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Abstract

Open-domain question answering (ODQA) is
a crucial task in natural language processing.
A typical ODQA system relies on a retriever
module to select relevant contexts from a large
corpus for a downstream reading comprehen-
sion model. Existing ODQA datasets consist
mainly of Wikipedia corpus, and are insuffi-
cient to study models’ generalizability across
diverse domains, as models are trained and eval-
uated on the same genre of data. We propose
RobustQA1, a novel benchmark consisting of
datasets from 8 different domains, which facili-
tates the evaluation of ODQA’s domain robust-
ness. To build RobustQA, we annotate QA
pairs in retrieval datasets with rigorous qual-
ity control. We further examine improving QA
performances by incorporating unsupervised
learning methods with target-domain corpus
and adopting large generative language models.
These methods can effectively improve model
performances on RobustQA. However, exper-
imental results demonstrate a significant gap
from in-domain training, suggesting that Ro-
bustQA is a challenging benchmark to evaluate
ODQA domain robustness.

1 Introduction

Open-domain question answering (ODQA) is a
crucial and practical NLP task. Unlike traditional
reading comprehension task where contexts are pro-
vided for a QA pair, in ODQA, a retriever needs to
first extract relevant passages from a large amount
of documents; then a QA model provides answers
based on these passages. Due to the magnitude of
the corpus, it is computationally prohibitive for a
QA model to read through all documents. There-
fore, ODQA becomes a popular research topic and
is widely adopted in real-world applications.

1Datasets and their processing code can be found here:
https://github.com/rujunhan/RobustQA-data

FiQA-Finance

Question: Why do investors buy stock that had appreciated?
Document: Imagine how foolish the people that bought Apple at $100
must have felt. It was up tenfold for the $10 it traded at just years prior,
how could it go any higher? Stocks have no memory. A stock’s earnings
may grow and justify the new higher price people are willing to pay.
When FB came public, I remarked how I’d analyze the price and felt it
was overvalued until its earnings came up. Just because it’s gone down
ever since, doesn’t make it a buy, yet.

LoTTE-Lifestyle

Question: What techniques, tricks or otherwise have you used to get
upgrades on flights?
Document: ... but I think the best way to get upgraded is to fly a lot with
the airline. Generally when the flight’s overbooked in one class, and
they’re trying to pick which person to upgrade, frequent flyer status is the
first metric they use. The higher your status, the higher up the list you go!
Having a high status with a partner airline can work too, high tiers with a
partner airline usually comes below the airline’s own frequent flyers, but
above everyone else. Otherwise, if you’re flying on your own that’ll help
in the event that there aren’t enough frequent flyer to upgrade to free the
required number of seats! Offering to pay may be an option too - if
they’re pretty full they may offer you a low price to upgrade.

Table 1: Examples in RobustQA. Highlighted text
spans are the precise answers that our annotators need
to identify. Different from NQ, our texts are diverse
with more challenging question-answer pairs.

The practicality of ODQA necessitates the eval-
uation of systems’ out-of-domain (OOD) perfor-
mances because a real-world system needs to be
robust when confronting domain drift. Moreover,
existing state-of-the-art (SOTA) ODQA systems
(Karpukhin et al., 2020; Santhanam et al., 2022)
are based on neural networks, which are known to
overfit training data and suffer from degradation
when domain changes. For example, Natural Ques-
tions (Kwiatkowski et al., 2019, NQ) is the most
commonly used ODQA dataset, but a recent study
shows that there is a significant amount of overlaps
between its train and test sets. This partially ex-
plains why neural models trained only on NQ can
struggle in unseen domains (Lewis et al., 2021).

However, evaluating OOD performances for
ODQA is currently not feasible in the research com-
munity due to the lack of a public multi-domain
benchmark. Existing popular ODQA datasets such
as NQ and TriviaQA (Joshi et al., 2017) rely on
Wikipedia or Web documents. Multi-domain eval-
uation datasets exist separately for each compo-
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nent of ODQA. MRQA (Fisch et al., 2019) evalu-
ates cross-domain reading comprehension perfor-
mances, yet its samples are not created for open-
domain settings. BEIR (Thakur et al., 2021) and
LoTTE (Santhanam et al., 2022) provide cross-
domain evaluation benchmarks for document re-
trieval or information retrieval (IR) systems, and
they do not have downstream QA annotations.

We present RobustQA, the first multi-domain
evaluation benchmark for ODQA. Our first contri-
bution is that we leverage existing OOD retrieval
datasets, FiQA (Maia et al., 2018) and LoTTE,
and rigorously annotate answer spans from the
retrieved documents. By further adapting two
ODQA datasets SearchQA (Dunn et al., 2017)
and BioASQ (Tsatsaronis et al., 2015), RobustQA
consists of eight domains over web-search, bio-
medicine, finance, lifestyle, recreation, technology,
science, and writing, making it a diverse bench-
mark to evaluate ODQA systems.

Besides benchmarking existing SOTA ODQA
systems with RobustQA, we further study 1) in-
corporating unsupervised domain adaptation meth-
ods using target corpus pre-training and 2) lever-
aging prompt finetuning of large language models
(LLMs) to improve reader performance. Both meth-
ods provide overall gains on RobustQA. But the
performance gap between in-domain training data
(NQ) and RobustQA is still significant, indicating
our proposed benchmark datasets are challenging
for ODQA research.

We summarize our contributions below.
• To our best knowledge, RobustQA is the first

multi-domain ODQA evaluation benchmark
for the research community.

• We benchmark SOTA passage retrieval sys-
tems and show RobustQA consists of reliable
and challenging contexts.

• We evaluate SOTA extractive and generative
approaches for QA models on RobustQA, to-
gether with unsupervised domain adaptation
methods. The significant gap against the in-
domain evaluation data demonstrates that Ro-
bustQA is a challenging benchmark.

2 Open-Domain QA

We briefly review ODQA in this section. Fol-
lowing the extractive QA set-up in the DPR pa-
per (Karpukhin et al., 2020), we denote a collec-
tion of documents as D. We split each document
di ∈ D with a fixed length N tokens and obtain

a collection of M (≥ |D|) passages denoted as
C = {p1, p2, ...pm, ...pM}. Denoting a token as
w, a passage can be defined as pm = {wm,n ∈
pm, 0 ≤ n < N | pm ∈ C}.

We denote a question as q and a passage re-
triever as R. The task is to select K most relevant
passages for q from C. Formally, R(q, C) → Cq.
Upon receiving K passages Cq, a QA model pre-
dicts the most probable text span Aq = {wm,j1:ja |
wm,j1 , . . . , wm,ja ∈ pm, pm ∈ Cq} that can answer
the question. We also test generative models for
our task, but it is crucial to note that we are still
confined to the extractive QA setting as generated
texts need to be evaluated against the ground-truth
answers, which are contained in the contexts.

In real-world applications, a trained ODQA
model may encounter domain changes including
token distribution shifts in C, or type and length
changes in questions and answers. Therefore, it is
crucial to gauge domain robustness. However, a
comprehensive evaluation benchmark does not ex-
ist, which we propose to address with RobustQA.

3 Data Creation

Existing public ODQA data mostly leverage
Wikipedia (Kwiatkowski et al., 2019; Joshi et al.,
2017) as a search corpus, and focus on factoid
questions. To benchmark model robustness across
a wider range of text genres and question types, we
1) annotate 6 datasets in finance, lifestyle, recre-
ation, technology, science, and writing domains
based on FiQA (Maia et al., 2018) and LoTTE
(Santhanam et al., 2022); 2) adapt two public avail-
able ODQA datasets, SearchQA (Dunn et al., 2017)
and BioASQ (Tsatsaronis et al., 2015). The newly
annotated data consist of a significant portion of
challenging reasoning type of questions that cannot
be answered with entities or short phrases. Our
data samples can be found in Table 1, Table 11-13,
and Table 16 in the appendix.

3.1 Annotated Data

We describe the data annotation process for the new
domains: finance, lifestyle, recreation, technology,
science, and writing based on FiQA and LoTTE,
both are IR-dataset with no precise answer spans
annotated in the retrieved supporting documents.

As shown in Table 1, relevant documents are re-
trieved from corresponding IR systems. We present
a question and its relevant documents to the annota-
tors, and they need to identify up to 3 concise text
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Domain Label # Test Questions # Documents # Passages Data Source

NQ Wikipedia [NQ] 3,610 - 21,015,324 NQ

RobustQA

Web-search [SE] 31,760 13,791,373 13,791,592 SearchQA
Biomedical [BI] 1,956 15,559,026 37,406,880 BioASQ
Finance [FI] 3,669 57,638 105,777 FiQA
Lifestyle [LI] 2,214 119,461 241,780 LoTTE
Recreation [RE] 2,096 166,975 315,203 LoTTE
Technology [TE] 2,115 638,509 1,252,402 LoTTE
Science [SC] 1,426 1,694,164 3,063,916 LoTTE
Writing [WR] 2,696 199,994 347,322 LoTTE

Table 2: Data summary: NQ (top) v.s. RobustQA (bottom). # of Documents for NQ is missing because we directly
use the passage split provided by Karpukhin et al. (2020). Passages consists of 100 continuous tokens at most from
the original documents.

Figure 1: An illustration of our data quality control pro-
cedure, which starts by data experts sharing instructions
and raw data to the annotators. Data Experts constantly
audit the annotations and conduct a final validation to
ensure data quality.

spans (conciseness) from the passages that are most
appropriate to answer the given questions (valid-
ity). Note we do not concatenate different answer
spans. Rather, we treat each annotated span as an
individual answer similar to the practice in NQ
and BioASQ. We also provide detailed guidelines
regarding how to judge conciseness and validity
(details in Appendix A.1). Next, we describe spe-
cific features of FiQA and LoTTE.

FiQA contains a task: “Opinion-based QA over
financial data.” It aims at answering finance related
questions from financial corpus such as microblogs,
reports and news. However, the answers provided
in the original dataset are documents instead of pre-
cise text spans. Besides, its test set does not include
answer passages. Therefore, we use the original
training set with all of their relevant passages to be
examined by annotators. After filtering out sam-
ples with no precise answer spans, we obtain 3,669

questions.

LoTTE was proposed in the ColBERTv2 pa-
per (Santhanam et al., 2022). Similar to FiQA,
LoTTE consists of IR datasets across five domains:
lifestyle, recreation, technology, writing and sci-
ence, each can have potential answers coming from
two resources: search and forum with dev and test
splits using different text genres. We were able to
annotate all data in the dev and test sets, but for our
reported results, we only use the test split. After
filtering out no-answer questions, we obtain 2,214,
2,096, 2,115, 1,426, 2,696 questions for lifestyle,
recreation, technology, science and writing, respec-
tively. We reserve the dev data for future model
development purpose, and their data statistics can
be found in Appendix A.2.

3.2 Adapted Data

We select BioASQ and SearchQA to represent the
biomedical and web-search domains as they are
both high quality and large-scale ODQA datasets
that do not rely on Wikipedia corpus and follow
the extractive QA format. Note that there are
some existing abstractive ODQA datasets, such
as TweetQA (Xiong et al., 2019) and AmazonQA
(Gupta et al., 2019), but they do not fit into the ex-
tractive ODQA framework as we describe in Sec. 2.

For both datasets below, we use only the test
split of the latest version for evaluation purpose.

SearchQA contains questions crawled from
Jeopardy!, and leverages Google search engine to
retrieve text snippets as relevant contexts. After
filtering out questions without answers, we obtain
31,760 questions.

BioASQ contains questions written by biomed-
ical experts based on PubMed documents. The
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Avg. # Avg. # Avg. #
Data Toks in Q Toks in Ans Ans / Q

NQ 9.2 2.3 1.8

SearchQA 14.5 1.7 1.0
BioASQ 9.1 2.4 2.6
FiQA 11.2 9.4 3.0
Lifestyle 10.6 8.7 5.7
Recreation 8.9 7.2 3.2
Technology 9.3 8.7 6.0
Science 8.8 7.8 5.3
Writing 9.0 6.6 6.2

Table 3: Data statistics. All numbers are average over
the evaluation data.

ODQA task (Task 1b) consists of four types of
questions: 1) Yes/No, (2) factoid, (3) list, and (4)
summary. We consider only (2) and (3) as they are
suitable to our extractive QA task. After discarding
no-answer questions, we acquire 1,956 questions.

3.3 Quality Control
Fig. 1 illustrates our data annotation and quality
control procedure, which starts with the data ex-
perts (including co-authors) sending the annotation
guidelines and raw data to the annotators. Anno-
tation guidelines can be found in Appendix A.1.
Upon receiving annotated data from the annotators,
the data experts will randomly select 10% of the
annotations to audit. If the selected samples fall be-
low the validity requirements of 90%, they will be
sent back to the annotators for re-annotation. The
process repeats until randomly selected samples
pass the 90% threshold.

To ensure annotator quality, we hire professional
data providers. Based on the information shared,
the data provider team consists of more than 20
data professionals, and each of them is paid >
15 U.S. dollars per hour. The data expert team
consists of co-authors and 10 additional internal
data professionals. Note that due to the high costs
of hiring data professionals, we were not able to
provide multiple annotations per sample, and thus
were not able to explicitly compute inter-annotator
agreements. However, the 90% passing threshold
we install in the process guarantees high annotation
satisfaction rate, and thus ensures good data quality.

3.4 Data Statistics and Analysis
In this section, we compare data in different do-
mains. Particularly, we want to highlight the drift
of data distribution from NQ.

Passages. Following the DPR paper (Karpukhin
et al., 2020) for passage pre-processing, we split

NQ [SE] [BI] [FI] [LI] [RE] [TE] [SC] [WR]
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Figure 2: Pairwise KL-divergence of token distribution
across different domains.
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Figure 3: Question type comparison between NQ and
RobustQA. Data in RobustQA contain more reason-
ing type of questions than NQ. We didn’t include
SearchQA as its questions are atypical. See details in
Appendix A.4.

documents into 100 maximum continuous tokens.2

Passage numbers for each domain can be found
in Table 2. We observe that BioASQ (biomedical)
and SearchQA (Web-search) contain the amount of
passages that are in the same magnitude of NQ. The
other newly annotated datasets all have relatively
smaller collections of passages, which is common
in many real-world applications.

Questions. Table 3 shows the length of ques-
tions, and Fig. 3 demonstrates the types of ques-
tions across different domains. We can see that
BioASQ is relatively similar to NQ. They share
similar question length and contain mostly factoid
questions. However, other RobustQA data have
longer questions compared with NQ, and they tend
to ask reasoning type of questions such as “how
to ...?” “how do ...?” and “why does ...?” (see
details in Appendix A.4). Also, these questions ask
long-tail topics, ones that might not be covered by
an entity-centric knowledge base like Wikipedia
(Santhanam et al., 2022).

2Tokens are simply split by whitespace.
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Figure 4: An illustration of our experimental design. Reader models are trained on NQ data (in-domain), and tested
on 8 OOD RobustQA datasets.

Answers. As mentioned above, except for
SearchQA, RobustQA data consist of longer an-
swers due to the nature of reasoning type of ques-
tions. Our questions also contain more individual
answers, which is a consequence of compiling an-
swers from multiple relevant passages during data
creation. For example, if a question has two sup-
porting passages, each containing three unique an-
swers, the question will have six answers in total.

4 Passage Retrieval

In this section, we describe the retrievers adopted in
this work. We benchmarked five leading retrievers
on RobustQA.

DPR adopts a bi-encoder architecture to encode
a pair of question and passage independently. The
passage relevancy score is calculated using vector
similarity measures such as dot product. We use
the best checkpoint (trained on NQ) provided by
the DPR paper (Karpukhin et al., 2020).

BM25 is a widely used sparse retriever, which
matches keywords efficiently with an inverted in-
dex and can be seen as representing the question
and context as weighted, high-dimensional sparse
vectors. We use the BM25 implementation pro-
vided by the BEIR paper (Thakur et al., 2021).

BM25+CE incorporates cross-encoder (CE) ar-
chitecture as passage re-rankers after obtaining
BM25 results. However, Reimers and Gurevych
(2019) points out that the CE architecture is compu-
tationally expensive as it requires both the question
and passage to be fed into a language model for
encoding. For this reason, in the BEIR paper, the
authors input only the top 100 ranked passages re-
turned by BM25 into CE for re-ranking, and we
follow this practice. The original CE model is

trained on MS MARCO (Payal Bajaj, 2016), and
we also re-train CE using NQ only from scratch,
and denote this model as BM25+CENQ.

ColBERTv2 (Santhanam et al., 2022). Col-
BERT was initially proposed by (Khattab and
Zaharia, 2020) using late interaction to decom-
pose relevance modeling into token-level compu-
tations, which improves the expressivity of the
query-document matching, but increases the stor-
age requirements drastically. ColBERTv2 allevi-
ates this issue with a residual compression mech-
anism and improves the quality of the retriever by
distilling from a cross-encoder with hard-negative
mining. We use the best checkpoint (trained on MS
MARCO) provided by the paper.

Atlas (Izacard et al., 2022b) jointly trains Con-
triever (Izacard et al., 2022a), a dense retriever
with bi-encoder architecture and T5 (Raffel et al.,
2019), a sequence-to-sequence language model as
the reader. Since we adopt Atlas as one of the open-
QA baseline models (Sec. 5), we report its retriever
performances here.

5 Open-domain QA

To anchor our QA models against a widely tested
baseline, we adopt the extractive QA model ar-
chitecture used in the DPR paper. We further in-
vestigate whether we can improve extractive QA
model’s OOD generalization by pretraining base
models with unlabeled target domain corpus. As
large language models (LLMs) are gaining research
popularity nowadays, we also benchmark Flan-T5
(Chung et al., 2022) as a baseline. We also test
the method that joingly trains LLMs with dense
retriever (Izacard et al., 2022b), which is expected
to have stronger performances than standalone QA
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models.

5.1 Extractive QA Model

For the baseline extractive QA model, we strictly
follow the training objective of the DPR paper.3

Pstart,i(s) = softmax(Piwstart)s

Pend,i(t) = softmax(Piwend)t

Pselected(i) = softmax(Piwselected)i

where Pi indicates the last encoded hidden lay-
ers of the i-th passage from BERT (Devlin et al.,
2019). wstart,wend,wselected are learnable vectors.
The training objectives consist of two scores: 1)
span score of the s-th to t-th tokens are computed
as Pstart,i(s)×Pend,i(s); 2) passage selection score
is Pselected(i).

5.2 Pretraining with Target Corpus

Pre-training with target corpus/task has shown to
help language models (LMs) adapt more effectively
to unseen domains (Lee et al., 2020; Liu et al.,
2020; Han et al., 2021; Garg et al., 2019; Zhou
et al., 2021). Here, we are interested in the setting
where only a small amount of passages is available
for pre-training. Specifically, we conduct a second-
step pre-training on BERT for the extractive QA
model mentioned above. The target corpus has no
QA annotations and consists of a small fraction of
all available target domain text data. Finally, we
fine-tune the target-pretrained LMs on in-domain
data before testing it on the target-domain data in
RobustQA.

Besides target-corpus pretraining, we also ex-
perimented with other unsupervised domain adap-
tation methods such as contrastive loss based on
Long et al. (2022). Since its improvements are rel-
atively marginal, we briefly describe it and report
results in Appendix A.5.

5.3 Prompt Finetuning with LLMs

Recently, LLMs have shown incredible perfor-
mances on a variety of NLP tasks. Here, we also
test LLM’s ability on ODQA by finetuning one of
the SOTA open-source LLMs, Flan-T5-xxl with
11B parameters, on the same open-domain NQ
dataset used in training the extractive QA model.
The prompt template used during finetuning and
inference are shown in Table 4.

3https://github.com/facebookresearch/DPR

During finetuning, Instruction is fixed for all
training samples. Question and Answer pairs are
from NQ data. Passage 1-5 are retrieved by DPR.
During inference, the same template is used for
each test domain data, but the passages are retrieved
by ColBERTv2 (see more details in Sec. 6).

Instruction: provide an answer to the question in the
given passages.
Question: ......
Passage 1: ......
Passage 2: ......
Passage 3: ......
Passage 4: ......
Passage 5: ......
Answer:

Table 4: Prompt template for LLM finetuning and infer-
ence.

5.4 Joint Training LLM with Retriever

Joint training LLMs with dense retrievers has been
shown to be an effective method for retrieval based
tasks (Izacard and Grave, 2021; Lewis et al., 2020).
One of the most recent efforts, Atlas (Izacard et al.,
2022b) improves upon previous works by jointly
pre-training T5-based models with Contriever on
a large amount of corpus using various objective
functions. Atlas achieves impressive zero/few-shot
learning performances on open-domain QA. There-
fore, we report its results to show a strong modeling
baseline on RobustQA.

6 Experimental Setup

6.1 Passage Retrieval

As described in Sec. 4, there are 7 passage retriev-
ers we compare. 1) DPR by (Karpukhin et al.,
2020); 2) BM25 and 3) BM25 + CE by Thakur et al.
(2021); 4) we also train CE on NQ data and denote
this model as BM25 + CENQ; 5) ColBERTv2 by
Santhanam et al. (2022); 6) the contriever com-
ponent of the Atlas-base finetuned on NQ; 7) the
contriever component of Atlas-xxl finetuned on NQ
(Izacard et al., 2022b).

As shown in Table 5, we use HIT@5 as the pri-
mary reporting metrics4.

6.2 Open-domain QA

Following single-data setting of the QA model in
the DPR paper, we use NQ as the in-domain train-
ing data with passages retrieved from the best DPR

4HIT@20 and HIT@100 results are shown in the appendix.

4299



NQ RobustQA [BI] [SE] [FI] [LI] [RE] [TE] [SC] [WR]
Method Average

DPR 72.24 39.85 32.00 74.10 27.45 46.75 37.98 21.32 26.44 52.74
BM25 45.01 48.06 45.01 75.99 35.16 50.90 47.57 34.42 34.36 61.05
BM25+CE 60.01 61.62 59.36 78.55 50.80 69.02 64.41 49.31 48.53 72.96
BM25+CENQ 66.23 54.89 59.66 83.32 41.92 57.77 54.77 39.10 38.22 72.48
ColBERTv2 66.51 62.79 61.25 78.38 50.50 69.08 65.08 50.78 51.89 75.37

Atlas-base 67.78 49.14 44.53 78.91 39.68 54.56 50.91 34.18 29.45 60.91
Atlas-xxl 70.25 55.20 49.64 78.69 46.14 64.09 57.20 40.09 38.22 67.54

Table 5: Passage retrieval performance based on HIT@5. Atlas uses the Contriever (Izacard et al., 2022a) that has
fixed model size for both Atlas-base and Atlas-xxl. “base” and “xxl” refer to the size of the reader model (T5).
Neural retrievers’ model sizes and training data are summarized in Table 9 in the appendix.

checkpoint. This choice is justified for two reasons:
1) we want to have a fully comparable training
setting with the baseline QA model; 2) according
to Table 5 and Table 14-15 in the appendix, DPR
achieves overall best in-domain retrieval results,
suggesting DPR retrieves good quality passages for
in-domain training.

For evaluation, we test the trained QA models
on RobustQA with passages retrieved from Col-
BERTv2 as it provides the best retrieval results
according to Table 5. Using DPR’s retrieved pas-
sages is a reasonable alternative as it may reduce
the gap between the train and test time. As a bench-
mark paper, we leave more rigorous investigations
of this option for future research efforts.

Compared Models. 1) FT: we finetune the ex-
tractive QA model on NQ data and test zero-shot on
RobustQA. 2) PT −→ FT: before finetuning, we pre-
train the language model, BERT-base (Devlin et al.,
2019) on a small unlabeled OOD corpus. 3) Atlas-
base and Atlas-xxl: jointly train the Contriever with
T5-base (220M) and T5-xxl (11B) respectively as
the reader. We use the provided Atlas checkpoints
finetuned on NQ. 4) Flan-T5-xxl finetuned on NQ
using the prompt specified in Sec. 5.

Unsupervised Corpus. Note that PT −→ FT
method requires unsupervised source/target cor-
pus. We construct them by randomly sample a
subset of passages (Table 2) with no more than 20
million combined tokens (∼200K passages). We
ensure positive contexts for the test questions are
excluded.

7 Results and Analysis

In this section, we show our benchmark results on
RobustQA for both passage retrieval and end-to-
end question answering.

7.1 Passage Retrieval
Table 5 shows the results for passage retrieval. Con-
sistent with previous findings (Thakur et al., 2021),
DPR achieves best in-domain performance on NQ,
but generalizes poorly to RobustQA. On the con-
trary, BM25’s performances across all datasets are
stable, and it outperforms DPR by 8.21% over
HIT@5 on RobustQA.

We found that both BM25+CE and ColBERTv2
can work well for all domains. Their RobustQA
average result outperforms BM25 by 13.56 and
14.73 percentage points, respectively per HIT@5.
ColBERTv2 appears to be the most robust passage
retriever according to our results. Table 14 and
15 in the appendix show ColBERTv2 gains wider
margins against BM25+CE per the HIT@20 and
HIT@100. Here, both CE and ColBERTv2 are
trained on MS MARCO.

Impact of Training Data. As shown in Table 5,
with the same base model, training the CE with NQ
can improve its in-domain performances by 6.22
points, but hurt its results on RobustQA by 6.73
points. Since MS MARCO includes larger and
potentially more diverse data than NQ, it suggests
enhancing quantity and diversity of training data
can be beneficial to improve domain robustness.

Model Size. As Table 9 in the appendix shows,
all model sizes for neural models are comparable,
except for ColBERTv2, which uses a much smaller
model, but leverages distillation techniques to ob-
tain knowledge from larger CE models. Nonethe-
less, its efficiency and remarkable performances
make it an excellent retriever during inference.

Joint Training. Atlas’s retriever, Contriever uses
the same base model as DPR. Atlas’ lower scores in
NQ can be partially attributed to different training
methods and negative sample selections. However,
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NQ RobustQA [BI] [SE] [FI] [LI] [RE] [TE] [SC] [WR]
Method Average

FT 49.37 18.81 28.36 43.30 9.25 15.50 13.06 9.78 13.17 18.02
PT−→ FT 49.31 21.04 30.56 43.47 10.55 16.82 16.51 12.75 15.77 21.86

Atlas-base 51.87 28.29 39.55 59.20 15.60 23.84 22.76 19.81 18.25 27.34
Atlas-xxl 62.44* 37.31 45.31 78.51 21.34 32.24 29.08 25.94 27.28 38.79

Flan-T5-xxl 57.60 35.49 47.04 77.21 18.87 28.54 28.03 24.63 25.20 34.39

Table 6: End-to-end QA performance based on F1 score. All readers are trained on NQ. Except for Atlas models,
ColBERTv2 is used to retrieve up to 100 passages to be consumed by the reader during inference. *Atlas-xxl’s F1

score on NQ is lower than the number reported in the original paper because we use DPR’s passage pool, which
does not contain infobox data.

Atlas’ superior OOD performances show the effec-
tiveness of joint pre-training of retriever and reader
on large text corpus before fine-tuneing on NQ. The
signals from the QA models likely can help correct
the errors in the retrieval stage, and the signals be-
come stronger as we adopt larger language models,
i.e., from “base” to “xxl.”

NQ v.s. RobustQA. We observe that the best
RobustQA average is 9.45 percentage points be-
low the best NQ HIT@5 (72.24%). Except for
SearchQA and Writing and, which have the closest
token distribution to NQ (Fig. 2), there are sig-
nificant performance degradation on RobustQA
datasets, suggesting our new benchmark provides
a much more challenging contexts for passage re-
trieval compared with the commonly used Wikepe-
dia corpus.

7.2 Open-domain QA

For end-to-end QA performances, Table 6 shows
that simply applying an extractive QA model fine-
tuned to NQ to RobustQA will result in a drastic
performance drop of 30.56 percentage points per
F1 measure. Comparing and contrasting with the
performance declines in the passage retrieval, it
implies that domain drifts have strong impacts on
both retriever and reader modules.

Pretraining with Domain Corpus. We observe
that comparing with FT only, PT−→ FT can im-
prove RobustQA by 2.23 percentage points. The
best PT−→ FT F1 score on RobustQA (21.04%) is
still more than 28 points below its in-domain per-
formance on NQ. These results again confirm that
RobustQA is a challenging benchmark to work
with, but point out a promising direction to lever-
age unlabeled corpus to help close the gap between
in-domain and OOD data.

Generative v.s. Extractive Approach. Compar-
ing to FT (on extractive readers), generative models
Atlas-xxl and Flan-T5-xxl improve F1 score on NQ
by 13.07 and 8.23 percentage points, while gain-
ing 18.5 and 16.68 points on RobustQA, respec-
tively. These results demonstrate the superior per-
formances of large language models. However, the
in-domain and OOD gap is still wide, and LLMs
may not be suitable for compute/latency-sensitive
applications. Thus, we test a smaller generative
model, Atlas-base whose reader has similar model
size as the extractive QA model. We observe a lift
of 9.48 points agaist FT, which suggests that gener-
ative approach can help extractive ODQA task.

Analysis on challenging domains. We observe
in Table 6 that FiQA and Technology are the two
most challenging domains, which can be particu-
larly attributed to the statistical data differences
(Sec. 3.4). Table 3 shows that FiQA has the longest
answer spans (9.4 v.s. 2.3 for NQ). Since the QA
model is trained on NQ to predict short spans, it is
likely to have lowest token recall for FiQA, thus the
lowest F1 scores. On the other hand, Technology’s
poor performances may be related to its largest
token distribution drift from NQ as illustrated by
Fig. 2. Moreover, Fig. 3 shows that Technology has
the largest amount of reasoning type of questions,
which indicates the largest question type drift. Both
factors make it harder to adapt a model trained on
NQ to Technology in a zero-shot manner.

Error Analysis. A common issue for ODQA is
that when a retriever returns a mixture of relevant
and irrelevant passages as QA inputs, the latter can
mislead reader prediction by extracting answers
from incorrect contexts. These issues can be poten-
tially resolved by building stronger retrievers and
leveraging retrieval results such as scores to help
readers rank answer candidates. We leave this to
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the future research efforts.
Here we focus on analyzing errors in reading

comprehension only by selecting samples where a
reader correctly picks relevant passages to extract
answers. As Table 16 in the appendix shows, both
PT−→ FT model and Atlas-xxl, when finetuned on
NQ, tend to predict either entities or short phrases
on FiQA, whereas the ground-truth answers tend
to be longer and complete phrases that can fully
answer the reasoning type of questions (Example 1
and 2 in Table 16) or complicated factoid questions
(Example 3). This again suggests that training NQ
alone may not be sufficient to solve RobustQA,
and a more diverse ODQA dataset is crucial for
training robust ODQA systems.

8 Related Work

Open-domain QA. ODQA has been studied by a
large body of work (Chen et al., 2017; Kwiatkowski
et al., 2019; Izacard and Grave, 2021). Among
them, DPR (Karpukhin et al., 2020) proposes a
competitive system by combining dense retrieval
with a strong extractive reader (Devlin et al., 2019),
which we adopt as the baseline. The key limitation
of current ODQA work is that the evaluation is
primarily done on datasets based with Wikipedia
text (Rajpurkar et al., 2016; Kwiatkowski et al.,
2019; Amouyal et al., 2019), which we address in
this work.

Passage Retrieval. At the core of most ODQA
systems is a passage retrieval system. While we
only benchmark several strong baselines in this
work, numerous other systems have been studied in
the past (Thakur et al., 2021). These systems can
be broadly divided into sparse retrievers (where the
similarity between the query and a passage is cal-
culated via inverted index), dense retrievers (where
the similarity is calculated with dense vectors from
neural encoders), or a combination of both. For
sparse retrievers, apart from BM25, DeepCT (Dai
and Callan, 2020), SPARTA (Zhao et al., 2021),
docT5query (Nogueira and Lin) are good alterna-
tives. For dense retrievers, ANCE (Xiong et al.,
2021), TAS-B (Hofstätter et al., 2021) and Con-
triever (Izacard et al., 2022a) are some more recent
developments and variations of DPR. In addition, it
is a common practice to combine a retrieval module
with a separate single-tower re-ranker model fine-
tuned on retrieval datasets (Thakur et al., 2021).

Domain Robustness Benchmarks. Several
benchmarks have been created for cross-domain
evaluation of reading comprehension, MRQA
(Fisch et al., 2019) or retrieval systems, BEIR
(Thakur et al., 2021) and LoTTE (Santhanam et al.,
2022). Asai et al. (2022) also provides various
datasets for retrieval augmented NLP tasks, but
most of them do not have a clean extractive ODQA
format, which is the focus of this work. Outside
of NLP, DomainBed (Gulrajani and Lopez-Paz,
2020), ESC (Gandhi et al., 2023) and DABS
(Tamkin et al., 2021) are recent benchmarks
for computer vision, speech recognition and
self-supervised learning, respectively.

9 Conclusion

We propose RobustQA, a benchmark consisting
of samples across 8 different domains that better
evaluates ODQA systems’ robustness on domain
adaptation. After adopting SOTA ODQA systems
enhanced by unsupervised learning methods and
LLMs, there still exists a significant performance
gap between RobustQA and the commonly used
NQ dataset, which suggests that RobustQA is a
more reliable and challenging benchmark to evalu-
ate ODQA systems’ cross-domain performances.

Limitations

We discuss some limitations of this work for future
research efforts. The range of the domains could
be more comprehensive to cover social media and
law. The experiments can potentially cover more
models. As we mention in Sec. 8, there are more
comparable retrievers and QA readers. It would be
useful in the future to benchmark more models on
RobustQA. Finally, due to the complexity of the
raw IR data, it is costly to collect our datasets. This
is manifested by not only the monetary costs, but
also the human efforts to create guidelines, to coach
annotators, and to manually audit and validate an-
notations. In the future, it could be beneficial to
leverage large language models with context learn-
ing to assist human labors.

Ethics Statement

The authors of this paper are committed to conduct-
ing research ethically. Data used in this work have
been collected from public sources and used in ac-
cordance with all applicable laws and regulations.
This work uses language models, for which the
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risks and potential harms are discussed in numer-
ous previous works (Bender et al., 2021; Weidinger
et al., 2021). The authors strive to ensure that the
research and its results do not cause harm.
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A Appendix

A.1 Annotation Guidelines

We summarize our annotation guidelines here. Be-
fore judging the answer validity and conciseness,
annotators should first determine if a passage can
be used to answer a given question. Though the pas-
sages associated with the question should have la-
bels of "relevant" in the original IR data, we found
they are not always appropriate for our annotations
because 1) annotation errors in the original dataset,
i.e., passages are in fact not relevant; 2) intent of a
question is ambiguous, so it is hard to determine
if an associated passage is relevant or not; 3) we
couldn’t find precise answer spans in a passage
to answer the question. In any of these cases, we
instruct the annotators to discard the passage.

Answer Validity
• The answer span is exactly the same as in

the passage. Typos/misspelling are acceptable
as long as they are not preventing us from
understanding the answer.

• The answer span does not combine two dif-
ferent excerpts/parts of the passage to create
only one answer span.

• The answer span does not include leading or
trailing punctuation marks, unless they are a
part of the answer span. (e.g. Yahoo!)

• The answer span does not contain a URL
and/or is not a URL link itself.

• The answer span does not correspond to the
entire passage.

Answer Conciseness
• The answer span should be as short as possi-

ble, while still conveying the wanted meaning.
• The answer span does not contain more than

16 words, though adding 1-2 words to make
the span complete is allowed (should be con-
sidered very carefully).

• The answer span does not contain unnecessary
rhetorical expressions such as subject/object,
time and location around a core concept.
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Label # Questions # Documents # Passages
LI 2,151 268,893 597,729
RE 2,325 263,025 731,124
TE 2,223 1,000,000 1,707,346
SC 2,137 343,642 854,756
WR 1,972 277,072 713,692

Table 7: Data summary for the ODQA annotations in
the dev split of LoTTE after filtering out no-answer
questions.

• The answer span does not contain unnecessary
the explanation of a core concept.

A.2 Additional RobustQA Annotations

Table 7 shows the data statics for our ODQA an-
notations in the dev split of LoTTE. We did not
benchmark these data, but will release data for fu-
ture model development purpose.

A.3 Annotation Examples

Table 11 - 13 show more examples of our annotated
data. Additional FiQA examples can be found in
the error analysis - Table 16.

A.4 Question Types

In Figure 3, we categorize questions into two types:
factoid and reasoning. Here, we entail the string
matching used for the categorization. Though these
rules are not perfect, they largely capture question
types based on our careful manual examination.

Factoid
• first word is “what”
• any match to the phrase in this list: [whats,

what’s, when, who, how many, how much,
how long, how old, how far, how often, list
the, where, which]

Reasoning
• any match to the phrase in this list: [why,

because, how is, how are, how’s, how am,
how was, how were, how did, how does, how
do, how will, how have, how has, how to, how
can]

Questions do not have these patterns are either
binary question, or questions that do not follow
typical inquiry pattern. For example, SearchQA
contains more than 90% of this type of questions.
Here is an example: “magic-making mickey mouse
movie of 1940” – the typical question should be
“what is the magic-making mickey mouse movie of
1940.” We do not handle these questions separately

and leave the impact on domain-robustness of this
statement-type questions to the future research.

A.5 Domain Classification-based Contrastive
Learning

Our contrastive learning method is based on Long
et al. (2022). The core idea is that while train-
ing models to perform well on the key task
(e.g. ODQA), we also encourage models to learn
domain-invariant representations using unlabeled
source/target corpus. In this way, the model can
potentially be effective at adapting to the same task
in a different domain.

This goal is accomplished by first introducing a
domain classifier f(x, l) where x is the text repre-
sentations and l is the text’s domain label. Then we
attempt to learn the optimal perturbation δ to x that
brings the representation close to domain-invariant.
Adopting the virtual adversarial loss formulation
(Miyato et al., 2017),

Ldomain = min
θ

∑

(x,l)

(L (f(x), l; θ) (1)

+αadv max
∥δ∥≤ϵ

L (f(x+ δ), l; θ))

where θ is the classifier parameter to be learned
and αadv controls the balance between optimizing
the classifier and learning the perturbation. ϵ is
the l2 norm boundary for δ, which can be learned
through Projected Gradient Decent (PGD) (Madry
et al., 2018; Zhu et al., 2020) with an additional
assumption that the loss function is locally linear.
To approximate the perturbation θ, we can run one
iteration of the following algorithm,

θt+1 =
∏

∥δ∥≤ϵ

(δt + η
gadv
l (δt)

∥gadv
l (δt)∥

)

gadv
l (δt) = ∇θL(f(x+ δt, l; θ))

where
∏

∥δ∥≤ϵ performs a projection onto the ϵ-ball,
and η is the step size. Finally, the contrastive loss
is computed as,

Lcontrastive = log
exp(s(zi, z

′
i)/τ)∑N

k 1k ̸=i exp(s(zi, zk)/τ)

where z = g(f(x)) and z′ = g(f(x + δ)). g is
a projection function and s represents the cosine
similarity between two vectors. τ is a constant tem-
perature parameter. The indicator function 1k ̸=i

excludes the target sample i from the normaliza-
tion term. N is the batch size. Intuitively, this
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contrastive loss function brings the original repre-
sentation z closer to its domain-invariant represen-
tation z′ while pushing it away from the represen-
tations from other negative samples in the batch.
Combining all, the final training objective is,

L = Ltask + wdLdomain + wcLcontrastive (2)

where wd, wc are weights for component losses.

A.6 Additional Implementation Details

Computing Resources. We run all experiments
on 8 Nvidia A100 GPUs. A model is typically
trained for 10-15 epochs, which takes 10 to 20
hours to complete depending on the model size and
algorithm complexity. All neural models are imple-
mented by PyTorch and Huggingface libraries. All
benchmarked models are publicly available. Please
refer to their code repo for software details.

Hyper-parameters. All hyper-parameters for the
QA models are selected based on the best NQ dev
set performances. We use EM for top 50 passages
to be consistent with the DPR paper. For pretrain-
ing method, we save checkpoints for every 8000
training steps, and report the best model per criteria
mentioned above. Similarly, for FT + CL experi-
ments, the best hyper-parameters are picked based
on the same criteria.

We tuned 4 hyper-parameters as shown in Ta-
ble 8. The search ranges are,

• wd: {0.01, 0.05, 0.1}
• wc: {0.01, 0.05, 0.1}
• αadv: {0.1, 1.0}
• ϵ: {2.0, 5.0}

Data wd wc αadv ϵ

SearchQA 0.1 0.01 1.0 5.0
BioASQ 0.1 0.05 0.1 5.0

Table 8: Best hyper-parameters for each RobustQA
dataset for the FT + CL experiments.

A.7 Passage Retriever Models

Table 9 shows base models, number of parameters
and training data for passage retrievers.

A.8 Additional Passage Retrieval Results

Table 14 and 15 show additional passage retrieval
results per HIT@20 and HIT@100.

Method Train Data Retriever Model $ Parameters

DPR NQ BERT-base 110M
BM25+CE MS MARCO ELECTRA-base 110M
BM25+CENQ NQ ELECTRA-base 110M
ColBERTv2 MS MARCO MiniLM 22M

Atlas-base NQ BERT-base 110M
Atlas-large NQ BERT-base 110M

Table 9: Base model and training data used for the
compared (neural) passage retrievers. Again, both Atlas
models use Contriever as retrievers.

NQ [BI] [SE]

FT 49.37 28.36 43.30
FT + CL 49.23 29.58 44.88

Table 10: Comparison between finetuning directly on
NQ (FT) v.s. finetuning with contrastive loss (FT + CL)
on End-to-end QA performance. All numbers are F1

scores.

A.9 Contrastive Loss Results
As shown in Table 10, after finetuning using con-
trastive loss on NQ data, we observe noticeable
gains against FT only method on BioASQ and
SearchQA datasets with very little trade-off on in-
domain NQ result. However, this method doesn’t
work very well on other RobustQA datasets, and
requires a lot of hyperparameter tuning. We leave
more rigorous study on this method to future re-
search efforts.

A.10 Error Analysis
Table 16 shows error cases on FiQA.
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Lifestyle: Example 1

Question: Why is international first class much more expensive than international economy class?
Passage: Your question is (I think): why does (US) domestic first class exceed the cost of economy by 50%, whereas
international first class is many times the cost of economy. The answer to that is that the comparative services are
vastly different. In (US) domestic first class you get a little more legroom, and a seat roughly 50% more wide.
In international first class, you will often get far more than a fully reclining seat - a private bed is not unknown.
Comparing the plane’s floor-plate take is a crude measure, but it would not surprise me if a first class seat took 10
times the amount of space as an economy seat on an international flight. Look at the floor plans here (image not
copied for copyright reasons) and you can see the six seats in the back half of the first class cabin of a 747 take
about the same space as 4 rows (40 seats) of economy.

Lifestyle: Example 2

Question: Why did the metro bus stop at each railway crossing, despite no warning indicating a train was coming?
Passage: Other people have cited the relevant laws. The laws exist because warning signals sometimes malfunction.
It’s probably fine for a passenger car to take that risk, but a bus carrying passengers has a higher standard of care to
adhere to.

Table 11: Annotation examples in LoTTE-Lifestyle

Recreation: Example 1

Question: Why did you have to blow into an NES cartridge to make it work?
Passage: My brother and I did this all the time with our old nes. Beyond blowing out the dust there seemed to be
some connection with moisture. If I blew it out and then breathed on it to make it damp it seemed to work better. The
question about how everyone knew to do it? I agree with the instinct theory. My brother and I worked out this system
by ourselves. You look at it, and for some reason the first thing you think of is either to stick your finger in it or
to blow in it, LOL.

Recreation: Example 2

Question: How do you prevent Sims from aging?
Passage: Sort of. There is the Ambrosia, which you can make yourself, although it is a little tricky. Here is a quote
from another helpful player There is the Ambrosia recipe that you can buy from the book store. It’s a level 10
cooking recipe and when you make it it resets your current life meter. So if you’re 20 days into the Adult stage of
life, it sets it back to 0. Also, if you have a sim ghost eat it, they will be brought back to life. Of course, to
be able to make it requires some items that are not easily come by. Noamely you need a life fruit which can only be
grown from a special seed found somewhere on the ground and grown by a high level gardener, and you need a
Deathfish, which I believe can only be found in the graveyard pond after midnight and probably only fished
by a higher level fisherman. I hope that helps.

Table 12: Annotation examples in LoTTE-Recreation

Technology: Example 1

Question: How can I disown a running process and associate it to a new screen shell?
Passage: Using GNU screen is your best bet. Start screen running when you first login - I run screen -D -R, run your
command, and either disconnect or suspend it with CTRL-Z and then disconnect from screen by pressing CTRL-A
then D. When you login to the machine again, reconnect by running screen -D -R. You will be in the same shell
as before. You can run jobs to see the suspended process if you did so, and run %1 (or the respective job #)
to foreground it again.

Technology: Example 2

Question: How can I reduce a videos size with ffmpeg?
Passage: This answer was written in 2009. Since 2013 a video format much better than H.264 is widely available,
namely H.265 (better in that it compresses more for the same quality, or gives higher quality for the same size).
To use it, replace the libx264 codec with libx265, and push the compression lever further by increasing the CRF value
‚Äî add, say, 4 or 6, since a reasonable range for H.265 may be 24 to 30. Note that lower CRF values correspond to
higher bitrates, and hence produce higher quality videos. ffmpeg -i input.mp4 -vcodec libx265 -crf 28 output.mp4
To see this technique applied using the older H.264 format, see this answer, quoted below for convenience: Calculate
the bitrate you need by dividing your target size (in bits) by the video length (in seconds). For example for a
target size of 1 GB (one gigabyte, which is 8 gigabits) and 10 000 seconds of video (2 h 46 min 40 s), use a bitrate of
800 000 bit/s (800 kbit/s): ffmpeg -i input.mp4 -b 800k output.mp4 Additional options that might be worth
considering is setting the Constant Rate Factor, which lowers the average bit rate, but retains better quality...

Table 13: Annotation examples in LoTTE-Technology
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NQ RobustQA [BI] [SE] [FI] [LI] [RE] [TE] [SC] [WR]
Method Average

DPR 81.33 54.75 44.30 86.60 42.85 65.00 53.91 36.41 41.09 67.87
BM25 62.83 65.72 66.10 91.27 51.27 67.57 65.46 53.24 51.96 78.85
BM25+CE 72.02 68.41 70.04 93.23 62.01 79.22 74.38 63.78 61.57 81.94
BM25+CENQ 74.16 65.05 70.55 93.80 57.32 74.89 70.18 57.92 55.61 78.86
ColBERTv2 78.64 76.65 71.32 93.22 65.58 82.93 78.24 67.61 68.65 85.65

Atlas-base 78.95 61.82 60.22 92.43 56.80 73.58 68.37 51.21 46.42 75.82
Atlas-large 81.71 70.73 63.09 93.13 62.58 79.31 72.85 58.39 54.91 81.57

Table 14: Model Performance (HIT@20) for passage retrieval.

NQ RobustQA [BI] [SE] [FI] [LI] [RE] [TE] [SC] [WR]
Method Average

DPR 87.29 68.84 56.90 94.00 60.72 78.87 68.99 53.57 57.50 80.19
BM25 78.06 78.30 75.00 97.74 67.54 82.57 78.29 70.97 68.09 86.16
BM25+CE 78.06 78.30 75.00 97.74 67.54 82.57 78.29 70.97 68.09 86.16
BM25+CENQ 78.06 78.30 75.00 97.74 67.54 82.57 78.29 70.97 68.09 86.16
ColBERTv2 85.87 85.69 77.51 98.43 78.28 91.28 87.36 80.99 79.38 92.32

Table 15: Model Performance (HIT@100) for passage retrieval. Atlas results are omitted here because we used the
officially recommended 40 as the number of retrieved contexts, and thus won’t have HIT@100 results.

Example 1

Question: explain the hsi - why do markets sometimes appear in sync and other times not?
Passage: why do markets sometimes appear in sync, but during other times, not so much By "markets" I’m assuming
you mean equity indices such as the HSI. Financial products fluctuate with respect to the supply/demand of the traders.
There’s been a large increase in the number of hedge funds, prop desks who trade relative values between financial
products, that partially explains why these products seem to pick up "sync" when they get out of line for a while.
Answer (PT−→ FT): during other times
Answer (Atlas-xxl): supply/demand

Example 2

Question: how to determine how much to charge your business for rent (in your house)?
Passage: Your best approach is to assess rent levels in your local area for offices of a similar size. You need to take
into account all the usuals - amenities, parking, etc, just as if your home-office was provided by a third-party. Get
your $/sq ft and work out the monthly amount. With this figure, you need to then work out what % of it you can
charge. If the space is used exclusively for the business, charge 100%. If it’s used about half the time, charge 50%, etc.
I would strongly advise you to do two things - 1. make ...
Answer (PT−→ FT): 100%
Answer (Atlas-xxl): assess rent levels

Example 3

Question: what is kirchstrasse on my statement bill?
Passage: POS stands for Point of Sale (like a specific store location) which indicates that the purchase occurred by
using your debit card, but it can also be the on-line transaction done via 3-D Secure. Checking with bank, they said that
Kirchstrasse transaction could be related to direct marketing subscription service ordered on-line. Investigating further
what I’ve found these kind of transactions are performed by 2BuySafe company registered at Kirchstrasse
in Liechtenstein with went through the MultiCards on-line cashier which can be used for paying different
variety of services (e.g. in this case it was polish on-line storage service called Chomikuj)
Answer (PT−→ FT): pos stands for point of sale
Answer (Atlas-xxl): 2BuySafe

Table 16: Examples of errors in FiQA made by the QA models. Here we focus on reading comprehension component
by examining examples with passages containing both gold answers and the predictions.
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