
Findings of the Association for Computational Linguistics: ACL 2023, pages 402–416
July 9-14, 2023 ©2023 Association for Computational Linguistics

Prompt Tuning for Unified Multimodal Pretrained Models

Hao Yang∗, Junyang Lin∗, An Yang, Peng Wang, Chang Zhou
DAMO Academy, Alibaba Group

{yh351016, junyang.ljy, ya235025, zheluo.wp, ericzhou.zc}@alibaba-inc.com

Abstract

Prompt tuning has become a new paradigm for
model tuning and it has demonstrated success
in natural language pretraining and even vision
pretraining. The parameter-efficient prompt
tuning methods that optimize soft embeddings
while keeping the pretrained model frozen
demonstrate advantages in low computation
costs and almost lossless performance. In this
work, we explore the transfer of prompt tun-
ing to multimodal pretrained models. Specif-
ically, we implement prompt tuning to a uni-
fied sequence-to-sequence pretrained model by
adding a sequence of learnable embeddings
to each layer and finetuning the pretrained
model on downstream task with only the learn-
able embeddings being optimized. Experi-
mental results on a series of multimodal un-
derstanding and generation tasks demonstrate
that our method OFA-PT can achieve compa-
rable performance with finetuning across a se-
ries of multimodal generation and understand-
ing tasks. Additionally, it significantly outper-
forms the unified multimodal pretrained model
with other parameter-efficient tuning methods,
e.g., Adapter, BitFit. etc. Besides, in com-
parison with finetuned models, the prompt-
tuned models demonstrate improved robust-
ness against adversarial attacks. We further
figure out that experimental factors, including
prompt length, prompt depth, and reparame-
teratization, have great impacts on the model
performance, and thus we empirically provide
a recommendation for the setups of prompt tun-
ing. Codes and checkpoints are available at
https://github.com/OFA-Sys/OFA

1 Introduction

Recent years have witnessed the great success of
large-scale pretraining based on large models and
big data in natural language processing (NLP) (Rad-
ford et al., 2018; Devlin et al., 2019; Yang et al.,
2019; Liu et al., 2019; Raffel et al., 2020; Brown
et al., 2020) and computer vision (Chen et al.,

2020b,a,c; Chen and He, 2021; Bao et al., 2021;
He et al., 2021b). Inspired by the success of BERT-
like models (Devlin et al., 2019), researchers have
found that pretraining can level up the downstream
performance of cross-modal representation learn-
ing algorithms by a large margin (Chen et al.,
2020d; Lu et al., 2019; Su et al., 2020; Tan and
Bansal, 2019; Wang et al., 2021).

Following this line of research, unified multi-
modal pretrained models have gradually attracted
much attention, and very recently, a series of such
models based on the sequence-to-sequence learning
framework have unified both cross-modal under-
standing and generation tasks and even achieved
state-of-the-art performance (Li et al., 2022; Wang
et al., 2022a; Yu et al., 2022; Alayrac et al., 2022;
Wang et al., 2022b; Chen et al., 2022). Further-
more, note that the scale of unified multimodal pre-
trained models has been growing rapidly, showing
a similar trend of developments in large language
models (Raffel et al., 2020; Brown et al., 2020;
Chowdhery et al., 2022).

Despite the great success of large-scale pre-
trained models across multiple domains, training
such models requires a large amount of computa-
tion costs. The conventional finetuning is though
effective in gaining high performance yet suffers
from low training efficiency, especially when the
pretrained model is of large scale in model size.
There is a strong necessity for parameter-efficient
transfer learning methods in the applications of
large-scale foundation models. The most popu-
lar method in this field is prompt tuning (Liu
et al., 2021a), which demonstrates success in natu-
ral language processing (Li and Liang, 2021; Liu
et al., 2021c; Lester et al., 2021; Liu et al., 2021b;
He et al., 2021a; Gu et al., 2022) and computer
vision (Jia et al., 2022; Du et al., 2022; Zhou
et al., 2021, 2022). In comparison with finetun-
ing, prompt tuning only tunes pretrained models by
a trivial amount of parameters (e.g., 1%). Prompt
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tuning freezes most parameters of the pretrained
model and only tunes several prompt embeddings,
as well as the output layer if necessary. Recent ad-
vances have shown that prompt tuning can help pre-
trained models achieve comparable performance
with finetuning across different downstream tasks,
including natural language understanding and gen-
eration, image classification, etc. However, the
studies on the parameter-efficient transfer meth-
ods for multimodal pretrained models, especially
the unified multimodal pretrained models, are still
scarce. Furthermore, along with the trend of model
scaling in unified multimodal pretrained models,
how to tune such models cost-effectively should
be a significant topic of research in multimodal
pretraining.

This work fills in the void and takes the lead to
explore prompt tuning for the unified multimodal
pretrained models. We propose OFA-PT, an imple-
mentation of prompt tuning based on the recently
open-sourced unified multimodal pretrained model
OFA (Wang et al., 2022a). To be more specific,
in the stage of downstream transfer, we insert a
sequence of learnable embeddings to each layer
of the encoder and decoder, and only tune those
embeddings while keeping the parameters of the
pretrained model frozen. For the rest of the setups,
we use the same finetuning procedures, which trans-
form data to the format for sequence-to-sequence
learning and train the model with maximum like-
lihood estimation for optimization. In compari-
son with finetuning, the number of tunable parame-
ters (~1% of the total) for prompt tuning is much
smaller than that of finetuning, leading to fewer
computation costs, e.g., memory.

Through extensive experiments we observe that
the parameter-efficient prompt tuning is able to
help the pretrained model achieve comparable per-
formance with finetuning across 4 multimodal
downstream tasks, spanning from understanding
to generation. To analyze the differences between
finetuning and prompt tuning, we follow the as-
sumption that prompt tuning with most parame-
ters in the pretrained model frozen should induce
model robustness. We experiment on the tuning
methods with adversarial attack and observe phe-
nomena consistent with the hypothesis. To take a
step further, this study delves into the implementa-
tion details and investigate whether experimental
factors, e.g., the prompt length, prompt depth, and
reparameterization, could saliently influence the

final downstream performance. We find that in
general a longer prompt length (longer than 20 to-
kens) is a preferable choice, and our experiments
show that 64 should be favored in most cases as
a longer prompt sequence will not only increase
the computation costs but also incur performance
degradation. Also, we show that reparameteriza-
ton with additional trainable parameters cannot in-
troduce significant improvements in downstream
performance.

2 Method

This section introduces the details of our proposed
method. It provides the detailed implementation of
prompt tuning on a unified multimodal pretrained
model. The overall framework is illustrated in Fig-
ure 1.

2.1 Preliminaries

We select the unified sequence-to-sequence frame-
work as it unifies understanding and generation
tasks, and we specifically implement prompt tuning
on the recently open-sourced state-of-the-art model
OFA* (Wang et al., 2022a). In brief, it is built
with a Transformer-based (Vaswani et al., 2017)
encoder-decoder framework.

Both the encoder and decoder consist of Trans-
former layers. To be more specific, an encoder
layer consists of a multi-head self attention and a
point-wise Feed-Forward Network (FFN). To build
a connection between the encoder and decoder, the
Transformer decoder layer additionally contains
a cross-attention module in comparison with the
encoder layer. The cross-attention is essentially
multi-head attention, where the keys K and val-
ues V are the transformation of the encoder output
states, instead of the inputs. Such architecture can
handle tasks that provide inputs of the sequence-to-
sequence format.

In this work, we focus on prompt tuning for the
transfer of the multimodal pretrained model. We
leave the prompt learning in the stage of pretraining
to the future work.

2.2 Prompt Tuning for Multimodal
Pretrained Models

In the following, we introduce our implementa-
tion details of prompt tuning on the sequence-to-
sequence multimodal pretrained model. Note that

*https://github.com/OFA-Sys/OFA License: Apache-
2.0
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Figure 1: Model overview. An illustration of our multimodal prompt tuning architecture. Specifically, for the
encoder and decoder, we add tunable prompt embeddings to each layer.

our method can extend to other generative multi-
modal pretrained models, e.g., BERT-like models.

Basic Implementation We focus on implement-
ing prefix tuning (Li and Liang, 2021; Liu et al.,
2021b) based on its outstanding performance in
either natural language understanding or genera-
tion. In comparison with the other prompt tun-
ing methods, e.g., P-Tuning (Liu et al., 2021c),
Prompt Tuning (Lester et al., 2021), PPT (Gu et al.,
2022), adding soft prompt embeddings to each
layer demonstrates enhanced training stability and
improved downstream task performance even on
relatively small models. Specifically, for the en-
coder and decoder, we add tunable prompt em-
beddings to each layer. Formally, we refer the
pretrained model to a function M(·), and the gen-
eration function of the prompt embeddings to G(·).
The formulation is demonstrated below:

y = M(G(L, l), x), (1)

where x refers to the multimodal inputs, L refers
to the number of layers, and l refers to the prompt
length, which should be predefined by a hyper-
parameter. At each layer, we prefix soft prompt
embeddings p(i) to the input hidden states h(i)

Note that we only prefix prompt embeddings at
Transformer layers. In the simplest practice, the
prompt generator G is a sparse embedding matrix
of RL×l×h, and we select the corresponding em-
bedding at the i-th index and the j-th layer as the
prompt embedding. Below we provide an illustra-
tion of some more complex implementations, and
we compare those methods in this study.

In the downstream tuning process, we only tune
the newly added prompt embeddings at each layer
and keep the parameters of the large pretrained
model frozen. Therefore, while there are only a

small amount of parameters that need to be updated,
e.g., 1%, the computation costs are far fewer than
those of finetuning.

Reparameterization Except for the simplest im-
plementation of adding a sparse embedding matrix
at each layer, a more complex one should be adding
an encoder, e.g., an MLP layer, to reparameterize
prompt embeddings. We also investigate the influ-
ence of reparameterization in this context.

Prompt Length Similar to previous studies (Li
and Liang, 2021; Liu et al., 2021b), we find that the
length of prompt embeddings make a great differ-
ence in different downstream tasks. In this study,
we investigate how this factor imposes influence on
model performance in different downstream tasks.

Prompt Depth To investigate the impacts of the
place of prompt embedding insertion, we delve into
the issue of prompt depth. Specifically, we simplify
it to adding prompt embeddings to the encoder or
decoder only, as well as to both modules.

3 Experiments

To validate the effectiveness of prompt tuning for
multimodal pretrained models, we conduct exper-
iments on 5 cross-modal tasks. Specifically, we
experiment on cross-modal generation tasks, in-
cluding referring expression comprehension and
image captioning, and cross-modal understanding
tasks, including visual entailment, image caption-
ing, and visual question answering (VQA). We use
the commonly used base-size and large-size models
for the experiments, whose sizes are around 180M
and 470M respectively. We provide more details
about the experimental setups in the Appendix A.1.
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Model RefCOCO RefCOCO+ RefCOCOg COCO Captions
val testA testB val testA testB val-u test-u B@4 M C S

Base-size Models
OFABase 88.48 90.67 83.30 81.39 87.15 74.29 82.29 82.31 41.00 30.90 138.2 24.20
OFA-PTBase 84.53 85.21 77.36 76.34 81.44 67.68 75.61 76.57 39.70 30.10 134.2 23.50

Large-size Models
OFALarge 90.05 92.93 85.26 85.80 89.87 79.22 85.89 86.55 42.40 31.50 142.2 24.50
OFA-PTLarge 90.05 92.31 85.59 84.54 89.40 77.77 85.27 85.89 41.81 31.51 141.4 24.42

Table 1: Experimental results on RefCOCO, RefCOCO+, RefCOCOg, and COCO Image Captioning. For the
base-size model, OFA-PT significantly underperforms the finetuned OFA, but for the large-size model, OFA-PT is
able to achieve comparable performance.

Model SNLI-VE VQA
dev test test-dev test-std

Base-size Models
OFABase 89.30 89.20 78.00 78.10
OFA-PTBase 88.18 88.59 74.31 74.47

Large-size Models
OFALarge 90.30 90.20 80.40 80.70
OFA-PTLarge 90.04 90.12 78.30 78.53

Table 2: Experimental results of methods on multimodal
understanding benchmark datasets, SNLI-VE and VQA.

3.1 Datasets & Metrics
Referring Expression Comprehension We con-
duct experiments on the 3 subtasks of referring
expression comprehension, namely RefCOCO, Re-
fCOCO+, and RefCOCOg (Yu et al., 2016; Mao
et al., 2016). This task requires the model to gener-
ate a correct bounding box that answers the given
text query on a provided image. We use Acc@0.5
as the evaluation metric.

Image Captioning We evaluate the image cap-
tioning capability of our method on the Microsoft
COCO Image Captioning dataset (Chen et al.,
2015). In this task, the model should generate
a description that corresponds to the information
of the given image. We use BLEU@4 (Papineni
et al., 2002), METEOR (Lavie and Agarwal, 2007),
CIDEr (Vedantam et al., 2015), and SPICE (Ander-
son et al., 2016) as the evaluation metrics.

Visual Entailment To evaluate the performance
of entailment, we implement the experiments on
SNLI-VE (Xie et al., 2019). Given an image and
a text, the model should figure out their relations,
whether they are entailment, contradiction, or neu-
trality. We follow the setups in Wang et al. (2022a)
and add the given premise to the input. We use

accuracy as the evaluation metric.

VQA We implement our experiments on VQA
2.0 (Antol et al., 2015; Goyal et al., 2017). This
task requires the model to generate the correct an-
swer based on an image and a question about cer-
tain information on the image. Following Wang
et al. (2022a), we use the all-candidate evaluation,
which requires the model to generate a probability
for each candidate among the 3, 129 most frequent
answers. We use accuracy as the evaluation metric.

3.2 Experimental Results

Below we provide the detailed experiment results,
including the comparison of prompt tuning and
finetuning, as well as prompt tuning and other
parameter-efficient tuning methods.

Comparison with Finetuning We demonstrate
the experimental results of the 4 tasks in Table 1
and Table 2. In general, for the base-size model,
OFA-PT underperforms the original finetuned OFA
by significant margins, but for the large-size model,
OFA-PT is able to achieve comparable perfor-
mance. To be more specific, in the evaluation of re-
ferring expression comprehension, for the base-size
model, prompt tuning significantly underperforms
finetuning by lagging behind a large margin of 5.64
on average across RefCOCO, RefCOCO+, and Re-
fCOCOg, but for the large-size model, prompt tun-
ing only slightly underperforms finetuning by a
small margin of 0.59. In the evaluation of image
captioning, for the base-size model, OFA-PT un-
derperforms the finetuned OFA by a margin of 4.0,
but for the large-size model, the performance gap
is only 0.8. In the evaluation of visual entailment,
the gap between the algorithms is closer, which
is around 0.17. In the evaluation of VQA, for the
base-size model the performance gap is 3.63 be-
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Method RefCOCO RefCOCO+ RefCOCOg COCO Captions
val testA testB val testA testB val-u test-u B@4 M C S

OFA-Bitfit 89.61 92.20 84.91 82.60 88.08 75.16 84.66 84.68 41.02 30.92 138.8 24.23
OFA-Adapter 90.01 92.30 85.02 83.79 88.93 76.09 85.10 85.45 41.38 31.16 139.5 24.30
OFA-PT 90.05 92.31 85.59 84.54 89.40 77.77 85.27 85.89 41.81 31.51 141.4 24.42

Table 3: Evaluation of different parameter-efficient tuning methods using large-size models on multimodal generation
tasks. We find that OFA-PT can generally outperform OFA with Bitfit and Adapter.

Method SNLI-VE VQA
dev test test-dev test-std

OFA-Bitfit 89.70 89.42 78.23 78.44
OFA-Adapter 89.84 89.78 78.27 78.47
OFA-PT 90.04 90.12 78.30 78.53

Table 4: Evaluation of different parameter-efficient tun-
ing methods using large-size models on multimodal
understanding tasks. OFA-PT outperforms the baselines
significantly.

tween prompt tuning and finetuning, and for the
large-size model the gap is 2.17 on the test-std
set. Different from the other tasks, even in the ex-
periments on the large-size model, the gap is still
significant. We hypothesize that it is still neces-
sary to search a better hyperparameter setup for
this task due to the sensitivity of prompt tuning to
hyperparameters.

Comparison with Other Parameter-Efficient
Tuning Methods We additionally add a compari-
son with two parameter-efficient tuning methods,
namely Adapter (Houlsby et al., 2019) and Bit-
Fit (Zaken et al., 2022) to test whether prompt
tuning is the best solution of light-weight trans-
fer. Table 3 and 4 demonstrate the results of dif-
ferent light-weight tuning methods implemented
on the aforementioned datasets. In all the down-
stream tasks, OFA-PT surpasses the performance
of OFA with Adapter or BitFit. The results reflect
the simple but effective prompt tuning over other
parameter-efficient tuning baselines. We suppose
that changes in biases and adding intermediate lay-
ers might be conflicted with the complex architec-
tural designs of the unified multimodal pretrained
model, whereas the simple prepended learnable
prefixes have separate components, e.g., weights,
positional embeddings, etc., which can result in
easier training with less human efforts on hyperpa-
rameter tuning.

3.3 Analyses
In this section, we move forward to analyzing
prompt tuning in multimodal pretraining. Specifi-
cally, we examine the robustness of prompt tuning
based on the assumption that keeping most param-
eters of the pretrained model frozen should lead
to improved robustness to adversarial attack. Also,
we evaluate how different setups of prompt tuning,
say the prompt length, the depth of prompt, and
reparameterization, influence the downstream per-
formance, and try to provide a recommended setup
for consistently better performance.

Robustness Analysis To test whether the mul-
timodal pretrained model with prompt tuning for
downstream transfer is robust, we conduct exper-
iments of adversarial attack for the examination.
Adversarial attack was first proposed in computer
vision, which revealed the vulnerability of deep
learning models. The most common adversarial
attack methods in computer vision are gradient-
based methods, such as FGSM (Goodfellow et al.,
2014), PGD (Madry et al., 2017), MIM (Dong et al.,
2017) and SI (Lin et al., 2019). Most of the typical
unimodal adversarial attack on tasks are gradient-
based methods. Among them, we select FGSM,
which requires only one step of gradient computa-
tion on text and image embeddings. Experimental
results are demonstrated in Figure 2. OFA-PT con-
sistently demonstrates better robustness in compar-
ison with the finetuned OFA across all tasks. This
confirms our hypothesis and also shows one sig-
nificant advantage of prompt tuning not reflected
in the standard evaluation. In practice, if model
vulnerability is a issue that matters, we recommend
the application of prompt tuning or the robust pre-
fix tuning framework (Yang and Liu, 2022) that
demonstrates effectiveness in tuning pretrained lan-
guage models for the enhanced robustness without
significant performance degradation

Prompt Length To study the effects of the
prompt length on the final downstream perfor-
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Figure 2: Experimental results on adversarial attack using large-size models. We discover that in the scenario of
adversarial attack prompt tuning suffers from lower performance degradation across the tasks.

Method RefCOCO RefCOCO+ RefCOCOg COCO Captions
val testA testB val testA testB val-u test-u B@4 M C S

Enc 89.48 91.71 84.98 84.50 89.22 77.71 85.07 85.58 41.39 31.08 141.1 24.34
Dec 88.90 91.28 84.32 83.46 88.24 76.82 84.54 85.02 40.08 30.43 140.8 24.06
EncDec 90.05 92.31 85.59 84.54 89.40 77.77 85.27 85.89 41.81 31.51 141.4 24.42

Table 5: Evaluation of different prompt insertion methods on multimodal understanding tasks. We specifically
evaluate the performance of prompt tuning with prompts inserted to the encoder only, to the decoder only, or to both
the encoder and decoder.

Method SNLI-VE VQA
dev test test-dev test-std

Enc 89.64 89.70 78.10 78.26
Dec 88.56 88.71 77.84 78.03
EncDec 90.04 90.12 78.30 78.53

Table 6: Evaluation of different prompt insertion meth-
ods on multimodal understanding tasks. We specifically
evaluate the performance of prompt tuning with prompts
inserted to the encoder only, to the decoder only, or to
both the encoder and decoder.

mance, we evaluate the prompt tuning performance
on the downstream tasks with a prompt length se-
lected from {10, 16, 30, 64, 100, 120}. As shown
in Figure 3, a general tendency is that a longer
prompt length with more parameters to tune can en-
courage improvements in downstream performance
across the tasks. However, we observe diminishing
marginal utility and a prompt too long may even
negatively impact the performance. Although the
best prompt length for tasks are different, we em-

pirically advise that the length of 64 tokens can
achieve a better performance on average. See Ap-
pendix A.2 for more details.

Prompt Depth As we base our implementation
on the encoder-decoder model, we intuitively as-
sume that where to insert prompt embeddings mat-
ters the performance. To simplify this issue, in our
practice, we evaluate the performance of inserting
prompts to the encoder only, to the decoder only,
or to both the encoder and decoder. Experimental
results are demonstrated in Table 5 and 6. We find
that it is best to insert prompts to every layer of
the whole Transformer model, though compared
with the other alternatives it is less computation-
efficient. In the comparison between insertion to
the encoder only and to the decoder only, we ob-
serve that the former solution leads to a signifi-
cantly better results across multiple downstream
tasks. This suggests that the insertion of prompts
to the bottom layers might contribute more to the
success of downstream transfer.
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Figure 3: Analysis of prompt lengths on multimodal downstream tasks. We observe that increasing prompt
lengths can generally bring performance improvements. Yet it cannot extend to all scenarios, and the increase might
meet saturation. Based on the experimental results, we recommend 64 for the prompt length as it helps the model
achieve the average best results across tasks.

Method RefCOCO RefCOCO+ RefCOCOg COCO Captions
val testA testB val testA testBxq val-u test-u B@4 M C S

w/o MLP 90.05 92.31 85.59 84.54 89.40 77.77 85.27 85.89 41.81 31.51 141.4 24.42
w/ MLP 90.12 92.56 85.63 84.83 89.65 77.94 85.42 86.01 41.67 31.48 140.7 24.40

Table 7: Ablation study results of multimodal generation tasks on reparameterization using large-size models.

Method SNLI-VE VQA
dev test test-dev test-std

w/o MLP 90.04 90.12 78.30 78.53
w/ MLP 89.98 90.02 78.26 78.48

Table 8: Ablation study results of multimodal under-
standing tasks on reparameterization using large-size
models.

Reparameterization Empirically, directly up-
dating the trainable embeddings leads to unsta-
ble optimization and a slight drop in performance.
Prior work usually leveraged an encoder, e.g., an
MLP (Li and Liang, 2021), to reparameterize the
trainable embeddings. We evaluate the perfor-
mance of reparameterization, and we demonstrate
the experimental results in Table 7 and 8. For gener-
ation tasks, e.g., RefCOCO and RefCOCOg, MLP

brings consistent improvements. For understand-
ing tasks, e.g., SNLI-VE and VQA, MLP leads to
relatively negative impacts. Thus we cannot come
to a conclusion about which should be a preferable
one. To achieve better performance on a specific
dataset, it is still necessary to make an attempt on
both methods.

4 Related Work

In this section, we include the review of multimodal
pretraining as well as prompt tuning.

4.1 Multimodal Pretraining

The rise of vision & language pretraining started
from the transfer of BERT (Devlin et al., 2019)
to cross-modal representation learning. A series
of studies (Lu et al., 2019; Su et al., 2020; Tan
and Bansal, 2019; Chen et al., 2020d; Li et al.,
2019) introduced BERT to multimodal pretraining.
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The key idea of such transfer is that the powerful
Transformer model can handle visual and linguistic
information simultaneously. To take a step for-
ward, recent studies have turned their focuses to
the encoder-decoder framework, which is adaptive
to both cross-modal understanding and generation,
a series of encoder-decoder-based models or simi-
lar models that can perform sequence-to-sequence
learning (Dong et al., 2019) have achieved new
state-of-the-art performance across the downstream
tasks (Wang et al., 2021; Li et al., 2022; Wang et al.,
2022a; Yu et al., 2022; Wang et al., 2022b; Chen
et al., 2022). Furthermore, these recent state-of-
the-art models have unified different tasks concern-
ing multiple modality combinations into a single
framework and pretrained model. Also, we have
witnessed similar trends in large language models
that consistently scaling unified multimodal pre-
traiend model can lead to predictable performance
improvement (Wang et al., 2022a,b; Chen et al.,
2022). This indicates that prompt tuning should
be a perfect combination with the recent unified
multimodal pretrained model and it can unleash the
power of large-scale pretrained models with fewer
computation costs than the conventional finetuning.

4.2 Prompt-based Learning

Brown et al. (2020) illustrated that large-scale pre-
trained models can learn from the context and
perform few-shot and zero-shot learning with the
prompts of task instruction or a few task exam-
ples. This new paradigm raised attention of re-
searchers in how to leverage pretrained models
without tuning all the parameters, which is ex-
pensive in computation costs. Instead of using
hard prompts by handcrafting, Li and Liang (2021)
demonstrated that only tuning soft prompt embed-
dings at each layer is sufficient for the pretrained
model to achieve competitive performance in natu-
ral language generation, and later a number of stud-
ies showed that prompt tuning can be essentially
effective for low-resource scenarios (Liu et al.,
2021c; Gu et al., 2022; Sun et al., 2022b) and it
can even achieve comparable performance with
finetuning (Lester et al., 2021; Liu et al., 2021b).
Following this trend, a series of modification to
prompts and adapters (Hu et al., 2022; He et al.,
2021a; Jiang et al., 2022; Sun et al., 2022a) for im-
provements in performance or training efficiency
have emerged and made prompt tuning a heated
topic in the whole NLP community.

Recent prompt tuning methods for multimodal
pretrained models mostly serve for CLIP-like mod-
els (Zhou et al., 2021, 2022; Rao et al., 2021).
Similarly, researchers tried to incorporate adapters
to CLIP and also achieved satisfactory perfor-
mance (Gao et al., 2021; Zhang et al., 2021).
Except for prompt tuning for CLIP-like models,
another line of work explored visual prompts
for frozen language models. Tsimpoukelli et al.
(2021) showed that when there is a powerful large
pretrained language model, a visual encoder for
prompt tuning is sufficient for multimodal few-shot
learning. To take a step forward, Alayrac et al.
(2022) proposed Flamingo, a colossal multimodal
model that enables in-context learning. It could
achieve state-of-the-art performance in a series of
cross-modal downstream tasks in either few-shot
or full-shot learning scenarios. Such tremendous
success indicates the strong potential of prompt
tuning in multimodal pretraining.

5 Conclusion

In this work, we explore prompt tuning for unified
multimodal pretrained models. Specifically, we
propose OFA-PT, which is an implementation of
prefix tuning, a simple but effective prompt tun-
ing method, on the recently open-sourced SoTA
model OFA. Through extensive experiments, we
demonstrate that the unfiied multimodal pretrained
model with the parameter-efficient prompt tuning
can achieve comparable performance with the fine-
tuned model, but with fewer parameters to tune
(e.g., 1%), and prompt tuning can surpass other
light-weight tuning methods, e.g., Adapter and Bit-
Fit. Through our analysis, we figure out a signifi-
cant advantage of prompt tuning about its robust-
ness against adversarial attack. Furthermore, we
provide a comprehensive analysis about the influ-
ence of prompt tuning setups, including the prompt
length, prompt depth, and reparameterization. Po-
tentially prompt tuning can be an alternative to
finetuning, but still, there are some salient limita-
tions in this method, e.g., slow convergence and
training instabilities. We hope that future studies
in this field can alleviate the aforementioned prob-
lems and thus promote the application of prompt
tuning.

Limitations

This section disccuses the limitations of prompt
tuning for the unified multimodal pretrained mod-
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els, and point out some directions for future work.
One limitation of prompt tuning in this setup is

the sensitivity to hyperparameter tuning. It is dif-
ficult to search for a suitable hyperparamter setup.
The hyperparameter tuning experience in finetun-
ing is not suitable for prompt tuning. Fortunately,
we find that prompt tuning for generative multi-
modal pretrained models is not as sensitive to hy-
perparameters as prompt tuning for pretrained lan-
guage models. We provide details of hyperparame-
ter setups in Appendix A.1.

Another limitation of prompt tuning in this setup
is slow convergence. Though prompt tuning has
noticeable advantages in training efficiency, it costs
at least 40 epochs for prompt tuning to achieve
the nearly best performance on some datasets (e.g.,
RefCOCO). A larger number of training epochs
may incur more computation costs though prompt
tuning has an advantage in training efficiency com-
pared with finetuning. We demonstrate more de-
tails in Appendix A.2. This indicates that finding
a better solution for fast and stable convergence
is also important besides reaching comparable or
even improved performance over the conventional
finetuning.

Despite the aforementioned limitations, prompt
tuning demonstrates significantly better robustness
against adversarial attack. In the future, we should
pay more attention to this merit and find ways to
leverage it.

Ethics Statement

We base our method on an existing multimodal pre-
trained model, which is capable of vision-language
understanding and generation. Thus, there exist po-
tential risks in AI-generated contents. Additionally,
as our method only finetunes only a small amount
of parameters of the pretrained models, we lack
control of the output model, which may generate
harmful contents. These results may possibly be
attributed to the noise in the pretraining data. In
the future research, it is essential to study how to
increase the controllability on the generation while
most parameters of the output model are originated
from the pretrained model.
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Figure 4: Efficiency of different tuning methods. We
report the spent time per 100 samples of finetuning and
prompt tuning on RefCOCO.

A Appendix

A.1 Experimental Setups

Referring Expression Comprehension Referring
expression comprehension requires models to lo-
cate an image region described by a language query.
We perform experiments on RefCOCO (Yu et al.,
2016), RefCOCO+ (Yu et al., 2016), and Ref-
COCOg (Mao et al., 2016). We report the standard
metric Acc@0.5 on the validation and test sets. For
finetuning, the batch size is set to 128, the learning
rate is set to 0.03, and the prompt length varies
from 10–120. For Adapter, the batch size is set to
128 and the learning rate is set to 5e− 5. For Bitfit,
the batch size is set to 128 and the learning rate is
set to 0.001.
Visual Entailment Visual entailment requires the
model to evaluate the semantic relation between
the given image and text, i.e., entailment, neutrality,
or contradiction. We perform experiments on the
SNLI-VE (Xie et al., 2019) dataset. We report
accuracy on both dev and test sets. The model is
finetuned with a learning rate of 0.03 and a batch
size of 128. The prompt length varies from 10–120.
For Adapter, the batch size is set to 128 and the
learning rate is set to 5e− 5. For Bitfit, the batch
size is set to 128 and the learning rate is set to
0.001.
Image Captioning Image captioning is a standard
vision & language task that requires models to gen-
erate an appropriate and fluent caption for an image.
We report BLEU@4 (Papineni et al., 2002), ME-
TEOR (Lavie and Agarwal, 2007), CIDEr (Vedan-
tam et al., 2015), and SPICE (Anderson et al., 2016)
scores on the Karpathy test split. We finetune the
model with a learning rate of 0.03, a batch size of
256, and a prompt length varying from 10–120. For
Adapter, the batch size is set to 128 and the learn-
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Method Fintuning Prompt Tuning

RefCOCO 40.00 77.44
SNLI-VE 80.96 164.48
COCO Captions 29.60 16.16
VQA 616.16 455.52

Table 9: Computation resource consumption of different
tasks. We specifically compute the GPU-hours of both
finetuning and prompt tuning on large-size models

Length 10 16 32 64 100 120

Score 91.84 91.29 91.94 92.29 92.10 91.93

Table 10: Evaluation average performance of prompt
tuning on the downstream tasks with different prompt
lengths.

ing rate is set to 5e − 5. For Bitfit, the batch size
is set to 128 and the learning rate is set to 0.001.
We only finetune the model with cross-entropy loss,
without further CIDEr optimization.
Visual Question Answering Visual question an-
swering (Antol et al., 2015; Goyal et al., 2017)
is a cross-modal task that requires the models to
answer the question given an image. We conduct
experiments on VQA 2.0 and report the score on
the test-std set. For finetuning, the batch size is set
to 256 and the learning rate is set to 0.03. Expo-
nential Moving Average (EMA) with a decay rate
of 0.9999 is employed in finetuning. The prompt
length varies from 10–120. For Adapter, the batch
size is set to 128 and the learning rate is set to
5e− 5. For Bitfit, the batch size is set to 128 and
the learning rate is set to 0.001.

A.2 Additional Experimental Results
In this section, we provide more experimental re-
sults for comprehensive understanding of the per-
formance of prompt tuning.

Below we summarize the detailed performance
of prompt tuning on the downstream tasks in the

conditions of different prompt lengths. See Ta-
ble 10. On average, a prompt length of 64 helps
achieve the best average performance in the down-
stream tasks.

To evaluate the training efficiency of different
methods, we experiment on the base model OFA
of different sizes, spanning from 93M to 930M
paramters. Figure 4 demonstrates their perfor-
mance in efficiency by evaluating their used time
of processing 100 samples. We find that prompt
tuning consistently performs better than finetuning
in training efficiency. For the huge-size model, it
can perform around 2 times faster than finetuning.
However, based on our observation, the advantage
in training efficiency does not lead to less required
computation resource. Table 9 lists the detailed
computation resource consumption of both finetun-
ing and prompt tuning. Specifically, we compute
the computation resource consumption by calcu-
lating the GPU-hours of finetuning and prompt
tuning on different tasks. We find that for image
captioning and VQA, prompt tuning consumes less
resource, but for the other tasks prompt tuning ad-
versely consumes more. It reflects that for tasks
similar to pretraining tasks, especially those with
more data in the pretraining stage, prompt tuning
is able to outperform finetuning, but for others,
prompt tuning even incurs more carbon footprints.
This indicates that the real computation resource
consumption for downstream transfer should be
an important issue in the field of prompt tuning
and the solution to this problem can further the
developments of the application.

A.3 Experimental Configuration

The experiments are conducted on Linux servers
equipped with an Intel(R) Xeon(R) Platinum CPU
@2.90GHz, 1024GB RAM and 8 NIVDIA A100-
80GB GPUs. We run our experiments on 32 A100
GPUs. All models are implemented in Pytorch
version 1.8.1 and Python 3.7.4.
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No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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