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Abstract

Active learning (AL) is a human-and-model-
in-the-loop paradigm that iteratively selects
informative unlabeled data for human anno-
tation, aiming to improve over random sam-
pling. However, performing AL experiments
with human annotations on-the-fly is a labo-
rious and expensive process, thus unrealistic
for academic research. An easy fix to this im-
pediment is to simulate AL, by treating an al-
ready labeled and publicly available dataset as
the pool of unlabeled data. In this position
paper, we first survey recent literature and high-
light the challenges across all different steps
within the AL loop. We further unveil neglected
caveats in the experimental setup that can sig-
nificantly affect the quality of AL research. We
continue with an exploration of how the sim-
ulation setting can govern empirical findings,
arguing that it might be one of the answers
behind the ever posed question “why do ac-
tive learning algorithms sometimes fail to out-
perform random sampling?”. We argue that
evaluating AL algorithms on available labeled
datasets might provide a lower bound as to their
effectiveness in real data. We believe it is es-
sential to collectively shape the best practices
for AL research, particularly as engineering ad-
vancements in LLMs push the research focus
towards data-driven approaches (e.g., data ef-
ficiency, alignment, fairness). In light of this,
we have developed guidelines for future work.
Our aim is to draw attention to these limitations
within the community, in the hope of finding
ways to address them.

1 Introduction

Based on the assumption that “not all data is
equal”, active learning (AL) (Cohn et al., 1996;
Settles, 2009) aims to identify the most informative
data for annotation from a pool (or a stream) of
unlabeled data (i.e., data acquisition). With multi-
ple rounds of model training, data acquisition and
human annotation (Figure 1), the goal is to achieve

Figure 1: High-level overview of the train-acquire-
annotate steps of the active learning loop.

data efficiency. A data efficient AL algorithm en-
tails that a model achieves satisfactory performance
on a held-out test set, by being trained with only a
fraction of the acquired data.

AL has traditionally attracted wide attention in
the Natural Language Processing (NLP) commu-
nity. It has been explored for machine transla-
tion (Haffari et al., 2009; Dara et al., 2014; Miura
et al., 2016; Zhao et al., 2020), text classifica-
tion (Ein-Dor et al., 2020; Schröder and Niekler,
2020; Margatina et al., 2022; Schröder et al., 2023),
part-of-speech tagging (Chaudhary et al., 2021),
coreference (Yuan et al., 2022) and entity resolu-
tion (Qian et al., 2017; Kasai et al., 2019), named
entity recognition (Erdmann et al., 2019; Shen
et al., 2017; Wei et al., 2019; Shelmanov et al.,
2021), and natural language inference (Snijders
et al., 2023), inter alia. However, its potential
value is still growing (Zhang et al., 2022d), driven
by advancements in the state-of-the-art in language
model pretraining (Tamkin et al., 2022). Given
the initial assumption that “not all data is equal”,
it is reasonable to expect researchers to seek out
the “most valuable” data for pretraining or adapting
their language models.

The usual pool-based AL setting is to acquire
data from an unlabeled pool, label it, and use it to
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train a supervised model that, hopefully, obtains
satisfactory performance on a test set for the task
at hand. This is very similar to the general model-
in-the-loop paradigm (Karmakharm et al., 2019;
Bartolo et al., 2020, 2022; Kiela et al., 2021; Wal-
lace et al., 2022), with the main difference being
the AL-based data acquisition stage. The assump-
tion is that, by iteratively selecting data for anno-
tation according to an informativeness criterion, it
will result into better model predictive performance
compared to randomly sampling and annotate data
of the same size.

However, this does not always seem to be the
case. A body of work has shown that AL algo-
rithms, that make use of uncertainty (Lewis and
Gale, 1994; Cohn et al., 1996; Houlsby et al., 2011;
Gal et al., 2017), diversity sampling (Brinker, 2003;
Bodó et al., 2011; Sener and Savarese, 2018) or
even more complex acquisition strategies (Ducoffe
and Precioso, 2018; Ash et al., 2020; Yuan et al.,
2020; Margatina et al., 2021), often fail to improve
over a simple random sampling baseline (Baldridge
and Palmer, 2009; Ducoffe and Precioso, 2018;
Lowell et al., 2019; Kees et al., 2021; Karamcheti
et al., 2021; Snijders et al., 2023). Such findings
pose a serious question on the practical usefulness
of AL, as they do not corroborate its initial core
hypothesis that not all data is equally useful for
training a model. In other words, if we cannot
show that one subset of the data is “better”1 than
another, why do AL in the first place?

Only a small body of work has attempted to
explore the pain points of AL. For instance, Karam-
cheti et al. (2021), leveraging visualisations from
data maps (Swayamdipta et al., 2020), show that
AL algorithms tend to acquire collective outliers
(i.e. groups of examples that deviate from the rest
of the examples but cluster together), thus explain-
ing the utter failure of eight AL algorithms to out-
perform random sampling in visual question an-
swering. Building on this work, more recently Sni-
jders et al. (2023) corroborate these findings for the
task of natural language inference and further show
that uncertainty based AL methods recover and
even surpass random selection when hard-to-learn
data points are removed from the pool. Lowell
et al. (2019) show that the benefits of AL with cer-

1We consider a labeled dataset A ⊂ C to be “better” than
a labeled dataset B ⊂ C, both sampled from a corpus C
and |A| = |B|, if a model MA trained on A yields higher
performance on a test set compared to MB , where both models
are identical in terms of architecture, training procedure, etc.

tain models and domains do not generalize reliably
across models and tasks. This could be problematic
since, in practice, one might not have the means
to explore and compare alternative AL strategies.
They also show that an actively acquired dataset
using a certain model-in-the-loop, may be disad-
vantageous for training models of a different family,
raising the issue of whether the downsides inher-
ent to AL are worth the modest and inconsistent
performance gains it tends to afford.

In this paper, we aim to explore all possible
limitations that researchers and practitioners cur-
rently face when doing research on AL (Zhang
et al., 2022d). We first describe the process of
pool-based AL (Figure 1) and identify challenges
in every step of the iterative process (§2). Next,
we unearth obscure details that are often left un-
stated and under-explored (§3). We then delve
into a more philosophical discussion of the role of
simulation and its connection to real practical ap-
plications (§4). Finally, we provide guidelines for
future work (§5) and conclusions (§6), aspiring to
promote neglected, but valuable, ideas to improve
the direction of research in active learning.

2 Challenges in the Active Learning Loop

We first introduce the typical steps in the pool-
based AL setting (Lewis and Gale, 1994) and iden-
tify several challenges that an AL practitioner has
to deal with, across all steps (Figure 2).2

2.1 Problem Definition
Consider the experimental scenario where we want
to model a specific NLP task for which we do not
yet have any labeled data, but we have access to
a large pool of unlabeled data Dpool. We assume
that it is unrealistic (e.g., laborious, expensive) to
have humans annotating all of it. Dpool constitutes
the textual corpus from which we want to sample a
fraction of the most useful (e.g., informative, rep-
resentative) data points for human annotation. In
order to perform active learning, we need an initial
labeled dataset Dlab, often called “seed” dataset, to
be used for training a task-specific model with su-
pervised learning. To evaluate the model, we need
a usually small validation set for model selection
Dval and a held out test set Dtest to evaluate the
model’s generalization. We use Dlab and Dval to
train the first model and then test it on Dtest.

2We point the reader to the comprehensive survey of Zhang
et al. (2022d) for a more in-depth exploration of recent litera-
ture in AL.
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In this stage, we start acquiring labeled data for
model training. Data points are sampled from Dpool
via an acquisition strategy and subsequently passed
to human annotators for labeling. The acquisition
function selects a batch of data Q ⊂ Dpool accord-
ing to some informativeness criterion and can ei-
ther use the model-in-the-loop or not. We employ
crowdsourcing or expert annotators to label the
selected batch Q which then is appended to the
labeled dataset Dlab.

Now that we have augmented the seed dataset
with more data, we re-train the model on the new
training dataset, Dlab. We test the new model on
Dtest and we stop if we obtain satisfactory perfor-
mance or if the budget for annotation has run out
(or using any other stopping criterion). If we do
not want to stop, we use the acquisition function to
select more unlabeled data from Dpool, which we
annotate and append to Dlab, etc. This is the AL
loop shown in Figure 2.

2.2 Active Learning Design

Seed dataset We start the AL loop (§2.1) by
defining an initial labeled “seed dataset” (Figure 2:
1 ). The seed dataset plays an important role, as

it will be used to train the the first model-in-the-
loop (Tomanek et al., 2009; Horbach and Palmer,
2016). In AL research, we typically address the
cold-start problem by sampling from Dpool with a
uniform distribution for each class, either retain-
ing the true label distribution or choosing data that
form a balanced label distribution.3 This is merely
a convenient design choice, as it is simple and easy
to implement. However, sampling the seed dataset
this way, does not really reflect a real-world setting
where the label distribution of the (unlabeled data
of the) pool is actually unknown.

Prabhu et al. (2019) performed a study of such
sampling bias in AL, showing no effect in differ-
ent seed datasets across the considered methods.
Ein-Dor et al. (2020) also experimented with dif-
ferent imbalanced seed datasets, showing that AL
improves over random sampling in settings with
highest imbalance.

Furthermore, the choice of the seed dataset has
a direct effect on the entire AL design because the

3In AL research, a fully labeled dataset is typically treated
as an unlabeled Dpool by entirely ignoring its labels, while in
reality we do have access to them. Hence, the labels implicitly
play a role in the design of the AL experiment. We analyze
our criticism to this seemingly “random sampling” approach
to form the seed dataset in §4.2.

first model-in-the-loop marks the reference point
of the performance in Dtest. In other words, the
performance of the first model is essentially the
baseline, according to which a practitioner will
plan the AL loop based on the goal performance
and the available budget. It is thus essential to
revisit existing approaches on choosing the seed
dataset (Kang et al., 2004; Vlachos, 2006; Hu et al.,
2010; Yuan et al., 2020) and evaluate them towards
a realistic simulation of an AL experiment.

Number of iterations & acquisition budget Af-
ter choosing the seed dataset it is natural to de-
cide the number of iterations, the acquisition size
(the size of the acquired batch Q) and the budget
(the size of the actively collected Dlab) of the AL
experiment. This is another part where literature
does not offer concrete explanations on the design
choice. Papers that address the cold-start problem
would naturally focus on the very few first AL it-
erations (Yuan et al., 2020), while others might
simulate AL until a certain percentage of the pool
has been annotated (Prabhu et al., 2019; Lowell
et al., 2019; Zhao et al., 2020; Zhang and Plank,
2021; Margatina et al., 2022) or until a certain fixed
and predefined number of examples has been anno-
tated (Ein-Dor et al., 2020; Kirsch et al., 2021).

2.3 Model Training

We now train the model-in-the-loop with the avail-
able labeled dataset Dlab (Figure 2: 2 ). Inter-
estingly, there are not many studies that explore
how we should properly train the model in the low
data resource setting of AL. Existing approaches
include semi-supervised learning (McCallum and
Nigam, 1998; Tomanek and Hahn, 2009; Dasgupta
and Ng, 2009; Yu et al., 2022), weak supervision
(Ni et al., 2019; Qian et al., 2020; Brantley et al.,
2020; Zhang et al., 2022a) and data augmentation
(Zhang et al., 2020; Zhao et al., 2020; Hu and
Neubig, 2021), with the most prevalent approach
currently to be transfer learning from pretrained
language models (Ein-Dor et al., 2020; Margatina
et al., 2021; Tamkin et al., 2022). Recently, Mar-
gatina et al. (2022) showed large performance gains
by adapting the pretrained language model to the
task using the unlabeled data of the pool (i.e., task
adaptive pretraining by Gururangan et al. (2020)).
The authors also proposed an adaptive fine-tuning
technique to account for the varying size of Dlab
showing extra increase in Dtest performance.

Still, there is room for improvement in this rather
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Figure 2: Distinct steps of the active learning loop (1–6). We use blue for the unlabeled data, purple for the labeled
data and red for the (labeled) test data.

under-explored area. Especially now, state-of-the-
art NLP pretrained language models consist of
many millions or even billions of parameters. In
AL we often deal with a small Dlab of a few hun-
dred examples, thus adapting the training strategy
is not trivial.

2.4 Data Acquisition

The data acquisition step (Figure 2: 4 ) is probably
the core of the AL process and can be performed
in various ways.4

Zhang et al. (2022d) provide a thorough litera-
ture review of query strategies, dividing them into
two broad families. The first is based on infor-
mativeness, and methods in this family treat each
candidate instance individually, assign a score and
select the top (or bottom) instances based on the
ranking of the scores. Major sub-categories of
methods that belong in the informativeness family
are uncertainty sampling (Lewis and Gale, 1994;
Culotta and Mccallum, 2005; Zhang and Plank,
2021; Schröder et al., 2022), divergence-based al-
gorithms (Ducoffe and Precioso, 2018; Margatina
et al., 2021; Zhang et al., 2022b), disagreement-
based (Seung et al., 1992; Houlsby et al., 2011;
Gal et al., 2017; Siddhant and Lipton, 2018; Kirsch
et al., 2019; Zeng and Zubiaga, 2023), gradient-
based (Settles et al., 2007; Settles and Craven,
2008) and performance prediction (Roy and Mc-
callum, 2001; Konyushkova et al., 2017; Bachman
et al., 2017; Liu et al., 2018).

4In literature, the terms data selection method, query strat-
egy and acquisition function are often used interchangeably.

The second family is representativeness and
takes into account how instances of the pool cor-
relate with each other, in order to avoid sampling
bias harms from treating each instance individually.
Density-based methods choose the most representa-
tive instances of the unlabeled pool (Ambati et al.,
2010; Zhao et al., 2020; Zhu et al., 2008), while
others opt for discriminative data points that dif-
fer from the already labeled dataset (Gissin and
Shalev-Shwartz, 2019; Erdmann et al., 2019). A
commonly adopted category in this family is batch
diversity, where algorithms select a batch of diverse
data points from the pool at each iteration (Brinker,
2003; Bodó et al., 2011; Zhu et al., 2008; Geif-
man and El-Yaniv, 2017; Zhdanov, 2019; Yu et al.,
2022), with core-set (Sener and Savarese, 2018) to
be the most common approach.

Naturally, there are hybrid acquisition functions
that combine informativeness and representative-
ness (Yuan et al., 2020; Ash et al., 2020; Shi et al.,
2021). Still, among the aforementioned methods
there is not a universally superior acquisition func-
tion that consistently outperforms all others. Thus,
which data to acquire is an active area of research.

2.5 Data Annotation

Once an acquisition function is applied to Dpool,
a subset Q is chosen, and the obtained unlabeled
data is subsequently forwarded to human annota-
tors for annotation (Figure 2: 5 ). In the context of
simulation-based active learning, this aspect is not
the primary focus since the labels for the actively
acquired batch are already available. However, a
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question that naturally arises is: Are all examples
equally easy to annotate? In simulation, all in-
stances take equally long to label. This does not
account for the fact that hard instances for the clas-
sifier are often hard for humans as well (Hachey
et al., 2005; Baldridge and Osborne, 2004), there-
fore the current experimental setting is limiting
and research for cost-aware selection strategies
(Donmez and Carbonell, 2008; Tomanek and Hahn,
2010; Wei et al., 2019) is required. This would in-
clude explicit exploration of the synergies between
random or actively acquired data and annotator ex-
pertise (Baldridge and Palmer, 2009).

2.6 Stopping Criterion

Finally, another active area of research is to de-
velop effective methods for stopping AL (Figure 2:
3 ). In simulation, we typically decide as a budget

a number of examples or a percentage of Dpool
up to which we “aford” to annotate. However,
in both research and real world applications, it is
not clear if the model performance has reached
a plateau. The stopping criterion should not be
pre-defined by a heuristic, but rather a product
of a well-designed experimental setting (Vlachos,
2008; Tomanek and Hahn, 2010; Ishibashi and
Hino, 2020; Pullar-Strecker et al., 2022; Hacohen
et al., 2022; Kurlandski and Bloodgood, 2022).5

3 The Fine Print

Previously, we presented specific challenges across
different steps in the AL loop that researchers and
practitioners need to address. Still, these challenges
have long been attracting the attention of the re-
search community. Interestingly, there are more
caveats, that someone with no AL experience might
have never encountered or even imagined. Hence,
in this section we aim to unveil several such small
details that still remain unexplored.

3.1 Hyperparameter Tuning

A possibly major issue of the current academic sta-
tus quo in AL, is that researchers often do not tune
the models-in-the-loop. This is mostly due to limi-
tations related to time and compute constrains. For
instance, a paper that proposes a new acquisition
function would be required to run experiments for
multiple baselines, iterations, random seeds and

5Unless of course the actual budget is spent, where in real
world settings this is effectively the stopping criterion.

datasets. For example, a modest experiment in-
cluding a = 5 acquisition functions, i = 10 AL
iterations, n = 5 random seeds and d = 5 datasets,
would reach an outstanding number of minimum
a× i×n×d = 1, 250 trained models in total. This
makes it rather hard to perform hyperparameter
tuning of all these models in every AL loop, so it
is the norm to use the same model architecture and
hyperparameters to train all models.

In reality, practitioners that want to use AL, ap-
ply it once. Therefore, they most likely afford
to tune the one and only model-in-the-loop. The
question that arises then, is “do the findings of AL
experiments that do not tune the models general-
ize to scenarios where all models-in-the-loop are
tuned”? In other words, if an AL algorithm A per-
forms better than B according to an experimental
finding, would this be the case if we applied hyper-
parameter tuning to the models of both algorithms?
Wouldn’t it be possible that, with another configu-
ration of hyperparameters, B performed better in
the end?

3.2 Model Stability

In parallel, another undisclosed detail is what re-
searchers do when the models-in-the-loop are un-
stable (i.e., crash). This essentially means that for
some reason the optimisation of the model might
fail and the model never converges leading to ex-
tremely poor predictive performance. Perhaps be-
fore the deep learning era such a problem did not
exist, but now it is a likely phenomenon.

Dodge et al. (2020) showed that many fine-
tuning experiments diverged part of the way
through training especially on small datasets. AL
is by definition connected with low-data resource
settings, as the gains of data efficiency are mean-
ingful in the scenario when labeled data is scarce.
In light of this challenge, there is no consensus as
to what an AL researcher or practitioner should
do to alleviate this problem. One can choose to
re-train the model with a different random seed, or
do nothing. Though, it is non-trivial under which
condition one should choose to re-train the model,
since it is common that not always test performance
improves from one AL iteration to the next.

Furthermore, there is currently no study that
explores how much AL algorithms, that use the
model-in-the-loop for acquisition, suffer by this
problem. For instance, consider an uncertainty-
based AL algorithm that uses the predictive proba-
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bility distribution of the model to select the most
uncertain data points from the pool. If the model
crashes, then its uncertainty estimates are not mean-
ingful, thus the data acquisition function does not
work as expected. In effect, the sampling method
turns to a uniform distribution (i.e., the random
sampling baseline).

3.3 Active Learning Evaluation

Another important challenge is the evaluation
framework for AL. Evaluating the actual contri-
bution of an AL method against its competitors
would require to perform the same iterative train-
acquire-annotate experiment (Figure 1) for all AL
methods in the exact same data setting and with
real human annotations. Certainly, such a laborious
and expensive process is prohibitive for academic
research, which is why we perform simulations by
treating an already labeled and open-source dataset
as a pool of unlabeled data.

Still, even if we were able to perform the experi-
ments in real life, it is not trivial how to properly
define when one method is better than another. This
is because AL experiments include multiple rounds
of annotation, thus multiple trained models and
multiple scores in the test set(s). In cases with no
clear difference between the algorithms compared,
how should we do a fair comparison?

Previous work presents tables comparing the test
set performance of the last model, often ignoring
performance in previous loops (Prabhu et al., 2019;
Mussmann et al., 2020). The vast majority of previ-
ous work though uses plots to visualize the perfor-
mance over the AL iterations (Lowell et al., 2019;
Ein-Dor et al., 2020) and in some cases offer a
more detailed visualization with the variance due
to the random seeds (Yuan et al., 2020; Kirsch et al.,
2021; Margatina et al., 2021).

3.4 The Test of Time

Settles (2009) eloquently defines the “test of time”
problem that AL faces: “A training set built in
cooperation with an active learner is inherently tied
to the model that was used to generate it (i.e., the
class of the model selecting the queries). Therefore,
the labeled instances are a biased distribution, not
drawn i.i.d. from the underlying natural density.
If one were to change model classes—as we often
do in machine learning when the state of the art
advances—this training set may no longer be as
useful to the new model class”.

Several years later, in the deep learning era, Low-
ell et al. (2019) indeed corroborates this concern.
They demonstrate that a model from a certain fam-
ily (e.g., convolution neural networks) might per-
form better when trained with a random subset of a
pool, than an actively acquired dataset with a model
of a different family (e.g., recurrent neural net-
works). Interestingly, Jelenić et al. (2023) recently
showed that AL methods with similar acquisition
sequences produce highly transferable datasets re-
gardless of the model architecture. Related to the
“test of time” challenge, it is rarely investigated
whether the training data actively acquired with
one model will confer benefits if used to train a
second model (as compared to randomly sampled
data from the same pool). Given that datasets often
outlive learning algorithms, this is an important
practical consideration (Baldridge and Osborne,
2004; Lowell et al., 2019; Shelmanov et al., 2021).

4 Active Learning in Simulated vs. Real
World Settings

Is it truly logical to consider an already
cleaned (preprocessed), typically pub-
lished open-source labeled dataset as an
unlabeled data pool for pool-based ac-
tive learning simulation, with the expec-
tation that any conclusions drawn will
be applicable to real-world scenarios?

The convenience and scalability of simulation
make it an undoubtedly appealing approach for ad-
vancing machine learning research. In NLP, when
tackling a specific task, for instance summarization,
researchers often experiment with the limited avail-
ability of labeled summarization datasets, aiming
to gain valuable insights and improve summariza-
tion models across various domains and languages.
While this approach may not be ideal, it is a prac-
tical solution. What makes the sub-field of active
learning different?

Admittedly, progress has, and will be made
in AL research by leveraging simulation environ-
ments, similar to other areas within machine learn-
ing. Thus, there is no inherent requirement for a
radically different approach in AL. We believe that
simulating AL is indispensable for developing new
methods and advancing the state-of-the-art.

Nonetheless, we argue that a slight distinction
should be taken into account. AL is an iterative
process that aims to obtain the smallest possible
amount of labeled data given a substantially larger
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pool of unlabeled data for maximizing predictive
performance on a given task. The difference be-
tween developing models and constructing datasets
lies in the fact that if a model is poorly trained, it
can simply be retrained. Conversely, in AL, there
exists a finite budget for acquiring annotations, and
once it is expended, there is no going back. Conse-
quently, we must have confidence that the AL state-
of-the-art established through research simulations
will perform equally well in practical applications.

Given these considerations, we advocate for a
more critical approach to conducting simulation
AL experiments. We should be addressing all the
challenges (§2) and the experimental limitations
(§3) discussed previously, while acknowledging the
disparities between the simulation environment and
real-world applications (§4.1). Given that datasets
tend to outlast models (Lowell et al., 2019), we
firmly believe that it is crucial to ensure the trust-
worthiness of AL research findings and their gener-
alizability to real-world active data collection. This
will contribute to the generation of high-quality
datasets that stand the test of time (§3.4).

4.1 Simulation as a Lower Bound of Active
Learning

The distribution gap between benchmark datasets
in common ML tasks and data encountered in a real
world production setting is well known (Bengio
et al., 2020; Koh et al., 2021; Wang and Deng,
2018; Yin et al., 2021).

High Quality Data It is common practice for re-
searchers to carefully curate the data to be labeled
properly, often collecting multiple human annota-
tions per example and discarding instances with
disagreeing labels. When datasets are introduced
in papers published in prestigious conferences or
journals, it is expected that they should be of the
highest quality, with an in-depth analysis of its data
collection procedure, label distribution and other
statistics. Nonetheless, it is important to acknowl-
edge that such datasets may not encompass the
entire spectrum of language variations encountered
in real-world environments (Yin et al., 2021). Con-
sequently, it remains uncertain whether an AL algo-
rithm would generalize effectively to unfiltered raw
data. Specifically, we hypothesize that the filtered
data would be largely more homogeneous than the
initial “pool”. Assuming that the simulation Dpool
is a somewhat homogeneous dataset, we can ex-
pect that any subset of data points drawn from it

would, consequently, be more or less identical.6

Therefore, if we train a model in each such subset,
we would expect to obtain similar performance on
test data due to the similarity between the training
sets. From this perspective, random (uniform) sam-
pling from a homogeneous pool can be considered
a rudimentary form of diversity sampling.

Low Quality Data In contrast, it is possible that
a publicly available dataset used for AL research
may contain data of inferior quality, characterized
by outliers such as repetitive instances, inadequate
text filtering, incorrect labels, and implausible ex-
amples, among others. In such cases, an AL ac-
quisition strategy, particularly one based on model
uncertainty, may consistently select these instances
for labeling due to their high level of data diffi-
culty and uncertainty. Previous studies (Karam-
cheti et al., 2021; Snijders et al., 2023) have demon-
strated the occurrence of this phenomenon, which
poses a significant challenge as it undermines the
potential value of AL. In a real-world AL scenario,
it is plausible to have a dedicated team responsi-
ble for assessing the quality of acquired data and
discarding instances of subpar quality. However,
within the confines of a simulation, such data fil-
tering is typically absent from the researcher’s per-
spective, leading to potentially misleading exper-
imental outcomes. Snijders et al. (2023) tried to
address this issue in a multi-source setting for the
task of natural language inference, and showed that
while uncertainty-based strategies perform poorly
due to the acquisition of collective outliers, when
outliers are removed (from the pool), AL algo-
rithms exhibited a noteworthy recovery and out-
performed random baselines.

4.2 Simulation as an Upper Bound of Active
Learning

However, one might argue for the exact opposite.

Favored Design Choices Previously, we men-
tioned that when selecting the seed dataset (§2.2)
we typically randomly sample data from Dpool,
while keeping the label distribution of the true train-
ing set.7 Hence, a balanced seed dataset is typically
obtained, given that most classification datasets
tend to exhibit a balanced label distribution. In

6Here we do not hint that all textual instances of a dataset
are actually identical, but that they are more similar between
them compared to the larger pool that they were created from.

7The “true training set” is the original one used as the pool
(Dpool) by removing the labels.
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effect, the label distribution of Dpool would also be
balanced, setting a strict constraint for AL simula-
tion, as the actual label distribution of the unlabeled
data should in reality be unknown. In other words,
such subtle choices in the experimental design can
introduce bias, making the simulated settings more
trivial than more challenging real world AL set-
tings where there is uncertainty as to the quality
and the label distribution of data crawled online,
that typically constitute the unlabeled pool.

Temporal Drift & Model Mismatch Datasets in-
tended for research purposes are often constructed
within a fixed timeframe, with minimal considera-
tion for temporal concept drift issues (Röttger and
Pierrehumbert, 2021; Lazaridou et al., 2021; Mar-
gatina et al., 2023b). However, it is important to
recognize that this may not align with real-world
applications, where the data distribution under-
goes changes over time. The utilization of ran-
dom and standard splits, commonly employed in
AL research, can lead to overly optimistic per-
formance estimates (Søgaard et al., 2021), which
may not generalize to the challenges presented
by real-world scenarios. Consequently, practition-
ers should consider this limitation when designing
their active learning experiments. Lowell et al.
(2019) also raises several practical obstacles ne-
glected in AL research, such as that the acquired
dataset may be disadvantageous for training sub-
sequent models, and concludes that academic in-
vestigations of AL typically omit key real-world
considerations that might overestimate its utility.

4.3 Main Takeaways

In summary, there exist compelling arguments that
support both perspectives: simulation can serve as
a lower bound by impeding the true advancement
of AL methods, or it can implicitly favor AL exper-
imental design, thus providing an upper bound for
evaluation. The validity of these arguments likely
varies across different cases. We can claim with
certainty that this simulation setting, as described
in this paper, is a far from perfect framework to
evaluate AL algorithms among them and against
random sampling. Nevertheless, we hypothesize
that the lower bound argument (§4.1) might be
more truthful. It is conceivable that AL data selec-
tion approaches may exhibit similar performance
levels, either due to a lack of variation and diversity
in the sampled pool of data or due to the presence
of outliers that are not eliminated during the iter-

ations. Hence, we contend that simulation can be
perceived as a lower bound for AL performance,
which helps explain why AL methods struggle to
surpass the performance of random sampling. We
undoubtedly believe that we can only obtain such
answers by exploring the AL simulation space in
depth and by performing thorough analysis and
extensive experiments to contrast the two theories.

4.4 Active Learning in the LLMs Era

The field of active learning holds considerable im-
portance in the current era of Large Language Mod-
els (LLMs). AL has recently been explore as a
framework to identify the most useful demonstra-
tions for in-context learning with LLMs (Zhang
et al., 2022c; Diao et al., 2023; Margatina et al.,
2023a). Additionally, AL is inherently inter-
twined with data-driven approaches that underpin
recent advancements in artificial intelligence, such
as reinforcement learning from human feedback
(RLHF) (Christiano et al., 2023; OpenAI, 2022,
2023; Bai et al., 2022a). AL and RLHF represent
two distinct approaches that tackle diverse aspects
of the overarching problem of AI alignment (Askell
et al., 2021). AL primarily focuses on optimizing
the data acquisition process by selectively choosing
informative instances for labeling, primarily within
supervised or semi-supervised learning paradigms.
On the other hand, RLHF aims to train reinforce-
ment learning agents by utilizing human feedback
as a means to surmount challenges associated with
traditional reward signals. Despite their disparate
methodologies, both AL and RLHF emphasize the
criticality of incorporating human involvement to
enhance the performance of machine learning and
AI systems. Through active engagement of humans
in the training process, AL and RLHF contribute to
the development of AI systems that exhibit greater
alignment with human values and demonstrate en-
hanced accountability (Bai et al., 2022a,b; Ganguli
et al., 2022; Glaese et al., 2022; Sun et al., 2023;
Kim et al., 2023). Consequently, the synergistic
relationship between these two approaches war-
rants further exploration, as it holds the potential
to leverage AL techniques in order to augment the
data efficiency and robustness of RLHF methods.

5 Guidelines for Future Work

Given the inherent limitations of simulated AL set-
tings, we propose guidelines to improve trustwor-
thiness and robustness in AL research.

4409



Transparency Our first recommendation is a call
for transparency, which essentially means to report
everything (Dodge et al., 2019). Every detail of
the experimental setup, the implementation and
the results, would be extremely helpful to properly
evaluate the soundness of the experiments. We
urge AL researchers to make use of the Appendix
(or other means such as more detailed technical re-
ports) to communicate interesting (or not) findings
and problems, so that all details (§3) are accessible.

Thorough Experimental Settings We aim to in-
centivize researchers to thoughtfully consider ethi-
cal and practical aspects in their experimental set-
tings. It is crucial to compare a wide range of
algorithms, striving for generalizable results and
findings across datasets, tasks, and domains. More-
over, we endorse research endeavors that aim to
simulate more realistic settings for AL, such as ex-
ploration of AL across multiple domains (Longpre
et al., 2022; Snijders et al., 2023). Additionally,
we advocate for investigations into active learning
techniques for languages beyond English, as the
prevailing body of research predominantly focuses
on English datasets (Bender, 2011).

Evaluation Protocol We strongly encourage re-
searchers to prioritize the establishment of fair com-
parisons among different methods and to provide
extensive presentation of results, including the con-
sideration of variance across random seeds, in or-
der to ensure robustness and reliability of findings.
Generally, we argue that there is room for improve-
ment of the active learning evaluation framework
and we should explore approaches from other fields
that promote more rigorous experimental and eval-
uation frameworks (Artetxe et al., 2020).

Analysis We place additional emphasis on the
requirement of conducting comprehensive analysis
of AL results. It is imperative to delve into the nu-
ances of how different AL algorithms diverge and
the extent of similarity (or dissimilarity) among the
actively acquired datasets. It is incumbent upon AL
research papers to extend beyond the results sec-
tion and include an extensive analysis component,
which provides deeper insights and understanding,
as in Ein-Dor et al. (2020); Yuan et al. (2020); Mar-
gatina et al. (2021); Zhou et al. (2021); Snijders
et al. (2023), among others. If we aim to unveil
why an AL algorithm fails to outperform another
(or the random baseline), we need to understand
which data it selected in the first place, and why.

Reproducibility Reproducing AL experiments
can be challenging due to the complex nature of a
typical AL experiment, involving multiple rounds
of model training and evaluation, which can be
computationally demanding. However, we strongly
advocate for practitioners and researchers to priori-
tize the release of their code and provide compre-
hensive instructions for future researchers aiming
to build upon their work. By making code and asso-
ciated resources available, the research community
can foster transparency, facilitate replication, and
enable further advancements in AL methodologies.

Efficiency Finally, we propose the release of ac-
tively acquired datasets generated by different AL
algorithms, which would greatly contribute to data-
centric research and interpretability aspects of AL.
Particularly when employing AL with large-scale
models, it becomes crucial to establish the actively
acquired data from other studies as baselines, rather
than re-running the entire process from the begin-
ning. Such an approach would not only enhance
transparency, but also promote efficiency and eco-
friendly practices within the research community.

6 Conclusion

In this position paper, we examine the numer-
ous challenges encountered throughout the vari-
ous stages of the active learning pipeline. Addi-
tionally, we provide a comprehensive overview of
the often-overlooked limitations within the AL re-
search community, with the intention of illumi-
nating obscure experimental design choices. Fur-
thermore, we delve into a thorough exploration of
the limitations associated with simulation in AL,
engaging in a critical discussion regarding its po-
tential as either a lower or upper bound on AL per-
formance. Lastly, we put forth guidelines for future
research directions, aimed at enhancing the robust-
ness and credibility of AL research for effective
real-world applications. This perspective is partic-
ularly timely, particularly considering the notable
advancements in modeling within the field NLP
(e.g., ChatGPT8, Claude9) . These advancements
have resulted in a shift of emphasis towards a more
data-centric approach in machine learning research,
emphasizing the significance of carefully selecting
relevant data to enhance models and ensure their
alignment with human values.

8https://openai.com/blog/chatgpt
9https://www.anthropic.com/index/

introducing-claude
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Limitations

In this position paper, we have strived to provide a
comprehensive overview, acknowledging that there
may be relevant research papers that have inadver-
tently escaped our attention. While we have made
efforts to include a diverse range of related work
from various fields, such as machine learning and
computer vision, it is important to note that our
analysis predominantly focuses on AL papers pre-
sented at NLP conferences. Moreover, it is worth
mentioning that the majority, if not all, of the AL
papers examined and referenced in this survey are
centered around the English language, thereby lim-
iting the generalizability and applicability of our
findings and critiques to other languages and con-
texts. We wish to emphasize that the speculations
put forth in this position paper carry no substantial
risks, as they are substantiated by peer-reviewed pa-
pers, and our hypotheses (§4) are explicitly stated
as such, representing conjectures rather than defini-
tive findings regarding the role of simulation in AL
research. We sincerely hope that this paper stim-
ulates robust discussions and undergoes thorough
scrutiny by experts in the field, with the ultimate
objective of serving as a valuable guideline for AL
researchers, particularly graduate students, seeking
to engage in active learning research. Above all,
we earnestly urge researchers equipped with the
necessary resources to conduct experiments and
analyses that evaluate our hypotheses, striving to
bridge the gap between research and real-world
settings in the context of active learning.
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