bel yi ∈ {1, 2, · · · , q} is the label of xi among
a set of q labels. Through KGER and TrainER,
we can generate the augmented samples Daug

i =
{x1i , x2i , · · · , xmi } for the i-th sample, xi. The
prediction confidence (probability) of Daug

i can
be calculated as P aug

i = {pji}mj=1, where pji =

prob(M(xji ) = yi).
We propose a confidence threshold δ to adjust

sample selection criteria. Given δ, the sampling
weights of Daug

i can be calculated by

w1
i , w

2
i , · · · , wm

i = softmax(ξ1i , ξ
2
i , · · · , ξmi ) (1)

where ξji = 1−|δ−pji |. If pji is closer to δ (0.75 in
our implementation), we have a higher probability
to select this sample. With this confidence-based
sampling strategy, we can select augmented sam-
ples to further fine-tune the task model M. In
general, the selected samples would be relatively

Dataset Lang. #Labels #Samples #Mentions
CMID CHI 4 12254 5182
KUAKE-QIC CHI 11 8886 3369
TRANS ENG 7 1740 2298
ABS ENG 5 14438 3808

Table 1: Dataset Statistics

confident but not too highly-confident, thus ensur-
ing both label correctness and new knowledge.

4 Empirical Evaluation

4.1 Text Classification

4.1.1 Setup
Datasets. We conduct experiments on four datasets
in healthcare: CMID4 and KUAKE-QIC (Zhang
et al., 2022a)are in Chinese; TRANS5 and ABS6

are in English. The basic information is enumer-
ated in Table 1. For Chinese, we use an open-
source medical KG, CMedicalKG7; for English,
we adopt the Unified Medical Language System
(UMLS) (Bodenreider, 2004) as KG. The prepro-
cessing of KGs can be found in Appendix A.3.

Baselines. As KnowledgeDA focuses on explicit
knowledge injection during DA by domain entity
replacement, we mainly compare with state-of-the-
art rule-based DA methods: SR (Vijayaraghavan
et al., 2016) uses token-level replacement with syn-
onyms; EDA (Wei and Zou, 2019) uses token-level
random perturbation operations including random
insertion, deletion, and swap; PHICON (Yue and
Zhou, 2020) uses entity-level replacement with
other entities belonging to the same category. For
each DA method, we scale up the training data to 5
times the original size and select the best model on
the validation set for evaluation. All the methods
are based on the same text classifier with the same
hyper-parameters (in Appendix A.1). In the main
experiments, the base classifier is BERT-base (here-
inafter referred to as BERT). We also experiment
with domain-specific PLMs as stronger classifiers,
discussed in the later part. And the experiment
in the software development domain is shown in
Appendix C.

4.1.2 Results in Healthcare
Main Results. Table 2 shows the results
of different DA methods. We can observe

4https://github.com/ishine/CMID
5https://www.kaggle.com/datasets/tboyle10/medicaltranscriptions
6https://github.com/PoojaR24/Medical-Text-Classification
7https://github.com/liuhuanyong/QASystemOnMedicalKG
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DA Method
CMID (Chinese) KUAKE-QIC (Chinese) TRANS (English) ABS (English)

Acc. F1 Acc. F1 Acc. F1 Acc. F1

None 70.25(0.80) 68.21(0.90) 78.82(0.81) 78.57(0.72) 73.10(1.79) 71.50(1.77) 63.95(0.31) 62.84(0.40)
SR 71.90(0.76) 70.97(0.39) 80.52(0.73) 80.10(0.80) 72.38(0.24) 72.52(0.30) 64.14(0.25) 63.13(0.30)
EDA 70.59(0.65) 70.05(1.25) 79.45(0.33) 79.01(0.41) 73.91(0.26) 73.71(0.28) 63.23(0.65) 62.09(0.72)
PHICON 71.95(0.35) 71.14(0.53) 80.52(0.74) 80.23(0.82) 74.53(1.19) 73.10(0.77) 64.17(0.59) 63.35(0.60)
KnowledgeDA 72.38(0.46)* 71.94(0.38) 81.67(0.41)*** 81.31(0.44)* 75.66(0.58)** 75.37(0.72) 64.97(0.29) 64.18(0.28)*

Table 2: Performance of baselines and KnowledgeDA with BERT in healthcare: 1. Values in ‘( )’ denote the standard deviation
of five repeated experiments’ results; 2. Bold denotes the best-performed ones of the task; 3. *, **, *** denote that the t-test
significance p-value < 0.1, 0.05, 0.01 when comparing the results of KnowledgeDA and the best baseline.

Method CMID KUAKE-QIC TRANS ABS
SR 14.80% 17.89% 33.56% 24.33%
EDA 11.18% 15.85% 26.66% 25.07%
PHICON 35.84% 29.11% 76.45% 74.07%
KnowledgeDA 40.67% 35.36% 79.33% 78.37%

Table 3: Novel entity coverage for healthcare datasets

Method
CMID TRANS

Acc. F1 Acc. F1

None 73.10(0.32) 71.71(0.37) 75.88(0.41) 75.22(0.57)

SR 73.49(0.19) 72.08(0.22) 75.38(1.11) 75.01(1.43)

EDA 72.93(0.46) 71.89(0.89) 75.40(0.79) 74.91(0.80)

PHICON 73.51(0.68) 72.49(0.63) 75.37(0.59) 75.18(0.72)

KnowledgeDA 73.60(0.33) 72.61(0.31) 76.52(0.59)** 76.54(0.91)*

Table 4: Performance with domain-specific PLMs, where
CMID/TRANS use eHealth/ClinicalBERT as the domain-
specific PLM.

that KnowledgeDA achieves the best performance
among all the methods in both accuracy and F1
score on four datasets. At the same time, PHICON
also outperforms SR and EDA in most cases, veri-
fying the effectiveness of domain-specific knowl-
edge. Specifically, on two Chinese datasets, CMID
and KUAKE-QIC, KnowledgeDA improves the ac-
curacy by 3.03% and 3.62%, respectively, over
the fine-tuned model without augmentation. More-
over, compared to the best baseline, PHICON,
KnowledgeDA’s improvements on accuracy are still
statistically significant. Similar results are also ob-
served on two English datasets. In a nutshell, the
results suggest that domain-specific entity replace-
ment can facilitate text classification in healthcare.
Compared to PHICON which only considers entity
categories, KnowledgeDA selects entities from dual
views and accounts for the KG relations between
them, which further improves the quality of the aug-
mented text and thus achieves a better performance.
To further quantitatively verify that KnowledgeDA
can introduce more domain knowledge, following
Wang et al. (2022b), we calculate Novel Entity Cov-
erage, the percentage of the novel entities in the
test data covered by augmented texts (novel means

Figure 4: Performances on TRANS with larger PLMs.

not appearing in the training data). As illustrated
in Table 3, KnowledgeDA has the highest coverage,
which also explains the effectiveness.

Domain-specific PLMs as the Base Classifiers.
Domain-specific PLMs contain domain knowledge
by pre-training with domain corpus. To confirm
that KnowledgeDA is still beneficial with a domain-
specific PLM, we use eHealth (Wang et al., 2021)
and ClinicalBERT (Alsentzer et al., 2019) as the
PLMs for Chinese and English datasets, respec-
tively. According to Table 4, the improvement
brought by the domain-specific PLMs is evident
(comparing with the results of BERT in Table 2).
Consistent with the survey (Feng et al., 2021),
we discover that when using the domain-specific
PLMs, baseline DA methods may not generate an
obvious performance improvement and even have a
negative effect compared to no-augmentation. For
instance, on TRANS, EDA improves the perfor-
mance over BERT (increasing F1 score from 71.50
to 73.71); while EDA worsens the performance
when a domain-specific PLM is used (reducing F1
score from 75.22 to 74.91). However, even with
domain-specific PLMs, KnowledgeDA can still im-
prove the domain NLP task performance consis-
tently. Note that for TRANS, KnowledgeDA is the
only DA method with positive improvement (and
this improvement is also statistically significant).

Larger PLMs as the Base Classifiers. In addi-
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Method
CMID TRANS

Acc. F1 Acc. F1

KnowledgeDA 72.38(0.46) 71.94(0.38) 75.66(0.58) 75.37(0.72)
w.o. SimMatch 71.75(0.38) 71.26(0.41) 74.05(1.11) 74.23(0.78)

w.o. KGER 71.82(0.49) 71.59(0.35) 73.92(0.66) 74.67(0.85)

w.o. TrainER 71.88(0.57) 71.48(0.34) 74.36(0.63) 74.74(0.65)

w.o. Assess 72.00(0.61) 70.84(0.56) 74.78(0.60) 74.65(0.73)

Table 5: Effectiveness of each module in KnowledgeDA

Time(min) None SR EDA PHICON KnowledgeDA

CMID 5.05 22.23 20.63 30.77 36.33

TRANS 5.43 9.54 8.22 18.46 25.82

Table 6: Time Consumption of DA & Model Fine-tuning.

tion to using domain-specific PLMs with the same
parameter size as BERT-base (110 million param-
eters), we further take RoBERTa-large (Liu et al.,
2019a) and DeBERTa-large (He et al., 2021) with
more than 350 million parameters as base classi-
fiers on the TRANS dataset. As shown in Fig-
ure 4, with increasing parameters, RoBERTa-large
and DeBERTa-large achieve better accuracy than
BERT without DA. However, there are still no-
table improvements of 2.78% and 2.08% in ac-
curacy with KnowledgeDA on RoBERTa-large and
DeBERTa-large, demonstrating the generalizability
of KnowledgeDA.

Ablation Study. To validate the effectiveness of
each module of KnowledgeDA, we design corre-
sponding ablation experiments: KnowledgeDA w.o.
SimMatch removes the similarity-based non-exact
matching and only uses exact string matching in
Module 1 (Sec. 3.2); KnowledgeDA w.o. KGER re-
moves the KGER (view 1) in Module 2 (Sec. 3.3);
KnowledgeDA w.o. TrainER removes the TrainER
(view 2) in Module 2 (Sec. 3.3); KnowledgeDA w.o.
Assess removes the quality assessment module, i.e.,
Module 3 (Sec. 3.4). Table 5 shows the results.
KnowledgeDA outperforms all the other methods
that remove certain components. This verifies the
validity of each module of KnowledgeDA.

Time Consumption. Table 6 reports the time
consumption of all DA methods on CMID and
TRANS. The time required for fine-tuning with-
out augmentation is short (∼ 5 minutes). As PH-
ICON and KnowledgeDA need to retrieve the entity
mentions and then replace them, time consump-
tion is increased.In particular, KnowledgeDA takes
more time because it considers the relations be-
tween entities in the KG. In general, the learning
process can be completed in about half an hour for

Figure 5: Performance on
CMID under n% CMedi-
calKG disturbance.

Figure 6: Combining with
LAMBADA and GeniusAug
(TRANS).

KnowledgeDA (also not much longer than competi-
tive baselines like PHICON).

Impact of KG Errors. Considering that the KG
quality may affect the quality of the augmented
texts (Kang et al., 2022), we randomly change the
categories of n% entities and the relation types
of n% triples in CMedicalKG, and test the per-
formance of KnowledgeDA in CMID dataset. As
shown in Figure 5, when we adjust n from 0 to 10,
the accuracy is between 71.0 and 72.5, with a slight
decline. When n ≥ 4, SR, the KG-independent DA
method, performs better. This illustrates the impor-
tance to ensure the KG quality for KG-based DA
methods, which is consistent with the findings of
other KG-based applications (Hu et al., 2022). In
the future, we will explore how to identify poten-
tial KG errors so as to improve the robustness of
KnowledgeDA.

Different Strategies for Augmented Data Qual-
ity Assessment and Selection. We compare two
strategies for augmented data quality assessment
and selection: δ-K is proposed in Sec. 3.4; Top-K
(Anaby-Tavor et al., 2020; Zhou et al., 2022) selects
the top K augmented samples with the highest con-
fidence for each original sample. Table 7 shows the
results of different strategies, as well as the results
of KnowledgeDA without quality assessment. δ-K
and Top-K both outperform KnowledgeDA with-
out assessment, verifying the necessity to select
high-quality samples for augmentation. And δ-
K performs better than Top-K. This empirically
validates our intuition that an augmented sample
with a not-too-high confidence may bring more
new knowledge to the NLP model, as discussed in
Sec. 3.4.

Combine with Generator-based Augmentation
Techniques. KnowledgeDA provides a unified
framework for domain-specific knowledge augmen-
tation, which may be combined with other DA tech-
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Method
CMID TRANS

Acc. F1 Acc. F1

w.o. Assess 72.00(0.61) 70.84(0.56) 74.78(0.60) 74.65(0.73)

Top-K 71.95(0.52) 71.53(0.43) 75.01(0.81) 74.89(0.69)

δ-K 72.38(0.46) 71.94(0.38) 75.66(0.58) 75.37(0.72)

Table 7: Different quality assessment strategies in
KnowledgeDA

niques. Here, we use generator-based augmenta-
tion methods as an example. Specifically, we gen-
erate augmented samples with two methods, LAM-
BADA (Anaby-Tavor et al., 2020) and GeniusAug
(Guo et al., 2022); based on these augmented sam-
ples, we leverage KnowledgeDA to acquire more
augmented samples. Since generator-based meth-
ods are mostly applied to few-shot tasks (Anaby-
Tavor et al., 2020), we randomly select 50 to 200
samples for each task label in the TRANS dataset.
LAMBADA and GeniusAug both generate 200
more samples for each label. Figure 6 shows the re-
sults. As expected, the performance of each method
goes up as the number of labeled samples increases.
More importantly, combining KnowledgeDA with
LAMBADA or GeniusAug both can achieve higher
accuracy. This demonstrates the general utility of
KnowledgeDA to combine with generator-based DA
methods to improve the few-shot NLP tasks.

Compare with GPT-3.5. Recently, ChatGPT has
shown powerful text generation capabilities. To
explore the performance of this large language
model on domain-specific tasks, we use the Ope-
nAI API 8 to query text-davinci-003 (the most pow-
erful GPT-3.5) by the prompt, ‘decide which la-
bel the following text belongs to, {label names}:
\n Text:{sentence} \n Label: ’. It can be seen
as a zero-shot manner to response directly. For
TRANS(English), the test accuracy is 66.67% (∼
10% lower than KnowledgeDA with BERT). It per-
forms even worse on CMID(Chinese) with an accu-
racy of only 32.32%, perhaps due to the limited ex-
posure to relevant texts and knowledge. Therefore,
more effective prompt engineering or fine-tuning of
GPT (especially for non-English languages) is still
necessary for domain-specific tasks, which may be
potential future work.

4.2 QA Tasks

Setup. The CMedQA(Chinese) (Zhang et al.,
2017) and PubMedQA(English) (Jin et al., 2019)
are used for the QA task. Both datasets give the la-

8https://platform.openai.com

Method
CMedQA(Chinese) PubMedQA(English)

Acc. F1 Acc. F1

None 85.00(3.96) 82.60(7.06) 66.00(6.87) 57.65(10.46)

SR 88.46(0.84) 87.91(0.73) 72.68(1.97) 68.99(1.47)

EDA 88.66(1.18) 88.37(1.00) 72.72(1.57) 68.69(1.71)

PHICON 88.56(1.17) 87.83(1.39) 73.96(1.88) 69.67(1.98)

KnowledgeDA 89.16(0.58) 88.58(0.56) 74.64(0.83)* 70.98(0.70)

Table 8: Performance of QA Tasks.

bel of each question-answer pair (i.e., match or mis-
match). For CMedQA, we sample 1000 question-
answer pairs from the original dataset. For Pub-
MedQA, we keep the original data size (429 sam-
ples). In KnowledgeDA, we take the question and
answer pair as input and retrieve the entity men-
tions together. While fine-tuning, we feed ques-
tions and answers, separated by the special [SEP]
token to BERT (Jin et al., 2019). The KGs and
other settings are the same as classification tasks.

Results. Table 8 compares the performance of
different DA methods based on BERT. It is obvi-
ous that using any data augmentation strategy can
make the performance more stable under differ-
ent seeds (i.e. smaller standard deviation). Also,
KnowledgeDA outperforms all the baselines.

5 Conclusions

In this paper, we present KnowledgeDA, a unified
knowledge graph service to boost domain-specific
NLP tasks. The intrinsic technical novelty is a
three-step framework of task-specific data augmen-
tation process based on domain KGs. The experi-
ments on healthcare-related texts both in English
and Chinese verify the effectiveness and general-
ity of KnowledgeDA. We also confirm that it can be
flexible and effective to incorporate other generator-
based DA methods on few-shot tasks. In the future,
we can further investigate how to better combine
KnowledgeDA and generator-based DA methods
and add KG quality inspection methods to avoid
the negative impact of errors in KG.

Limitations

Domain KGs are the premise of KnowledgeDA,
while open and high-quality domain KGs may be
rare in some domains. Therefore, the method will
be limited in the domains without suitable KGs.
Besides, we use a similarity-based method to map
entity mentions in the text to the corresponding
entities in the KG. Although this method performs
efficiently, it ignores the problem of entity ambigu-

361



ity (Vretinaris et al., 2021). For instance, the abbre-
viation, CAT, can stand for ‘catalase’ or ‘COPD
Assessment Test’ in healthcare. To address this
problem, it is necessary to use contextual informa-
tion to clarify the specific meaning of the mention
(Phan et al., 2017; Orr et al., 2021; Vretinaris et al.,
2021). Last but not least, KnowledgeDA may be
not good at tasks of paragraph-level texts and the
efficiency will reduce. Because long texts proba-
bly contain more entity mentions and have more
complex syntax, it is more difficult to retrieve the
entities and acquire their relations from the KG.

Ethics Statement

This paper proposes a unified framework,
KnowledgeDA, for text augmentation based on do-
main KGs for domain-specific NLP tasks. All the
experimental datasets and KGs are publicly avail-
able, and the related papers and links have been
listed in the paper. Also, though PLM and KG are
publicly available, there may still be several ethi-
cal considerations to bear in mind when applying
KnowledgeDA in real-world scenarios. For instance,
it is crucial to check whether KG contains biases
concerning race, gender, and other demographic
attributes.
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A Implementation Details

A.1 Experiment Platform & Settings
Our experiment platform is a server with AMD

Ryzen 9 3900X 12-Core Processor, 64 GB RAM
and GeForce RTX 3090. We use Python 3.6 with
pytorch 1.8 on Ubuntu 20.04 for algorithm imple-
mentation.

For the text classification task, we feed the [CLS]
representation into the output layer when BERT-
base as the classifier (Devlin et al., 2019). We
split the dataset into training set, validation set, and
test set as 8:1:1. When fine-tuning PLMs, we set
batch size to 32, learning rate to 1e-5, and training
epoch to 10. It will early stop if the loss of the
validation set does not decrease in 500 iterations.
Accuracy and micro-F1 are used as the metrics in
text classification and QA tasks. We repeat each
experiment 5 times and record the average results.

A.2 Algorithms
In this part, we summarize the detailed imple-

mentations of domain knowledge localization (i.e.,
Module 1) and domain knowledge augmentation
& augmentation quality assessment in Algorithm 1
and Algorithm 2, respectively.

Algorithm 1: Domain Knowledge Localization
Input: A text x, the entities list E, words

embeddings dictionary Embeds, and
similarity threshold θ

Output: A matched pair list Matchs of mentions in
x and entities in E

1 Initialize Matchs as an empty list ;
2 Preprocess x with NLP preprocessing pipeline to get

word list words ;
3 Construct entity embedding matrix Eemb and

embedding matrix Wemb by searching for E and
words from Embeds ;

4 Compute similarity matrix Sim = Wemb × Eemb.T
;

5 Query the maximum similarity sim_values between
each word and entity;

6 if sim_value ⩾ θ then
7 Find the index of sim_values in Sim ;
8 Get the pair (word, entity) according to index ;
9 Add (word, entity) to Matchs ;

10 end
11 Return Matchs ;

A.3 KGs Preprocessing
Healthcare is a field with rich professional

knowledge. There are also publicly available
knowledge graphs, e.g., the Unified Medical
Language System (UMLS) (Bodenreider, 2004).
We take such open medical KGs for healthcare

Algorithm 2: Domain Knowledge Augmentation

& Augmentation Quality Assessment
Input: Train Data D = {(xi, yi)

n
i=1}; the KG

G = {E,R, T, C}; the pre-trained language
model PLM ; a confidence threshold δ.

Output: The selected augmented samples Daug

1 Fine-tune without augmentation M =
fine-tune(PLM,D) ;

2 for xi in {xi}ni=1 do
3 Get the Matchesi in xi by Algorithm 1;
4 Generate augmented samples Daug

i with G
following the steps in Figure 3;

5 Initialize the prediction probabilities of Daug
i as

P aug
i ;

6 for xj
i in Daug

i do
7 Calculate the prediction probability

pji = prob(M(xj
i ) = yi);

8 Add pji to P aug
i ;

9 end
10 Calculate the sampling weights of Daug

i

according to Eq. 1 ;
11 Sample 5 samples from Daug

i by weights and
add them to Daug;

12 end
13 return Daug;

KnowledgeDA. UMLS Metathesaurus is a com-
pendium of many biomedical terminologies with
the associated information, including synonyms,
categories, and relationships. It groups semanti-
cally equivalent or similar words into the same
concept, for example, the words ‘flu’, ‘syndrome
flu’ and ‘influenza’ are mapped to the same concept
unique identifier (CUI) C0021400, which belongs
to the category, disease or syndrome. There are 127
semantic types in biology, chemistry, and medicine,
consisting of 4,441,326 CUIs (16,132,273 termi-
nologies) in the UMLS 2021AA version. Since the
size of the KG is too large to affect the speed of
retrieval, we only screen out entities that belong to
the type of medicine (e.g., body part, organ, or or-
gan component, disease or syndrome, etc.). At the
same time, we also delete non-English strings. Fi-
nally, we keep 1,145,062 CUIs (16 semantic types),
502 types of relationships and 4,884,494 triples.
Although there are Chinese medical terminologies
in UMLS, the number is limited. Hence, we use an
open-source Chinese medical KG, CMedicalKG,9

which includes 44,111 entities (7 categories), 10
types of relationships, and 294,149 triples.

B Case Study

Fig. 7 shows the examples in English and Chi-
nese with various DA methods. We can observe

9https://github.com/liuhuanyong/QASystemOnMedicalKG
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Figure 7: Examples of data augmentation in English
and Chinese. Text chunks in blue are the entities in the
original sentence and text chunks in red are the modified
words/entities by DA methods.

that the sentence augmented by KnowledgeDA has
a high quality as it can introduce more domain en-
tities and the whole sentence has a good semantic
meaning.

C Text Classification in Software
Development

C.1 Dataset

We use a open data, SO-PLC10, which is a Stack
Overflow dataset for 4 programming language clas-
sification: python, C#, java, and javascript.

C.2 KG for Software Development

There is little research on building KGs for soft-
ware development NLP tasks, and thus we decide
to build one from scratch.

To build the KG, we refer to the software de-
veloper forum Stack Overflow to obtain raw text
data.11 Stack Overflow is one of the biggest fo-
rums for professional and enthusiastic software de-
velopers. Various technical questions are covered
on the platform and marked with appropriate tags.
These tags are usually programming-specific termi-
nologies and can be beneficial to learn about tech
ecosystems and the relationships between technolo-
gies (Singh et al., 2020). To build a KG from tags,

10http://storage.googleapis.com/download.tensorflow.org/data/stack_
overflow_16k.tar.gz

11https://stackoverflow.com/

Method
SO-PLC

Acc. F1

None 84.78(0.48) 84.65(0.50)
SR 84.72(0.32) 84.69(0.31)
EDA 84.78(1.08) 84.71(1.08)
PHICON 85.63(1.17) 85.60(1.19)
KnowledgeDA 86.82(0.90)* 86.83(0.88)**

Table 9: Performance on SO-PLC dataset (BERT as PLM)

we follow the existing KG construction process (Li
et al., 2020a):

Step 1. Data Collection: We use programming
languages (e.g., python, C#, java, and javascript) as
keywords to search for related questions on Stack
Overflow, and sort them according to ‘most fre-
quency’; then crawl the tags that appeared in the top
7,500 related questions (i.e., the first 150 pages).

Step 2. Entity Recognition: A tag is a word or
phrase that mainly describes the key information
of the question, which is usually a programming-
specific terminology (Singh et al., 2020). Hence,
we directly treat tags as the entity names in the KG.

Step 3. Relation Formation: There is usually
more than one tag in one question. When multiple
tags co-appear at the same question, we link them
in the KG. Afterward, there is still a lack of entity
types and edge types, and we use the community
detection algorithm, Louvain (Blondel et al., 2008),
to automatically classify tags, and the edge type is
defined by the types of the two connected entities.

Finally, we get TagKG, which includes 6,126
entities (11 categories), 56 types of relationships,
and 41,227 triples.

C.3 Result
As illustrated in Table 9, there are almost no

improvements or even slight decreases with EDA
and SR, meaning these general DA methods are
not suitable for the texts in software development
forums. With the help of our constructed TagKG,
PHICON achieves some performance gains by re-
placing same-category programming entities; this
indicates that the category identified by the com-
munity detection algorithm in TagKG is effective
for understanding software development related
texts. By leveraging TagKG more comprehensively,
KnowledgeDA works even better and improves ac-
curacy and F1 score by 2.42% and 2.58%, respec-
tively, compared with no-augmentation. It also
implies that the construction of TagKG is valid.
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