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Abstract

When textual classifiers are deployed in safety-
critical workflows, they must withstand the on-
slaught of AI-enabled model confusion caused
by adversarial examples with minor alterations.
In this paper, the main objective is to provide a
formal verification framework, called TextVeri-
fier, with certifiable guarantees on deep neu-
ral networks in natural language processing
against word-level alteration attacks. We aim to
provide an approximation of the maximal safe
radius by deriving provable bounds both mathe-
matically and automatically, where a minimum
word-level L0 distance is quantified as a guar-
antee for the classification invariance of victim
models. Here, we illustrate three strengths of
our strategy: i) certifiable guarantee: effec-
tive verification with convergence to ensure ap-
proximation of maximal safe radius with tight
bounds ultimately; ii) high-efficiency: it yields
an efficient speed edge by a novel paralleliza-
tion strategy that can process a set of candidate
texts simultaneously on GPUs; and iii) reli-
able anytime estimation: the verification can
return intermediate bounds, and robustness esti-
mates that are gradually, but strictly, improved
as the computation proceeds. Furthermore, ex-
periments are conducted on text classification
on four datasets over three victim models to
demonstrate the validity of tightening bounds.
Our tool TextVerifier is available at https:
//github.com/TrustAI/TextVerifer.

1 Introduction

Deep neural networks (DNN) enable natural lan-
guage processing (NLP) models to process human
languages automatically and tackle various tasks,
such as text classification (Garg and Ramakrish-
nan, 2020), machine translation (He et al., 2021),
information retrieval (Tian et al., 2021), dialogue
understanding (Zhong et al., 2022). Meanwhile,
the robustness of textual classifiers requires to be
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ensured to prevent malicious attempts from adver-
saries due to inherent vulnerability(Mu et al., 2023;
Wang et al., 2022; Zhang et al., 2023), which dates
from computer vision (Szegedy et al., 2013; Good-
fellow et al., 2015) and also emerges in NLP field
(Jia and Liang, 2017).

Adversarial attacks (Ribeiro et al., 2018; Li et al.,
2019; Jin et al., 2020) are designed to generate se-
mantically or superficially similar outputs to fool
the victim models. With regard to adversarial de-
fence, multiple strategies are devoted to resisting
adversarial attacks. Adversarial training (Cheng
et al., 2020) is known as a mainstream mechanism
to enhance the robustness of classifiers, which de-
mands a substantial amount of adversarial exam-
ples for training. The shortcoming of this opera-
tion is the unavailability of all combinations with
exponential growth among input sentences. Addi-
tionally, another effective scheme is perturbation-
based controlling (Wang et al., 2021b), which aims
to discern abnormal behaviors and rectify poten-
tial perturbations with safety risks. However, this
scheme only specializes in dealing with visible per-
turbations, exclusive of unknown attacks. In that
light, robustness verification is studied for solv-
ing the above problems. The main purpose is to
provide a certificate for estimating robustness by
identifying the local worst-case perturbations for a
set of input sentences (Wu et al., 2020) .

In this paper, we mainly focus on performing
local robustness verification by optimizing the
problem of maximum safe radius (the minimum
distance between an input and an adversarial ex-
ample that changes the label prediction in Ham-
ming space) against word-level substitution attacks,
which possess strengths in semantic impercepti-
bility and syntactic fluency (Wang et al., 2019).
Nevertheless, the computation process for such at-
tacks has been shown to be an NP-hard problem
(Zhai et al.). As shown in Figure 1, given a clean in-
put sentence, our objective is to calculate the upper
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Figure 1: An example for bounding the maximal safe
radius in textual classification. The blue and yellow
regions (blue dots and blue triangles: correctly and in-
correctly classified samples, and vice versa for yellow
samples) represent binary classification regions divided
by a dark-blue dotted line, while the grey region means
the human-perception boundary for the blue region sep-
arated by an orange dotted line. For the maximal safe
radius, the upper bound (green line) is calculated by
measuring the Hamming distance between the adversar-
ial text (yellow triangle) and the input sentence (blue
bold dot) if an adversarial example succeeds in mis-
leading a textual classifier. The lower bound (pink line)
represents that within this region, any perturbations are
considered as safe while no misclassification appears.
The maximal safe radius (blue solid line) is guaranteed
to be approximated by the convergence between the
upper and lower bounds eventually.

and lower bounds to approximate the maximal safe
radius with convergence guarantees and to process
sets of potential adversarial sentences simultane-
ously via our efficient parallelization strategy. In
our strategy, the lower bound ensures the nonex-
istence of adversarial examples within this safe
region (Peck et al., 2017). While the upper bound
is computed by any generated perturbations that re-
sult in incorrect predictions for NLP models, noted
that the upper bound is utilized to approximate the
safe radius from the upper side and localise the
provably minimally-distorted adversarial example
if it converges to the maximum safe radius (Car-
lini et al., 2017). Our approach verifies that the
model is robust when the perturbations are below
the lower bound (i.e., proving the robust region)
and non-robust when the perturbations are above
the upper bound (i.e., proving the non-robust re-
gion), leaving only the region between the lower
and upper bounds unverifiable in terms of robust-
ness. Iteratively, our method increases the lower
bound and decreases the upper bound to narrow
the uncertainty region, eventually converging to the
maximum safe radius with provable guarantees.
Our verification is an anytime algorithm. Namely,
even if our tool TextVerifier is interrupted before

the verification process is complete, it can still pro-
vide valid lower and upper bounds of the maximal
safe radius for certifying the robust and non-robust
region. The main contributions are listed below.

i) We propose an effective and efficient frame-
work for verifying the robustness of textual classi-
fiers against word-level alteration-based adversarial
perturbations via maximal safe radius computation.
Our mechanism provides provable guarantees re-
garding the correctness and bound convergence.

ii) Our novel parallelization strategy enables
high efficiency in processing potential adversarial
sentence sets simultaneously, which is applicable
to efficiency-demanding scenarios.

iii) We employ an anytime estimation for a con-
trollable and flexible approximation of maximal
safe radius via bound computation within an ac-
ceptable time. As the computation proceeds, the
upper and lower bounds will eventually converge to
the maximal safe radius with provable guarantees.

iv) The upper bound calculated from our algo-
rithm is demonstrated to be a competitive adversar-
ial example crafting mechanism in terms of both
attacking efficiency and effectiveness.

2 Related Work

Our work focuses primarily on robustness verifica-
tion against word-level alteration-based attacks. So
far, multiple representatives have been proposed
based on synonym substitution, including (Alzan-
tot et al., 2018; Ren et al., 2019; Jin et al., 2020;
Li et al., 2020). Regarding realizing certified ro-
bustness by adversarial training, minimizing con-
vex functions over convex sets is known as a con-
vex optimization approach. In this line, WordDP
(Wang et al., 2021a) was proposed to realize certi-
fied robustness against word-level substitution ad-
versaries using differential privacy in text classifica-
tion. Subsequently, a robust defence method called
RanMASK (Zeng et al., 2021) was proposed based
on randomized smoothing. It randomly masks a
portion of words to avoid the hypothesis of the ac-
cess to synonym candidate sets. In the work (Singla
and Feizi, 2020), a Curvature-based Robustness
Certificate (CRC) was proposed to compute a ro-
bustness certificate against L2-bounded attacks by
utilizing convex optimization. Nevertheless, it is
inefficient to perform adversarial training via data
augmentation for certified robustness.

In terms of robustness verification against adver-
sarial attacks, Interval Bound Propagation (IBP)
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is known as an incomplete method and was first
proposed in computer vision (Gowal et al., 2018).
Following this, (Jia et al., 2019) deployed IBP to
the NLP settings, which considered the certified
robustness of synonym substitution. Meanwhile,
(Huang et al., 2019) introduced verifiable training
to NLP models in the embedding space and com-
puted tighter bounds. Then (La Malfa et al., 2020)
measured robustness via maximal safe radius in the
embedding space. However, the above strategies
only focused on the embedding space has limited
its application scenarios and IBP is difficult to ex-
tend to large network architectures such as BERT
with a loose outer bound.

In summary, although robustness verification for
NLP classifiers has been explored in previous re-
search, existing approaches are either computation-
ally expensive or cannot verify robustness in an
anytime manner for Hamming distance with strict
convergence guarantees.

3 Preliminaries

We start by providing supporting notations and
problem formulations. The strategy for robust-
ness verification will be detailed in the next sec-
tion. Given an input sentence X = {xi | i ∈
N∗
i≤n} with n word-level tokens x. Then a pre-

trained m-way NLP classifier f performs a map-
ping from the input X to a prediction label Y , i.e.,
f : X → Y , where the label set is symbolized
as Y = {Yj | j ∈ N∗

j≤m} with m labels. As-
sume that C refers to the classification probabil-
ity (i.e., a confidence score). From this, it fol-
lows that the prediction label Y for an input X
is allocated via the highest confidence score, i.e.,
f(X) = argmax

{
Cj(X) | j ∈ N∗

j≤m

}
, and the

ground-true label is denoted as Y ∗.
Definition 1 (Problem of Maximal Safe Ra-

dius) For an input sequence X , a perturbation safe
radius δ, a distance function ∥ · ∥k with k ≥ 0,
and a textual classifier f : X → Y , a norm ball
B(X, δ, k) denotes a subspace that holds:

B(X,δ,k)={Xadv|∥X−Xadv∥k≤δ} (1)

where δ is defined as the maximum radius surround-
ing a given input X , ensuring the nonexistence of
adversarial examples within the radius of a safe
norm ball B(X, δ, k).

Specifically, a norm ball B(X, δ, k) is regarded
as safe as formalized below:

Safe(B(X,δ,k)):∀ Xadv∈B(X,δ,k) s.t. f(X)=f(Xadv) (2)

where a norm ball B(X, δ, k) with the radius δ in-
cludes all possible sentences Xadv whose distance
from X , measured by ∥ · ∥k, is less than or equal
to δ. Intuitively, if for any perturbed sentence Xadv
within the norm ball B(X, δ, k), the prediction in-
variance always holds, i.e., the prediction label
remains unchanged: f(X) = f(Xadv), we say the
norm ball is safe.

Hamming Space Our work sets k = 0 for
the distance metric ∥ · ∥k, which is known as the
L0-norm or Hamming distance. The Hamming
distance between a clean input and an adversarial
counterpart quantifies nonidentical words. Ham-
ming distance (Ruan et al., 2019) can be an essen-
tial distance metric in the NLP field to measure
the imperceptibility due to the discreteness of tex-
tual data. Meanwhile, the property of semantic
fluency and syntactic naturality is preserved as our
strategy is against word-level alteration-based at-
tacks (Alzantot et al., 2018; Ren et al., 2019; Jin
et al., 2020; Li et al., 2020). We further provide the
definition of local robustness verification.

Definition 2 (Verification for Local Robust-
ness) Given a clean text X , a model f with m
labels, the confidence score C, the verification of
local robustness Verify(X) can be represented as:
Verify(X):∃Xadv :min ∥X−Xadv∥0 s.t.f(X )̸=f(Xadv) (3)

where we aim to obtain a minimum Hamming dis-
tance between the input X and the adversary Xadv,
which is sufficient to lead to an incorrect prediction
for the classifier f . This minimum Hamming dis-
tance can be regarded as the maximum safe radius
if its minimality is certifiable.

The problem of robustness verification is actu-
ally an NP-hard problem due to the discreteness of
the textual input and the non-convexity of the deep
neural networks (Dong et al., 2020; Ruan et al.,
2018). This paper aims to tackle this challenging
problem by providing upper and lower bounds on
this maximum safe radius, with a provable guaran-
tee that the upper and lower bounds will optimize as
the computation proceeds and eventually converge
to the maximum safe radius. The key novelty of
our solution lies in the anytime manner, i.e., when-
ever interrupting the computation, our method can
return certifiable upper and lower bounds for radius
approximation, as illustrated in Figure 1.

4 Robustness Verification

In this section, we present the key operations
(Stages 1-5) and pivotal procedures (lower and up-
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Stage-1: Preprocessing
step for a set with 
qualified indices.

Stage-5: Reordered 
combinations for word indices 
within assigned subspace.

Stage-2: Word-level 
combinations for indices.

Stage-3: Prepare substitution 
synonym set for qualified word 
indices.

An input X

Stage-4: Importance estimation.

The lower bound 𝑙! = p
is verified within subspace.

Model is 
fooled?

The upper bound 𝑢! = 𝑝, bound convergence and the safe radius is returned.

The upper bound 
is computed by 
our strategy.

Start with substitution subspace: p=1

Substitution 
Subspace: p=p+1

Bound estimation with 
the upper and lower 
bound for safe radius.

Yes

NoRepeat
Stage 2-5

Figure 2: The flowchart of the main stages for model verification with bound computation and safe radius estimation.

per bound computation) for robustness verification,
as shown in Figure 2. The details of our anytime
mechanism for approximation-based estimation of
the maximal safe radius will be explained in the
next section.

4.1 Key Operations for Bound Computation
The flowchart depicting the key operations is shown
in Figure 2. Stages 1-5 involve basic preparations
for subsequent bound computation. Starting with
an input sentence X , Stage-1 preprocesses the in-
put using common procedures for word-level alter-
ation attacks. Then, by initializing the dimension of
substitution combinations as p = 1, Stages 2-3 gen-
erate combinations of substitution indices within
the p-dimensional subspace and provide the corre-
sponding synonym set for each alteration index. In
Stages 4-5, the combinations of word indices are
reordered based on importance estimation.

During the bound computation, the lower
bound lp is first verified based on the aforemen-
tioned p-dimensional substitution order to check
whether the model is fooled. If the model is fooled,
the upper bound up is set to p, indicating bound
convergence and the safe radius is returned. Con-
versely, if the model is not fooled, the upper bound
is computed using our strategy based on Stages 1-5.
The bound estimation for a safe radius is obtained
by considering the upper and lower bounds. The
process continues iteratively by incrementing the
substitution subspace dimension p = p + 1, and
both the upper and lower bounds become stricter
until the model is fooled, indicating bound conver-
gence. Further details will be provided below.

Stage 1: Preprocessing Step for Qualified In-
dices In this stage, a common operation in word-
level substitution attacks (Jin et al., 2020) is per-

formed to filter out meaningless words using the
NLTK library2. Recall that the input sequence
X =

{
xi | i ∈ N∗

i≤n

}
consists of n tokens

x, and the set of indices can be represented as{
i | i ∈ N∗

i≤n

}
. Before mapping these tokens

to embedding vectors, indices corresponding to in-
significant words in the clean sentence are ignored
and removed from the set of candidates to be sub-
stituted. The qualified word indices in the input X
are sorted to form a subset Q ⊆

{
i | i ∈ N∗

i≤n

}
.

Stage 2: Word-level Combinations for Indices
in Substitution Subspace Given a set Q includes
qualified word indices to be substituted, assume
that the potential adversarial example Xadv has
modified p words simultaneously. Noted that p
denotes the subspace dimensions for perturbation
combinations. A 2-dimensional array is defined
as P(Q, p) under a p-dimensional alteration sub-
space, which consists of all possible combinations
of word-level substitution indices originated from
Q and the size of P(Q, p) satisfies |Q|!

(|Q|−p)! × p:

P(Q,p)=
{
Pi|Pi⊆Q∧i∈N∗

i≤ |Q|!
(|Q|−p)!

}
(4)

where Pi means a subset of word indices in the
universal set P(Q, p) and |Pi| = p. Therefore,
given the indices set P(Q, p), a set with all the
potential adversarial sentences Xadv(Pi) is defined
as Sub(X, p):

Sub(X,p)=

{
Xadv(Pi)|Pi∈P(Q,p)∧i∈N∗

i≤ |Q|!
(|Q|−p)!

}
(5)

where Xadv(Pi) means a single adversarial sentence
with p word-level alterations based on the word
indices subset Pi while the rest of word positions
are unchanged.

2https://www.nltk.org/
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Stage 3: Prepare Substitution Synonym Set
for Qualified Word Indices In this stage, the syn-
onym set for each original word index is allocated.
Regarding synonym selection, the counter-fitting
embeddings (Mrkšic et al., 2016) for vector space
representations are utilized in our strategy, which
has an edge in measuring semantic similarity, fol-
lowing the operations as (Jin et al., 2020). Recall
that the input sentence X =

{
xi | i ∈ N∗

i≤n

}
with

n words xi. Therefore, a candidate set Wi with
synonyms is created for an individual word xi:

Wi={ω(i,j)|i∈N∗
i≤n,j=N∗

j≤z} (6)

where i denotes the word index in the input X and j
denotes the synonym index in candidate set Wi for
the original word xi. Intuitively, the size of the set
Sub(X, p) (Equation 5) is |Q|!

(|Q|−p)! × zp, consisting
all the possible perturbed sentences.

Stage 4: Importance Estimation An array with
importance scores for reordering substitution in-
dices is obtained in this stage. Given an input X ,
a ground-true label Y ∗, a confidence score C, an
indicator function 1condition, subspace dimension
p, a universal set Sub(X, p) (Equation 5) with po-
tential adversarial sentences Xadv, a set with im-
portance scores corresponding to the set Sub(X, p)
is defined as S(X,Y ∗, p):

S(X,Y ∗,p)={[CY ∗ (X)−CY ∗ (Xadv)]+

1Y∗̸=Yj
∗[CYj

(Xadv)−CYj
(X)]|Xadv∈Sub(X,p)} (7)

where 1Y∗ ̸=Yj
=

{
0 if Y ∗ ̸=Yj is true,

1 if Y ∗ ̸=Yj is false.
is an indica-

tor function, which equals to 1 when the model
misclassification appears. Otherwise, the function
outputs 0 when the prediction label is true. Yj de-
notes a different label from the ground-true label
Y ∗. Noted that the higher the importance score
in S(X,Y ∗, p) is, the greater possibility an adver-
sarial sentence owns to fool the classifier. Specif-

ically, S(X,Y ∗, p) ∈ R
|Q|!

(|Q|−p)!
×zp

≥0 is a (p + 1)-
dimensional array of importance scores.

Stage 5: Reordered Combinations for Word
Indices within Assigned Subspace In this stage,
local optimal combinations of synonym substitu-
tion are ordered based on S(X,Y ∗, p) to resort the
combinations of word indices. Given the array

of importance scores S(X,Y ∗, p) ∈ R
|Q|!

(|Q|−p)!
×zp

≥0

(defined in Equation 4.1), a one-dimensional ar-
ray with the highest importance scores along
the first dimension with size zp is represented

as S∗(X,Y ∗, p) = {max(Si(X,Y ∗, p)) | i ∈
N∗
i≤ |Q|!

(|Q|−p)!

} ∈ R
|Q|!

(|Q|−p)!

≥0 . Here S∗(X,Y ∗, p) rep-

resents the local optimal importance score for syn-
onym substitutions along each input word. There-
fore, the reordered set of combinations for original
word indices is denoted as Iword:

Iword={Pi(Q,p)|i∈argsortdescend S∗(X,Y ∗,p)} (8)

where argsortdescend returns the original word in-
dices with importance scores in descending order.
Pi(Q, p) denotes a reordered subset of indices com-
binations.

4.2 Lower Bound Computation

The lower bound lp is first verified within p-
dimensional word-level subspace to check whether
the model is fooled, if so, the upper bound up
equals the lower bound, i.e., up = lp = p. Other-
wise, the upper bound is computed explained in the
next subsection. As introduced in Definition 2, it
is computational-consuming to calculate the max-
imum safe radius. Therefore, we aim to compute
tight lower and upper bounds parallelly to alleviate
query budgets and approximate the maximum safe
radius in Definition 1 with provable convergence
guarantees, as stated in the next section.

Given an input sequence X , a model f , re-
call that the size for Sub(X, p) (defined in
Equation 5) is |Q|!

(|Q|−p)! × zp stated in Stage
3. In a parallel setting, we query the tex-
tual classifier with Sub(X, p) directly for an
array Lab(Sub(X, p)) with prediction labels,
which is denoted as : Lab(Sub(X, p)) ={
f(Xadv) | Xadv ∈ Sub(X, p)

}
. Recall that Xadv

is one of the potential adversarial sentences in the
universal set Sub(X, p). The size of the array
Lab(Sub(X, p)) is |Q|!

(|Q|−p)!×zp. This array is then
compared with the ground-true label Y ∗ simultane-
ously, if any label is inconsistent with the original
label, the lower bound for the maximal safe radius
is regarded as lp = p, while the upper bound equals
to p and the safe radius converges. Specifically, the
lower bound represents a safe radius without the
existence of adversarial sentences. On the contrary,
if all the labels in Lab(Sub(X, p)) remain coher-
ent as the ground-true label Y ∗, the lower bound is
valued as p temporarily and increases iteratively.

4.3 Upper Bound Computation

As previously mentioned, if the model is not mis-
led when verifying the lower bound lp within p-
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dimensional word-level subspace, the upper bound
is computed as follows.

4.3.1 Processing Procedures
Similarly, our parallelization mechanism is also
adopted in this part. Based on Stages 1-5, the
reordered combinations of original word indices
Iword(X, p) in Equation 8 are utilized to match
the local optimal synonyms. This step aims to ob-
tain an order of local optimal synonym indices for
substitution. Similarly, Isyn is created as a set in-
cluding the synonym indices in the synonym set,
which matches the local optimal synonym based
on the array S(X,Y ∗, p) with importance scores in
descending order. The set is denoted as:

Isyn=
{
argmax

(
S(l,m)(X,Y ∗,p)

)
|l={1,..., |Q|!

(|Q|−p)!
},

m={1,...,zq−1}
}

(9)

where argmax
(
S(l,m)(X,Y ∗, p)

)
denotes an in-

dex in the synonym set. The indices are sorted by
importance scores in descending order.

We start computing the upper bound by initial-
izing the potential adversarial example Xtemp as
the input X . Then we iteratively add perturba-
tions on Xtemp based on Iword and Isyn within p-
dimensional combinations of synonym-level mod-
ifications accumulatively. A potential adversarial
example Xi

temp is generated by synonym substitu-
tion in ith iteration within p-dimensional subspace,
originating from Xi−1

temp in last iteration:

Xi
temp={[Xi−1

temp(Iword(i,j))
/ω(Iword(i,j),Isyn(i,j))

]}

(10)

where [A/B] means replacing A (local optimal
original word position to be substituted) with B (lo-
cal optimal synonym in the synonym set). Specif-
ically, i ∈ N∗

i≤|Isyn| and j ∈ N∗
j≤p. Here, Isyn(i,j)

is the original word index for substitution in Xi−1
temp

and Isyn(i,j) is the synonym index in the synonym
set for the original word. Moreover, the notation
ωi,j was defined in Equation 6, which represents
an optimal synonym in Equation 10.

Furthermore, a set with potential adversarial ex-
amples Xi

temp is denoted as a set A(Isyn) with
|Isyn| sentences, i.e., A(Isyn) = {Xi

temp | i ∈
N∗
i≤|Isyn|}. Then we query the textual classifier

with the set A(Isyn) in parallel to acquire a set of
classification labels Lab(A(Isyn)). In contrast to
the ground-true label Y ∗, if any sentence relates
to Xi

temp results in an incorrect prediction, an ad-
versarial example Xi

adv = Xi
temp is generated with

the optimal index i∗, which is returned from the
upper bound of i∗ · p word-level perturbations.

4.3.2 Redundancy Alleviation
To determine the maximal safe radius, we have
calculated the Hamming distance between a clean
input X and a perturbed sentence Xadv with the
classification label changed as the upper bound.
Although the obtained upper bound is tight, we
can further tighten the bound by alleviating redun-
dancy that exists in perturbed words that provide
minor contributions to fooling NLP classifiers, i.e.,
∥Xadv −X∥0 is optimized to a smaller scale.

Firstly, by creating a set Inon with indices by
distinguishing nonidentical words between Xadv

and X , a set Rone of adversarial sentences with a
single-word substituted back to the original word
is collected: Rone = {[Xadv(Inon(i))/xInon(i)

] |
xInon(i)

∈ X, i ∈ N∗
i≤|Inon|}. Then importance

estimation is conducted by parallel querying the
model with the set Rone for a set of reordered in-
dices for substituting back in ascending order, de-
noted as Ione here, following the operations illus-
trated in Stage 4 and 5. In this line, a set Rred

of accumulative word replacing-back sentences is
generated by adopting Ione with size |Ired| × n.

Simultaneously, the set Rred fed to the NLP
classifier for a label set Lab(Rred) and distinguish
whether an identical label from ground-true label
Y ∗ appears, the highest index j∗ relates to the ac-
cumulative substitute-back sentence Xred(j) is se-
lected owing to the largest amount of perturbed
words that are put back to the originals. Ulti-
mately, an adversarial sentence has a total of j∗

substitution-back words. This operation ensures a
tight upper bound for convergence.

5 Anytime Estimation and Convergence
Guarantees

We propose a safe-radius estimation method for
obtaining an anytime robustness computation, en-
suring the estimation results are controllable and
flexible with convergence ultimately.

5.1 Anytime Estimation for Robustness
An anytime approximation is provided in a max-
imal safe radius estimation to ensure practical-
scenario requirements. Instinctively, due to the
access to the aforementioned bound interval [lt, ut],
the sample mean can be estimated by calculating:
M(lt, ut) = lt+ut

2 . Moreover, the error bound
can be computed by: E(lt, ut) = ut−lt

2 . In this
line, an anytime robustness verification for safe ra-
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dius, denoted as R(X, t) for a clean input text X
within arbitrary acceptable runtime t, can be pro-
vided: R(X, t) = (M(lt, ut), E(lt, ut)) and satis-
fies: R(X, t) ∈ [M(lt, ut)−E(lt, ut), M(lt, ut)+
E(lt, ut)].

5.2 Bound Convergence and Certifiable
Guarantees

Theorem guarantees and analysis of bound conver-
gence are successively provided in this subsection,
and corresponding proofs are given in Appendix.

Theorem 1 (Minimum Value Guarantee of
Grid Search) Consider an input sentence X with
q word positions to be substituted, a Lipschitz
continuous NLP classifier f that is associated
with a norm distance ∥·∥k. The corresponding
Lipschitz constant is set to L that holds L ≥
0. For each subspace dimension, assume that
δ = 1

Φ words are selected recursively. Then
a set with potential adversarial sentences is de-
noted as Γ = {Xadv(1), · · · , Xadv(δq)}. We have:
∥∥f(Xopt)−minXadv∈Γ f(Xadv)

∥∥
k
≤ L ·

∥∥∥Φ
2 Jq

∥∥∥
k
,

where f(Xopt) denotes the optimal sentence results
in a minimum value, minXadv∈Γ f(Xadv) repre-
sents the minimum value obtained via grid search,
and Jq ∈ Rq·q symbolizes an all-ones matrix. The
proof can be seen in Appendix A.1.

Theorem 2 (Lower Bound Computation Guar-
antee) Consider an input sequence X , an NLP clas-
sifier f for a m-way classification task, and the
operation C for computing confidence scores. If
for all the sentences Xadv that are perturbed within
p-dimensional subspace word-level modifications,
f(X) = f(Xadv) (i.e., the prediction label for
Xadv remains unchanged) always holds, the lower
bound lt = p ensures ∥Xadv −X∥0 ≤ lt under
runtime t. The proof is given in Appendix A.2.

Theorem 3 (Upper Bound Computation Guar-
antee) Consider a clean input X , an NLP classifier
f and substitution subspace dimension p ≥ 0 for
bound computation, after being processed by our
strategy, an upper bound up is created and opti-
mized along with the growth of runtime. For all
p ≥ 0, the upper bound up ≥ up+1 always holds.
The proof is provided in Appendix A.3.

The above theorems provide theoretical guaran-
tees for bound convergence. Intuitively, given the
qualified indices number q, the uncertainty region
between the upper and lower bounds is nonexistent
when p 7→ q such that limp→q Uncer(lt, ut) = 0,
the proof is shown in Appendix A.4.

6 Experimental Part
As stated in Section 2, previous research on robust-
ness verification was mainly focused on L2 and
L∞ space, which is different from our L0 norm
setting. Moreover, since our method approximates
the maximal safe radius from both lower and upper
sides in a black-box manner, it effectively veri-
fies the local robustness of large-scale, complex
model structures such as large BERT models un-
der L0 norm. In this sense, it is difficult to find a
verification baseline that has the same capability.
Therefore, we evaluate the competitive tightness of
upper bounds for approximating the maximal safe
radius in Subsection-6.2. Moreover, we provide fur-
ther experiments on both bounds in Subsection-6.3
and Appendix-B.4, demonstrating the convergence
performance for robustness verification.

6.1 Experimental Settings

1) Datasets: Four datasets are adopted for the task
of textual classification, such as sentiment analy-
sis and article multi-classification, to test the per-
formance of our strategy: i) MR: A dataset for
sentiment analysis with labels of positive and nega-
tive3. ii) AG: Multi-classification dataset for news
reports. (Zhang et al., 2015)4. iii) IMDB: Binary
sentiment analysis for movie reviews. (Maas et al.,
2011)5. iv) Yelp: This dataset is created for binary
polarity prediction (Zhang et al., 2015) 6. More
details can be found in Appendix B.1.

2) Model Settings: In text classification, three
representative models are utilized for robustness
verification: i) BERT Base-uncased (Devlin et al.,
2019)7, ii) CNN (Kim, 2014), iii) LSTM. The
model descriptions can refer to Appendix B.3.

3) Representative Baselines: Previous re-
search on robustness verification mainly focused
on L2, L∞ norms, thus we adopt various represen-
tative attack strategies as baselines for verifying
the tightness in terms of upper bound computation.
Five word-level substitution attacks: i) Genetic
Attack (Alzantot et al., 2018), ii) Bert-Attack
(Li et al., 2020), iii) PSO (Zang et al., 2020), iv)
TextFooler (Jin et al., 2020), v) PWWS (Ren et al.,
2019), and a character-level attack (vi) TextBug-

3https://cs.cornell.edu/people/pabo/
movie-review-data/

4http://groups.di.unipi.it/~gulli/AG_corpus_
of_news_articles.html

5https://datasets.imdbws.com/
6https://www.yelp.com/dataset
7https://huggingface.co/textattack
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Dataset Attack
Bert CNN LSTM

Orig.% Aveg. Val. ↓ Std. ↓ Orig.% Aveg. Val. ↓ Std. ↓ Orig.% Aveg. Val. ↓ Std. ↓

MR

GA

96.90%

2.95 1.83

86.60%

2.77 1.68

85.40%

2.80 1.84
TextBugger 2.56 1.98 2.68 1.95 2.43 1.83
PSO 3.39 3.38 2.63 2.57 2.40 2.44
BERT-Attack 2.23 1.86 1.89 2.12 1.65 1.46
PWWS 2.51 1.90 2.09 1.42 2.00 1.42
TextFooler 3.15 2.56 2.14 1.27 1.99 1.36
Ours 1.57 1.00 1.46 0.70 1.46 0.72

IMDB

GA

89.10%

9.02 7.16

89.20%

8.95 6.47

88.10%

8.39 6.44
TextBugger 18.23 23.64 6.13 5.13 6.40 5.53
PSO 4.87 6.26 5.02 4.28 4.75 4.34
BERT-Attack 5.42 6.89 2.78 2.61 3.56 3.48
PWWS 8.95 13.41 2.97 2.20 3.38 2.73
TextFooler 15.55 19.05 3.70 2.52 4.03 3.16
Ours 4.50 3.79 2.12 1.00 3.10 2.43

Yelp

GA

94.60%

9.39 6.69

94.00%

7.62 6.35

94.00%

6.80 5.16
TextBugger 12.50 12.46 7.90 6.07 6.68 5.02
PSO 6.67 4.58 5.58 4.73 5.35 4.10
BERT-Attack 6.10 7.34 4.02 3.78 3.97 3.37
PWWS 6.80 7.74 4.23 2.84 3.60 2.42
TextFooler 9.59 10.09 4.68 3.01 4.00 2.64
Ours 4.12 2.58 3.55 2.79 3.58 3.07

AG

GA

94.60%

5.96 3.22

89.90%

7.20 3.85

90.70%

5.98 3.90
TextBugger 7.30 5.40 6.72 4.31 7.48 5.20
PSO 9.22 5.28 7.60 3.98 7.76 4.24
BERT-Attack 6.48 5.23 5.48 4.80 6.59 4.81
PWWS 6.67 5.28 5.59 3.79 6.43 4.47
TextFooler 8.82 6.17 5.87 3.61 6.93 4.70
Ours 3.67 3.06 2.72 1.58 3.76 2.71

Table 1: When substitution subspace p = 1, the results of our method compared to six baselines (2nd column) over
4 datasets (1st column) for 3 classifiers (1st row). Abbreviations: original accuracy (Orig.%), the average value of
upper bounds (Aveg. Val.), the standard deviation of upper bounds (Std.). ↓ means the lower, the better.

Figure 3: Violin plot of computation runtime compari-
son for MR dataset with baselines regarding the compu-
tation of upper bounds.

ger (Li et al., 2019) are selected and implemented
on TextAttack framework (Morris et al., 2020).
Baseline descriptions are detailed in Appendix B.2.

4) Evaluation Metrics: i) The average value
and standard deviation of upper bounds: The
average and standard deviation of Hamming dis-
tance between the original inputs and successful
adversarial examples. ii) Subspace dimension p:
The number of adopted substitution-based combi-
nations for word-level alteration. iii) Efficiency
consideration: The violin plot of runtime for the

generation of each adversarial sentence.

6.2 Comparisons on Tightening Bounds and
Computation Efficiency

By applying the L0-norm to multiple NLP clas-
sifiers, we test the effectiveness of our proposed
robustness-verification strategy in comparison with
representative baselines in terms of calculating
tight upper bounds, which can be seen in Table 1.
According to the statistics in the table, our strategy
compares with six baselines in terms of average
value and standard deviation of upper bounds. Ob-
viously, the lower the evaluation criteria are, the
tighter the upper bound can be obtained. Therefore,
our strategy has an edge in obtaining tight upper
bounds to ensure faster convergence.

The computation runtime for each sentence un-
der MR dataset performed on the BERT model is
compared in the violin plot (Figure 3), our strategy
has achieved a competitive efficiency as a verifi-
cation mechanism, which ensures an anytime es-
timation of bounds. Note that PSO and Genetic
Attack are not considered due to inherent weakness
in low efficiency caused by the population-based
algorithms. We perform the computation on a PC
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Figure 4: When p ∈ {1, 2}, the upper bounds (green dot-
ted line), lower bounds (blue dotted line), convergence
split line (red dotted line) and estimations of maximal
safe radius (orange solid line) converges eventually.

Figure 5: Line chart of the bound convergence under
CNN model for an individual sentence from the Yelp
dataset when p ∈ {1, 2, 3}.

with an i7-8559U CPU, 16GB RAM and NVIDIA
RTX 2080Ti GPU.

6.3 Convergence Analysis for Upper and
Lower Bounds

As shown in Figure 4, the convergence has been
performed on the Bert model when subspace dimen-
sion p = {1, 2}. A total of 1000 clean sentences
are selected, and almost 900 sentences can be clas-
sified correctly by the model. The sentences are
sorted in ascending order based on the subspace
dimension p. The estimation of the maximal safe
radius and upper and lower bounds are shown in
the figure. The red dotted line represents that all
sentences to the left of this line have converged.
When p = 2, we can see that the maximal safe ra-
dius of over 850 out of 900 sentences can converge.
Therefore, in most cases, our algorithm converges
after a few iterations for most sentences.

Within subspace dimension p = {1, 2}, we com-
pute the lower bound, upper bound, and the max-
imum safe radius estimation for three models un-
der four datasets (see Appendix B.4), which shows
tighter bounds and convergence with the increasing
iterative. The line chart for a random individual
sentence under subspace dimension p = {1, 2, 3}

can be seen in Figure 5, when p = 1, the gap be-
tween the upper bound up = 9 and lower bound
lp = 1 is significant. With the increase of subspace
dimension and runtime, the bounds eventually con-
verge at 3 when p = 3.

7 Conclusion
The proposed strategy can verify the local robust-
ness of NLP classifiers in Hamming space against
word-level attacks with provable guarantees. A re-
liable anytime estimation effectively incorporates
the computation of the upper and lower bounds to
enable a controllable approximation of the maximal
safe radius. Moreover, our framework is performed
on a carefully-designed novel parallelization mech-
anism, ensuring its high efficiency. The extensive
experiments demonstrate the competence of our
method in obtaining very tight bounds for the max-
imal safe radius. Our TextVerifier tool also shows
superior performance in terms of computational
runtime, and provable convergence guarantees.

Limitations

In our work, when facing long sentences, a large
number of synonym candidates can decrease the
convergence speed of the lower and upper bounds.
Therefore, in the experiments, we set up limita-
tions on the length of the input sentences and the
number of synonym candidates. Please note that
it is still feasible to process long input sentences
because of the anytime nature of our tool, however
doing so would increase the unverifiable region,
which essentially trades the tightness of bounds for
efficiency.

Ethics Statement

Due to the vulnerability of textual classifiers to
adversarial examples, here we highlight the poten-
tial ethical issues of word-level alteration-based
attacks regarding misleading NLP classifiers in var-
ious tasks and escaping human observation via pre-
serving semantic similarity and syntactic naturality.
Our proposed strategy can tackle the above ethical
issues by providing robustness verification against
such attacks with provable guarantees and perform-
ing anytime approximation-based estimation for
lower and upper bounds with high efficiency. More-
over, the algorithm for obtaining tight bounds has
surpassed representative word-level substitution at-
tacks in terms of perturbation rates. Therefore, our
mechanism is competent in generating adversarial
examples as well.
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A Appendix

A.1 Proof of Theorem: (Minimum Value
Guarantee of Grid Search)

Proof 1 Utilizing the Lipschitz condition for the
NLP classifiers (Peck et al., 2017; Wicker et al.,
2018), we demonstrate that grid search is a reliable
strategy in approximating safe radius and locat-
ing the optimal solutions with provable guarantees
when providing an error bound. Basically, an input
sentence X is adopted in the theorems and proofs
for clarity.

Given the knowledge of the Lipschitz continuity
assumption for the NLP classifier f , the following
condition is obtained:∥∥f(X1)− f(X2)

∥∥
k
≤ L ·∥X1 −X2∥k (11)

The Φ-level grid search guarantees
∀X, ∃Xadv ∈ Γ such that

∥∥Xopt −X
∥∥
k

≤∥∥ ϵ
2Jq

∥∥
k
. Thus the theorem holds as we can always

find Γ(Xopt) from the set Γ for the minimum value
of the sentence Xopt.

As demonstrated in Section 3.4, during each iter-
ation, we utilize grid search to confirm the security
of the NLP classifiers by ensuring that adversarial
examples are prevented, based on a specified lower
bound. By combining this approach with Theorem
2, we establish the following result, which provides
a safety assurance for the lower bounds.

A.2 Proof of Theorem: Lower Bound
Computation Guarantee

Proof 2 Due to the finiteness of the eligible words
to be substituted in the sentence sequence for word-
level alteration-based attacks, the Hamming dis-
tance between the adversarial sentence and the orig-
inal input is limited as well. Therefore, as runtime
t progresses, the lower bound lt can be computed
with a rising tendency and achieves convergence
to the safe radius rad(X, f) ultimately. Therefore,
our strategy for obtaining a lower bound lt within
runtime t for safe radius is guaranteed if, for any
word-level perturbations within the lower bound lt,
model prediction invariance always exists.

This proof is demonstrated by contradiction
based on Theorem 2 for the lower bound compu-
tation algorithm in Subsection 3.2. Consider an
input sentence X , an NLP classifier f for a m-
way classification task, confidence computation
C, the ground-true label Y ∗, the lower bound is
denoted as lt within computation runtime t and
results in an adversarial sentence Xadv with the

number of lt word-level perturbations. Then as-
sume that an adversarial example X

′
adv with fewer

perturbations than Xadv exits within t
′

computa-
tion runtime such that t

′ ≤ t and the prediction
label is changed: Y

X
′
adv

̸= Y ∗. Moreover, the num-

ber of modified words for X
′
adv is represented as

lt′ =
∥∥∥X −X

′
adv

∥∥∥
0

and satisfies lt′ ≤ lt.

Recall that the set with potential adversarial ex-
amples within p-dimensional subspace for the input
X is denoted as Sub(X, p) defined in Equation 5
and p ∈ N∗

p≤|Q|. Then we have Xadv ∈ Sub(X, lt)

and X
′
adv ∈ Sub(X, lt′ ). Due to the monotonic

increasing order for value p, the label invariation
for Sub(X, lt′ ) should be tested before Sub(X, lt).
Therefore, when X

′
adv ∈ Sub(X, l

′
t) and given that

YXadv
= Y ∗, there always exists Y

X
′
adv

= Y ∗.
when the runtime lt′ ≤ lt. Here shows the contra-
diction with our original assumption that Y

X
′
adv

̸=
Y ∗. Therefore, it is proved that the lower bound
for safe radius approximation is computed with
provable guarantees.

A.3 Proof of Theorem: Upper Bound
Computation Guarantee

Proof 3 The computation for upper bounds satisfies
the following requirements to provide the guaran-
tees: firstly, given the subspace dimension p for
substitution positions, as the runtime increases, the
set of potential adversarial sentences created by
adopting p-dimensional combinations is always the
subset of the adversarial sequences under (p+ 1)-
dimensional modification strategy. Secondly, an
optimal candidate synonym for a specific original
word always has an edge in causing the highest
importance score variation and those optimal syn-
onyms indicate the decreasing influence sequence.
Thirdly, our redundancy strategy leads to comput-
ing a relatively tight upper bound eventually for
faster convergence speed.

In this proof, complete induction is utilized by
providing a base case and an inductive step, which
aims to demonstrate the property of monotonic
decreasing for tightening the upper bounds with
the increase of the computation runtime.

Base Case p = 1: As stated in Subsection 3.2
for upper bound computation, assume that the sce-
nario with subspace dimension p = 1 for substitu-
tion perturbation, an adversarial sentence Xadv is
generated such that the prediction label changes:
YXadv

̸= Y ∗.
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Recall that within p-dimensional substitution
subspace, Isyn (defined in Equation 9) is a set of
pairs for indices of the original word locations and
local optimal synonyms based on the importance
score array S(X,Y ∗, p) and the set Sub(X, p) in-
cludes potential adversarial sentences. When sub-
stitution perturbation dimension p = 1, assume
that an adversarial example has m words perturbed,
i.e., a set with {Isyn(1), Isyn(2), · · · , Isyn(m)} con-
stitutes the necessary modification indices for
a misclassification such that the upper bound
up = m. Then when the subspace dimension
is p + 1, the p + 1-dimensional adversarial se-
quence set Sub(X, p + 1) satisfies Sub(X, p) ⊂
Sub(X, p+1) because an additional substitution di-
mension is considered, thus the highest confidence
score that results in fooling the model satisfies:
max S(X,Y ∗, p) ≤ max S(X,Y ∗, p + 1). In
terms of the Hamming distance under this case, we
have

∥∥∥Xadv(p) −X
∥∥∥
0
≥

∥∥∥Xadv(p+1) −X
∥∥∥
0
, i.e.,

up ≥ up+1 always holds.
Inductive Case: p = k: When performing

p = k dimensional perturbations, the set with
adversarial sentences is denoted as Sub(X, k) =
{Sub(X, 1)∪Sub(X, 2)∪ · · · Sub(X, k)}. While
Sub(X, k) = {Sub(X, 1) ∪ Sub(X, 2) ∪
· · · Sub(X, k)} ∪ Sub(X, k + 1)}. Similarly, via
the progress for upper bound tightness, the set
with potential sentences satisfies Sub(X, k) ⊂
Sub(X, k + 1) such that the upper bound holds
uk ≥ uk+1. Then the confidence score satisfies
max S(X,Y ∗, k) ≤ max S(X,Y ∗, k + 1) be-
cause the set S(X,Y ∗, k + 1) has a larger sub-
space to select optimal substitution combinations
than S(X,Y ∗, k). Therefore, with regard to the
Hamming distance under k and k + 1 dimensional
substitution subspace, we have

∥∥∥Xadv(k) −X
∥∥∥
0
≥

∥∥∥Xadv(k+1) −X
∥∥∥
0
, i.e., the upper bound uk ≥

uk+1.

A.4 Proof of Theorem: The Property of
Uncertainty Region for Safe Radius
Convergence

Proof 4 (Uncertainty Region with Bound Conver-
gence Guarantees: limp→q Uncer(lt, ut) = 0) Re-
call that the input is X , the NLP classifier is f , the
number of eligible original words is q, the subspace
substitution dimension is p, the radius estimation
is R(lt, ut), the Hamming distance relation is de-
noted as 0 ≤ lt ≤ R(lt, ut) ≤ ut ≤ q, where

lt and ut are the lower and upper bound within
runtime t respectively.

Given a subspace dimension p, two arbitrary
subspace dimensions a and b satisfy a, b ∈
N∗
a,b≤p ∧ a<b, assume that the lower bound and up-

per bound within p dimensions are denoted as lp
and up, if la ≤ lb ∧ ub ≤ ua always holds, the
bound convergence is guaranteed at a certain time.
Specifically, both the upper and lower bounds are
approaching a convergence point more and more
explicitly, the convergence point will be obtained
eventually.

Following this, if the subspace dimension p → q,
we have the upper bound ut → q and the lower
bound lt → q. As defined in Subsection 5.1, the
estimated safe radius in any time t: R(X, t) ∈
[M(lt, ut) − E(lt, ut), M(lt, ut) + E(lt, ut)] =
[ lt+ut

2 − ut−lt
2 , lt+ut

2 + ut−lt
2 ], where E(lt, ut) =

ut−lt
2 = 1/2(q − q) = 0 when p → q. There-

fore, the convergence property of the safe radius
is guaranteed within finite word substitution po-
sitions, i.e.,R(X, t) = M(lt, ut) = lt+ut

2 = q.
Under this case, the uncertainty region (i.e., the re-
gion between the upper and lower bound) satisfies:
Uncer(lt, ut) = ut− lt = q−q = 0, which means
the uncertainty region does not exist here.

B Appendix

B.1 Dataset Details

The descriptions and links for datasets are listed
below. The label number, maximal sequence length
in experiments, synonym number selection and the
dataset number for model training can refer to Table
2.

(i) MR: A dataset originated from movie reviews
for processing sentiment analysis with labels of
positive and negative 8. (ii) AG: A subset of AG’s
corpus that belongs to the category of news utilized
for multi-classification. The prediction labels for
those news reports cover world, sports, business
and sci/tech (Zhang et al., 2015)9. (iii) IMDB:
In comparison with previous benchmark datasets,
this dataset contains considerably more textual data
for the use of binary sentiment analysis (positive
\ negative) (Maas et al., 2011)10. (iv) Yelp: This
dataset is created for binary polarity (sentiment)

8ttps://www.cs.cornell.edu/people/pabo/
movie-review-data/

9http://groups.di.unipi.it/~gulli/AG_corpus_
of_news_articles.html

10https://datasets.imdbws.com/
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prediction (Zhang et al., 2015) 11.

Dataset MR AG IMDB Yelp
Label Number 2 4 2 2
Max Length 100 50 50 50
Synonym Number 50 20 20 20
Train Set 9,000 120,000 25,000 560,000
Test Set 1,000 7,600 25,000 38,000

Table 2: The settings of datasets for sequence classifi-
cation in our experiment, including label number, maxi-
mum sequence length selected in experiments, synonym
number selection and the sentence number in training
and testing stage.

B.2 Baseline Descriptions

The descriptions for baselines are stated below:
(i) Genetic Attack: A word-level population-

based optimization method in a black-box setting
for crafting adversarial sentences (Alzantot et al.,
2018). (ii) TextBugger: A bug generation method
by proposing character-level modification such as
inserting, deletion, swapping and replacement (Li
et al., 2019). (iii) PSO: A word-level adversar-
ial attack that combines the concept of sememe
(the minimum semantic unit of human languages)
and particle swarm optimization-based search al-
gorithm (Zang et al., 2020). (iv) TextFooler: This
paper has considered performing word transformer
and semantic similarity checking for generating ad-
versarial attacks(Jin et al., 2020). (v) PWWS: A
greedy algorithm is proposed by utilizing probabil-
ity weighted word saliency for word substitution
(Ren et al., 2019). (vi) Bert-Attack: The adversar-
ial samples are constructed by deploying the BERT
masked language model (Li et al., 2020).

B.3 Model Details

The details of adopted models are provided:
(i) BERT Base-uncased: A transformer-based

model with 12 layers of the block, 768 hidden size,
12 self-attention heads and 110M trainable param-
eters 12. (ii) CNN: The size of filters is 150, the
dropout rate is set to 0.3 and the Adam optimizer
is adopted. (iii) LSTM: A single-layer bi-direction
LSTM is utilized with 150 hidden units. Similar
to CNN, the dropout rate is 0.3 and the Adam opti-
mizer is utilized.

11https://www.yelp.com/dataset
12https://huggingface.co/textattack

B.4 The Bound and Estimation Comparison
under Different Subspace Dimensions

As seen in Figure 6, within the substitution sub-
space p = {1, 2}, the average lower bound, the
average upper bound and the safe radius estimation
comparisons are depicted for three models (Bert,
CNN and LSTM) under four datasets (MR, IMDB,
Yelp and AG). This experiment is performed on
1000 sentences on each dataset and gets the aver-
age of bounds. When the value of p increases, both
the lower and upper bounds are becoming more
tightening. Especially for some of the models like
Bert on MR dataset, we can see that when p = 2,
the bound convergence appears.

B.5 The Heatmap for Word Importance
Scores

The example of a heatmap with word importance
scores is shown in Figure 7, the sentence is selected
from the MR dataset. After filtering out meaning-
less words, the qualified words can be seen in the
first row. After word-level importance estimation,
the synonym "establishing" with the darkest colour
has gained the highest importance impact for substi-
tution for the original word "creation". Then based
on our strategy, the synonyms such as "singular"
and "mesmerised" are the following substitution
candidates based on a descending order for impor-
tance scores. For clarity, the importance score is
normalized to [0,1].

B.6 Samples of Adversarial Examples
In this subsection, successfully generated sam-
ples of adversarial examples are provided on both
tasks of text classification and textual entailment
in Table 3. This table involves the datasets of
MR (binary sentiment analysis), AG (article multi-
classification) and SNLI (textual entailment) for
BERT and CNN models. As shown in the table,
only a small quantity of words are perturbed with
synonyms that can change the prediction labels for
NLP models. This table demonstrates that our strat-
egy can not only provide tight upper bounds but
also be competitive in designing an algorithm for
adversarial attacks.
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(a) Bert (b) CNN

(c) LSTM

Figure 6: When p = {1, 2}, the lower bound, upper bound and the safe radius estimation comparison for three
models (Bert, CNN and LSTM) under four datasets (MR, IMDB, Yelp and AG).
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Figure 7: The heatmap of a sentence in the MR dataset for word-level importance estimation. For clarity, the
importance score is normalized to [0,1].
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Rotten Tomatoes Movie Reviews (MR) for Bert (Labels: Positive, Negative)
Original (neg.) An annoying orgy of excess and exploitation that has no point and goes nowhere.
Adversary (pos.) An unnerving orgy of excess and exploitation that has no point and goes nowhere.
Original (pos.) An hour and a half of joyful solo performance.
Adversary (neg.) An hour and a half of happier solo performance
Original (pos.) A muckraking job, the cinematic equivalent of a legal indictment, and a fairly effective one at that.
Adversary (neg.) A muckraking job, the cinematic equivalent of a legal indictment, and a fairly salubrious one at that.
Original (pos.) Manages to be both hugely entertaining and uplifting.
Adversary (neg.) Manages to be both hugely funnier and uplifting.

Rotten Tomatoes Movie Reviews (MR) for CNN (Labels:Positive, Negative )
Original(pos.) The film tunes into a grief that could lead a man across centuries.
Adversary(neg.) The film tunes into a grief that gotten lead a man across centuries.

Original(neg.) Bad in such a bizarre way that it’s almost worth seeing, if only to witness the crazy confluence of purpose
and taste.

Adversary(pos.) Bad in such a bizarre way that it’s almost worth seeing, if only to witness the wack confluence of purpose
and taste.
AG’s News (AG) for CNN (Labels:World, Sports, Business, Sci/Tech )

Original(Business)
New york times co announces plan to sell manhattan building the new york times co plans to sell its building
on west 43rd street in manhattan to a partnership led by tishman speyer properties , the companies
announced monday.

Adversary (Sci/Tech)
New york times co announces plan to sell manhattan building the new york times co plans to sell its building
on west 43rd street in manhattan to a partnership led by tishman speyer functionality , the endeavour
announced monday.

Original (Sci/Tech) Group questions e voting security black box voting hopes to halt the use of diebold ’s voting machines.
Adversary(World) Factions questions e voting security black box voting hopes to halt the use of diebold ’s voting machines.

Original (Sci/Tech)

Coping with the common cold by karen pallarito, healthday reporter healthdaynews determined this cold season
to nip your sneezing, runny nose and scratchy throat in the bud before those nasty respiratory symptoms sideline
you? there ’s a broad array of cold remedies you might want to try , ranging from over the counter preparations
to basic ingredients tucked away in your kitchen pantry so what ’ll it be? a combination pain reliever and nasal
decongestant? vitamin c and echinacea? tea with honey? a brimming bowl of chicken soup? it turns out the best
advice for dealing with the misery of a cold is the same principle mothers often apply when trying to coax their
unruly toddlers to take a nap whatever works.

Adversary (Sports)

Coping with the common cold by karen pallarito , healthday reporter healthdaynews determined this cold season
to nip your sneezing , runny nose and scratchy throat in the bud before those nasty respiratory symptoms teammates
you? there ’s a broad array of cold remedies you might want to try , ranging from over the counter preparations
to basic ingredients tucked away in your kitchen pantry so what ’ll it be? a combination pain reliever and nasal
decongestant? vitamin c and echinacea? tea with honey? a brimming bowl of chicken soup? it turns out the best
advice for dealing with the misery of a cold is the same principle mothers often apply when trying to coax their
unruly toddlers to take a nap whatever works.
SNLI for Bert (Labels:Entailment, Neutral, Contradiction )

Premise A man in a yellow shirt and helmet mountain biking down a dusty path.
Original (Label: Neu.) A man with headphones is biking.
Adversary (Label: Ent.) A man with headphones is motorcyclists.

Premise An older man in a light green shirt and dark green pants holds the hand of an older woman as they pass an outside
eatery with teal umbrellas.

Original (Label: Ent.) An older looking couple are holding hands as the walk past a restaurant outside.
Adversary (Label: Neu.) An elderly looking couple are holding hands as the walk past a restaurant outside.

Table 3: Comparison of original and generated adversarial sentences from various datasets (MR, AG and SNLI) on
BERT and CNN models. The blue font emphasizes the prediction labels and the red font emphasizes the perturbed
words in the original and adversarial sentences.
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