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Abstract

With the growing interest in large language
models, the need for evaluating the quality of
machine text compared to reference (typically
human-generated) text has become focal atten-
tion. Most recent works focus either on task-
specific evaluation metrics or study the proper-
ties of machine-generated text captured by the
existing metrics. In this work, we propose a
new evaluation scheme to model human judg-
ments in 7 NLP tasks, based on the fine-grained
mismatches between a pair of texts. Inspired by
the recent efforts in several NLP tasks for fine-
grained evaluation, we introduce a set of 13 mis-
match error types such as spatial/geographic
errors, entity errors, etc, to guide the model
for better prediction of human judgments. We
propose a neural framework for evaluating ma-
chine texts that uses these mismatch error types
as auxiliary tasks and re-purposes the existing
single-number evaluation metrics as additional
scalar features, in addition to textual features
extracted from the machine and reference texts.
Our experiments reveal key insights about the
existing metrics via the mismatch errors. We
show that the mismatch errors between the sen-
tence pairs on the held-out datasets from 7 NLP
tasks align well with the human evaluation.

1 Introduction

Large language models have pushed the boundaries
for natural language generation (NLG). More and
more, the generated machine texts look human-like.
The need for evaluation metrics has never been
so critical in the recent decade. Typically, there
are two ways to evaluate the quality of machine-
generated text: automatic evaluation and human
evaluation. In automatic evaluation, the quality
of the machine-generated text is captured using a
single number from a range of values indicating
how good the generated text is by a (hand-coded

†IBM Research. Correspondence to: Keerthiram Muruge-
san <keerthiram.murugesan@ibm.com>. Code available at
https://github.com/IBM/mismatch-eval

Figure 1: Overview of the proposed fine-grained auto-
matic evaluation of machine-generated text with mis-
match error types, along with human evaluation scores.
Sample examples are taken from Natural Language In-
ference (NLI) and Question Generation (QG) tasks.

rule-based or neural-based) model. Several NLP
tasks still use the metrics from 2 decades ago, for
instance, (Lin, 2004) and METEOR (Banerjee and
Lavie, 2005) for abstractive summarization, BLEU
(Papineni et al., 2002) for machine translation, etc.

It has been noted in several works that automatic
evaluation metrics are incapable of capturing the
different criteria in measuring the quality of the
text and often have a poor correlation with human
judgments (Sai et al., 2021; Callison-Burch et al.,
2006). The current automatic evaluation metrics
lack the ability to measure the quality of a modern
machine-generated text. In human evaluation, we
evaluate the machine text based on human ratings,
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where we ask human annotators to judge a given
pair of texts. The quality of the machine text is
measured using different task-specific human eval-
uation criteria such as fluency, coherence, correct-
ness, consistency, relevance, adequacy, etc. Human
evaluations are often expensive, time-consuming,
and subjective (low inter-annotator agreement), es-
pecially when broad criteria such as the fluency
of the generated text and the interestingness of the
model-generated text are used for human judgment.

To address these challenges in automatic and
human evaluations, there have been recent efforts
in the fine-grained evaluation of generated text in
several NLP domains (Callison-Burch et al., 2006;
Ethayarajh and Jurafsky, 2020; Sai et al., 2021;
See et al., 2019). In this paper, we are interested
in utilizing fine-grained evaluation categories to
guide the prediction of human judgments. Towards
this goal, we introduce a task-agnostic list of 13
mismatch error types, such as grammatical errors,
spatial/temporal errors, etc, that unifies several re-
lated task-specific efforts (Pagnoni et al., 2021;
Glockner et al., 2018; Dou et al., 2022). These mis-
match error types are comprehensive, interpretable,
and useful for predicting human evaluation criteria.
For example, an occurrence of grammatical error
in a machine-generated text can impact its fluency
rating.

Figure 1 gives the overview of the proposed
mismatch error types for fine-grained evaluation.
We propose a neural framework for evaluation
that uses these mismatch error types as auxiliary
tasks to model the human judgment and repur-
poses automated evaluation metrics as additional
scalar features, concatenated to textual features
extracted from the machine and reference texts
via pre-trained LM text embeddings (Devlin et al.,
2019). We show that pre-training our proposed
model using synthetic data for the mismatch pre-
diction task, and fine-tuning using real data for
human evaluation criteria, for different NLP tasks,
achieves state-of-the-art performance on the main
downstream task of predicting human evaluation
metrics. We provide several ablation studies show-
ing the importance of each component of our archi-
tecture, and the correlations between the mismatch
error types and the automatic and human evalua-
tion metrics. We also show how our architecture is
useful in predicting novel evaluation criteria, such
as factuality in abstractive summarization.

2 NLG Evaluation

Given a pair of texts: a reference text and a
machine-generated one, we are interested in eval-
uating the quality of the generated text using the
reference text. We measure the quality of the gen-
erated text by estimating how a human will judge
this text based on different evaluation criteria. Such
evaluation is common in many ML/NLP tasks, e.g.,
machine translation, summarization, image caption-
ing, etc. Unlike in other automatic evaluation met-
rics, we consider fine-grained evaluation cues from
13 mismatch error types, inspired by several related
task-specific efforts (Pagnoni et al., 2021; Glock-
ner et al., 2018; Dou et al., 2022) to guide the main
task of predicting the human judgments. We pro-
pose a neural framework for evaluating machine-
generated texts that use these mismatch error type
predictions as auxiliary tasks, and automated eval-
uation metrics as additional scalar features, along
with the pair of pre-trained LM text embeddings
extracted from reference and generated texts. In
this section, we discuss the role of mismatch er-
ror types as a good proxy for human judgments
(Section 2.1) and the model architecture for the
proposed approach (Section 2.2).

2.1 Mismatch Error Types

Recently there has been a growing interest in a
set of measurable fine-grained evaluation criteria
(Dou et al., 2022; Pagnoni et al., 2021; Glockner
et al., 2018). Most of the recent works require
human annotation. In this paper, we consider MIS-
MATCH types which identify a specific violation
or mismatch between a pair of texts spanning vari-
ous dimensions of semantic structure: whether the
mismatch is within a semantic frame, including
predicates, entities, modifiers or across multiple
semantic frames, for instance predicate ordering
mismatch. These mismatch error types can be used
as a proxy to measure the broad evaluation cate-
gories: a mismatch in sentence ordering can be
a weak signal for the coherence of the generated
text, and a change in the object names, gender, and
numbers can indicate the correctness of the gener-
ated text. Table 1 shows the list of mismatch error
types used in this paper. We want to understand the
relationships between the mismatch types, the eval-
uation metrics and the human evaluation criteria by
addressing the following three questions:

• Are mismatch types a good proxy for human
evaluation criteria? We show that the fine-
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Error Type Abbr Definition Example Sentence

Grammatical/Usage Error GramErr Faulty or incorrect use of the grammar and syntax.
ref: Two paintings are on the wall.
gen: Two painting is on the wall.

Predicate Error PredErr
Error in the predicate or its usage
with respect to the reference text.

ref: John entered the kitchen.
gen: John found the kitchen.

Entity Error EntErr Mismatch in the primary arguments of the predicate.
ref: A dog chased a cat.
gen: A dog chased a rat.

Predicate Ordering Error PredOrdErr
Error in causal or temporal ordering of
the predicates/events.

ref: The police arrested the suspect
then he was taken to prison.
gen: The suspect was taken to the prison
then the police arrested him.

Hyponyms/Hypernyms Errors HypErr Violations in hypernym/hyponym usage.
ref: Jim studied mechanical engineering.
gen: Jim studied architectural science.

Numerical Error NumErr
Error in numerical, quantifiers or related to numbers
(ordinals, cardinals, etc)

ref: Martha ate four apples.
gen: Martha ate six apples.

Spatial/Temporal Error STErr
Error in spatial or geographic information
(location, time, etc).

ref: Dave lives in south Chicago.
gen: Dave lives in south Chile.

Attribute/Modifier Error AttrErr
Mistakes in additional information
concerning the predicates and entities.
(not covered by numerical, spatial, geographic)

ref: Greg has two small dogs.
gen: Greg has two big dogs.

Question Error QuestErr Error/change in the nature of the question’s intention.
ref: Did you take the dog to the vet?
gen: When did you take the dog to the vet?

Negation NegErr Negated compared to the reference text.
ref: Susan took the gift.
gen: Susan did not take the gift.

Missing Information MissInfo Missing key details from the reference text.
ref: Bob drove to the hospital and saw a doctor.
gen: Bob saw a doctor.

Out of Reference OutofRef Contains additional details not present in the reference text.
ref: Jack and Jane are friends.
gen: Jack and Jane are friends. Jack plays football.

Redundant/Repetition RepErr Same/similar information repeated more than once.
ref: Tom met Sam at the party.
gen: Tom went to the party. Tom met Sam at the party.

Table 1: Fine-grained evaluation with Mismatch error types between the reference and model-generated texts.

grained evaluation based on the mismatch
types can be used to approximate the eval-
uation criteria used for human ratings.

• Can we predict a mismatch type between a
given pair of texts? We demonstrate that, in
addition to the BERT-based text representa-
tions, evaluation metrics computed from the
input pair of texts can reliably identify these
mismatch types (with relatively fewer exam-
ples for training).

• Can we use these evaluation metrics to pre-
dict mismatches on an unseen text pair? We
study the predictive power of these evaluation
metricsand demonstrate that even though the
evaluation metrics do not agree with human
evaluation criteria, they can easily identify
these mismatch types between pairs of text.

As we later see in Figure 3, our proposed mis-
matched error types correlate well with both the
automatic evaluation metrics as well as human eval-
uation criteria, demonstrating the relevance of these
error types. In the next section, we show how we
model the human ratings on 7 NLP tasks: Abstrac-
tive Summarization (AS), Image Caption gener-
ation (IC), Question Generation (QG), Machine
Translation (MT), Dialogue Generation (DG), Data-
to-Text generation (D2T) and Natural Language
Inference (NLI) using the mismatch types.

2.2 Mismatch Error Types for NLG
Evaluation

We now discuss the neural architecture for the pro-
posed NLG evaluation and show how we model the
human judgments using the mismatch error types.

A simple solution to model the human judgments
is to directly train a neural network to learn a func-
tion that maps the input pairs of texts to human
ratings on the different evaluation criteria, but the
amount of human-annotated samples available for
training in many NLP tasks is very limited. In this
paper, we consider fine-grained evaluation cues
based on mismatch error types to guide the model
for predicting human judgments. One of the key
advantages of using mismatch error types to ap-
proximate human ratings is that we can generate a
large amount of synthetic data for these error types.
In this paper, we generate ≈ 160K, synthetic exam-
ples for 13 mismatch error types and use publicly
available task-specific data with dataset size rang-
ing from a few thousand to hundreds of thousands
of examples with human annotation (details in Sec-
tion 3).

Our approach to model human judgments in-
volves two steps: 1) task-agnostic pre-training step
where we use the synthetic examples from mis-
match error types to train a shared (base) neural
network model for all the 7 NLP tasks and 2) task-
specific finetuning step where we finetune the pre-
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Figure 2: An overview of the mismatch-based evaluation architecture showing task-agnostic pre-training with
mismatch error type prediction on synthetic data as the auxiliary task (left) and task-specific finetuning with human
evaluation criteria on real annotated data as the main task (right). Dotted arrows indicate that the evaluation metric
scores are pre-computed. Dotted blocks indicate that the modules are reused from the pre-training step.

trained model for a specific task to predict the hu-
man ratings over different evaluation criteria. The
output from the task-specific models approximates
the human judgments along with the interpretable
mismatches between the given pair of texts.

Figure 2 shows the architecture for the proposed
mismatch-based evaluation model with pre-training
and finetuning steps. In both these steps, we use
pre-trained BERT (Devlin et al., 2018) to extract
linguistic features via embeddings for both the ref-
erence and generated texts to predict the mismatch
types and the human ratings (textual features). We
generate (2x) 64-dimensional textual features, one
for the machine text and the other for the reference
text. It is common to generate millions of syn-
thetic examples for pre-training the neural network
(Sellam et al., 2020) or to use tens of thousands of
human-annotated data (Rei et al., 2020) to make the
model robust to unseen texts. On the other hand,
automatic evaluation metrics utilize handcrafted
logic to compute the score on any pair of texts.
In Section 3, we show that evaluation metrics as
features can reliably predict these mismatch error
types (scalar features). We demonstrate that even
with a few (synthetic and task-specific) samples,
our approach benefits from the handcrafted logic in
the evaluation metrics to boost the prediction per-
formance. We choose the evaluation metrics from
different NLP tasks to represent different properties
of natural language text.

Unlike the textual features, the features from the
automatic evaluation metrics are required to be in-
variant to different permutations. Traditional neural
network-based models (including BERT) are very
sensitive to the permutations of the input sequence.
We use SetTransformer (Lee et al., 2019) to ex-

tract permutation-invariant scalar features from the
automatic evaluation metrics so that the scalar fea-
ture does not change under any permutation of the
evaluation metric scores. We scale the evaluation
metric scores between 0 and 1 before passing them
to SetTransformer. We believe that textual fea-
tures are extremely useful for the prediction when
the reference and/or machine-generated texts are
similar to the texts seen during pre-training or fine-
tuning steps whereas scalar features are good for
unseen texts. Based on this intuition, we combine
the reference and generated texts with the scores
computed from the automatic evaluation metrics
for prediction. Both the textual and scalar features
are concatenated and projected (via linear layer) to
either 13 mismatch error types for the pre-training
step or human ratings on the task-specific evalua-
tion criteria during the finetuning step.

3 Experimental Results

In this section, we show experimental results val-
idating the proposed model for predicting human
judgments.

3.1 Datasets
To train our proposed model based on mismatch
error types to predict human judgments, we use syn-
thetic examples for 13 mismatch error types during
pre-training and real annotated examples from 7
NLP tasks for task-specific finetuning. We generate
the synthetic examples by sampling the reference
text from multiple NLP tasks (SQuAD (Rajpurkar
et al., 2016), WebNLG (Gardent et al., 2017),
MSCOCO (Lin et al., 2014)). Following the previ-
ous works (Sai et al., 2021; Glockner et al., 2018),
we use template-based perturbations on reference
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Figure 3: (Top) Correlation between mismatch error types vs automatic evaluation metrics from different NLP tasks.
(Bottom) Correlation between mismatch error types vs human evaluation criteria for NLI task.

text to generate the synthetic examples for each mis-
match type. E.g., perturbation rules to introduce
subject-verb disagreement or dropping stopwords
for GramErr, changing names/gender or changing
the object order for EntErr, etc. In addition to the
13 error types, we include an additional No Con-
tradiction type (NoContr) for machine-generated
text that matches the reference text. We believe this
additional category helps with the better prediction
of mismatch types during pre-training. We gen-
erate ≈ 200K synthetic examples in total for the
pre-training task (160K for training and the rest
for validation). We report results on datasets from
7 NLP Tasks with human annotations: AS (Fabbri
et al., 2021), IC (Aditya et al., 2015), QG (Nema
and Khapra, 2018), MT (Bojar et al., 2017), DG
(Mehri and Eskenazi, 2020), D2T (Gardent et al.,
2017) and NLI (Williams et al., 2018) for task-
specific finetuning step. We show the number of
human-annotated examples used for task-specific
finetuning for all 7 NLP tasks in Table 2.

3.2 Correlation with Mismatch Error Types

Since most automatic evaluation metrics correlate
poorly with human evaluation criteria, we study
how well the proposed mismatch error types cor-
relate with the human evaluation criteria and auto-
matic evaluation metrics. Figure 3 shows the corre-
lation plots for the proposed mismatch error types
(with NoContr type). The correlations between mis-

match types vs automatic evaluation metrics reveal
key insights to justify the use of evaluation met-
rics as scalar features in our model. For instance,
OutofRef is negatively correlated but PredOrdErr
is positively correlated with most metrics, ngram-
based metrics are highly correlated with RepErr,
etc. The hardcoded logic-based evaluation metrics
are equally correlated with our mismatch types as
the neural network-based evaluation metrics. We
also show the correlations between the mismatch
types and human evaluation criteria for NLI (entail-
ment, neutral, and contradiction). It is interesting
to see that NoContr is positively correlated with
entailment, NegErr is positively correlated with
contradiction. These correlations will help guide
the model for better prediction of human judgments
on these human evaluation criteria. We also include
the correlation plots for other NLP tasks in the sup-
plementary material.

3.3 Model Performance

In this section, we evaluate our model both at the
task-agnostic pre-training and task-specific finetun-
ing steps. We use an 80/20 split for both steps.
We precompute the automatic evaluation metrics
for the pairs of texts in both synthetic and finetun-
ing datasets for faster computation. We use the
accuracy to evaluate the performance of the pre-
trained model on predicting the mismatch types;
RMSE (lower is better), Kendall’s τ correlation
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Tasks AS IC QG MT DG DT NLI
# Samples
(Task-Specific)

1600
(SummEval)

2007
(Flickr30k)

2726
(AQG)

240,287
(WMT2017-19)

420
(PersonaChat)

5,918
(WebNLG)

9,818
(MNLI)

RMSE 0.18 (0.00) 0.23 (0.00) 0.16 (0.00) 0.19 (0.00) 0.26 (0.00) 0.24 (0.00) *
Kendall’s τ 0.30 (0.01) 0.49 (0.00) 0.52 (0.01) 0.35 (0.00) 0.31 (0.02) 0.39 (0.01) 0.89 (0.00)
Spearman’s ρ 0.41 (0.01) 0.62 (0.00) 0.66 (0.01) 0.50 (0.00) 0.40 (0.03) 0.49 (0.01) 0.92 (0.00)

Table 2: Model performance (agreement with human ratings) measured using Root Mean Squared Error (RMSE),
Kendall’s τ correlation and Spearman’s ρ correlation on 7 NLP tasks (averaged over human evaluation criteria). Top
row shows the dataset (in parentheses) and number of samples used for each task during finetuning step. ∗ indicates
RMSE is not available as the human ratings are defined on three classes: Entailment, Neutral, Contradiction.

Figure 4: Comparison of the task-specific evaluation metrics with the proposed model. Kendall’s τ correlation
(agreement with human ratings) is used for the performance comparison. Average over 3 runs with 100 samples
randomly taken from the task-specific test set.

(higher is better), and Spearman’s ρ correlation
(higher is better) between the human ratings and
the predicted ratings to evaluate the performance of
the task-specific finetuned models. Since we have
multiple human evaluation criteria per task (e.g.,
entailment, neutral, and contradiction in NLI), we
report the results by averaging the performance of
the finetuned model over the human evaluation cri-
teria from that task. All the experimental results
reported in this paper are averaged over 3 random
runs.

Table 2 shows the task-specific finetuned model
performance on predicting the human rating using
both the mismatch error types and scalar features.
Our pre-trained model predicts the mismatch types
on the held-out synthetic data with 98% accuracy.
We finetune the trained model on the task-specific
data and achieve relatively lower RMSE scores on
most of the tasks. Kendall’s τ and Spearman’s ρ
measure the linear correlation between the human
ratings and the model-predicted ratings. We see
that in all the NLP tasks, our model predictions

align well (≈ 0.50 in correlation) with the human
ratings. Since the NLI task involves classification
labels (-1 for contradiction, 0 for neutral, and 1
for entailment) instead of human rating scores, we
didn’t report the RMSE score. We see that the
correlation (both τ and ρ) for NLI is high compared
to the other tasks. We believe that the NLI task is
relatively easier for our proposed model compared
to the other task.

Figure 4 compares the proposed model based on
the mismatch error types against the task-specific
automatic evaluation metrics both hardcoded logic-
based and neural network based rules. Kendall’s
τ correlation between the metrics and the human
ratings is used for the performance comparison. We
can see that the proposed model outperforms the
other metrics significantly in AS, IC and NLI. In
addition, we outperform a popular neural network-
based evaluation model for machine translation,
BLEURT on different language pairs from both
WMT2018 and WMT2019 (See supplementary for
more details).
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Figure 5: (Top) Agreement on human ratings using Kendall’s τ correlation for different settings of the proposed
approach on 7 NLP tasks. We start with Textual Features +Without mismatch (no pre-training step with mismatch
error types) and Without Scalar Features (no evaluation metric scores as features during pre-training and finetuning
steps) (Bottom) Agreement on human ratings using Kendall’s τ correlation with different subset of automatic
evaluation metrics used for scalar features. The two subsets are selected based on the overall cost (time and space
complexity) to compute the metric scores (See table 11 in the supplementary material).

3.4 Ablation Studies

In this section, we analyze the importance of the
evaluation metrics and the mismatch types for pre-
dicting task-specific human judgments. First, we
compare the proposed model architecture with dif-
ferent settings such as with and without the mis-
match error types for pre-training steps and with
and without the scalar features extracted from the
automatic evaluation scores using SetTransformer.
Figure 5 (top) shows Kendall’s τ correlation for
the different experimental setups. We start with
the base model that uses BERT to extract the tex-
tual features and predict the human ratings without
the pre-training step for predicting mismatch error
types and without the scalar features from evalua-
tion metric scores. We write this setup as Textual
Features + Without Mismatch. Next, the baseline
considers the pre-training step with mismatch types
but without any scalar features. We write this setup
as Textual Features + With Mismatch. We consider
an additional baseline that uses the scalar features
but without the pre-training step for mismatch-type
prediction. We call this baseline, Textual Features+
With Scalar Features. Finally, we have the pro-

posed model that considers both the prediction step
for mismatch error types and scalar features ex-
tracted from automatic evaluation metric scores.

We see that in text-only features, the pre-training
step with mismatch error type significantly boosts
the performance of the task-specific finetuning step,
specifically in IC, QG, DG, and DT. In NLI, text-
only features didn’t perform as well as expected
(0.0 Kendall’s τ correlation). We observe that us-
ing automatic evaluation metric for scalar features
significantly boost the performance of the overall
model. We believe that evaluation metrics provide
valuable properties (both via the hardcoded logic-
based metrics such as Rouge, METEOR, etc, and
neural network-based evaluation models such as
ANLI, FactCC, etc) of the input texts for better per-
formance of the fine-tuned models. The proposed
model with both the scalar features and the mis-
match error types for pre-training outperforms all
the other model setups. Our proposed model gets
a little boost from the pre-training with mismatch
error types along with the scalar features.

Figure 5 (Bottom) compares the importance of
evaluation metric scores as a feature for the model
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prediction. We know from our previous experiment,
evaluation metric score as scalar features provide a
significant boost to our proposed model. One of the
key issues with using automatic evaluation metrics
as features is the cost associated with computing
the scores, both space and time complexity. Time
complexity measures how long it takes to compute
the score for a given pair of text and space com-
plexity measures the storage space occupied by the
neural network-based evaluation model. We show
the time and space complexity of each metric used
in this paper in the supplementary material. To
address this concern, we study the importance of
cost in our model prediction.

We choose 2 subsets of evaluation metrics with
low and high costs. The subset with low-cost met-
rics includes hardcoded logic-based metrics such
as ROUGE, METEOR, etc. The subset with high-
cost metrics is mostly neural network-based models
such as ANLI, FactCC, SummaC, etc. We observe
that metrics with low cost perform comparably to
the metrics with high-cost as scalar features. In
some tasks such as IC, QG, MT, and DT, the dif-
ference is noticeable. In NLI, the difference is
significantly higher compared to any other tasks.
This reveals that a subset of evaluation metrics can
be selected based on the computational constraints
to tradeoff between the cost and the model perfor-
mances.

Figure 6: Performance of the pre-trained model with
and w/o scalar features on different synthetic sample
size. Accuracy of predicting the mismatch error types
is used for comparison.

In Figure 6, we study the importance of evalua-
tion metrics as scalar features on sample complex-
ity during the pre-training step. We choose differ-
ent sample sizes from synthetic data for predict-
ing the mismatch error type ranging from 10K to
160K. We see the model with both the textual and
scalar feature achieves better performances with a
limited number of samples to train the model. This

shows that evaluation metrics as scalar features
have likely improved the sample complexity of the
proposed model. Finally, in Figure 7, we show
some sample text from 3 tasks (IC, QG and DT)
showing both the predicted mismatch error type
and predicted human evaluation criteria scores.

4 Related Work

Automatic evaluation metrics such as ROUGE
(Lin, 2004), BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), have been
proposed for different tasks as a substitute for
human annotations. In NLP, text generation
tasks have extensively used these metrics to mea-
sure the quality of the machine-generated text.
Evaluation metrics are either task-specific (ANLI
(Williams et al., 2022), SummaC (Laban et al.,
2022), CIDER (Vedantam et al., 2015), SUPERT
(Gao et al., 2020)) or task-agnostic (BERTScore
(Zhang et al., 2019), BLEURT (Sellam et al.,
2020)), and are based on either human handcrafted
logic (ROUGE, BLEU, METEOR) or neural frame-
work (BERTScore, BLEURT). For human annota-
tion, several dimensions such as coherence, con-
sistency, and fluency are considered to measure
the quality of the generated text, yet most evalua-
tion metrics compute a single score to summarize
the evaluation. Further, these single-scored met-
rics often do not correlate well with the human
ratings. To address this problem, several attempts
have been proposed to combine multiple evaluation
metrics. ROSE (Conroy and Dang, 2008) uses a lin-
ear combination of ROUGE variations (ROUGE_1,
ROUGE_2, ROUGE_L, ROUGE_Lsum) for the
machine translation task and the combined score is
better than the individual rouge scores in the evalua-
tion. S3 (Peyrard et al., 2017) uses the combination
of the ROUGE scores and Jenson-Shannon Diver-
gence to predict the human rating. Neural-based
approaches such as BLEURT and COMET directly
train on the overall human rating for the sample
texts. Even though neural-based evaluation metrics
seem promising, they often require tens of thou-
sands of training samples to mimic human rating,
struggle with new domains/tasks and unseen sam-
ples, and still output a single score.

Understanding Evaluation Metrics: Recently,
there has been growing interest in understanding
what these evaluation metrics measure in terms of
fine-grained evaluation criteria. It is done by study-
ing different error categories (mismatches) in the
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Figure 7: Sample examples taken from 3 tasks (IC, QG and DT) with both predicted mismatch error type and
predicted human evaluation scores. Both the human-annotated (human) and our model-estimated (predicted)
evaluation criteria scores are reported for comparison.

machine-generated texts but claim none of the ex-
isting evaluation metrics can predict all of the mis-
matches, without providing any solution. Perturba-
tion checklist (Sai et al., 2021) uses template-based
perturbation on multiple tasks based on the human
evaluation criteria to study mismatches. FRANK
(Pagnoni et al., 2021) studies different evaluation
metrics on factuality in abstractive summarization
using error types. Scarecrow (Dou et al., 2022)
explores errors in prompt-based text generation
by large language models. BreakingNLI (Glockner
et al., 2018) evaluates different metrics on synthetic
data created from the external knowledge graph
WordNet (Miller, 1995). Tang et al. (2021) studies
different types of factuality and hallucinations in
the generated text by large language models.

In this work, we unify these task-specific re-
search directions. We propose several evaluation
models that combine the best of handcrafted logic
on robust evaluation, a neural framework for text
representations, and mismatch error types types to
measure the quality of the generated text based on

the human evaluation criteria.

5 Conclusion

In this paper, we proposed a neural framework for
evaluating the quality of the machine-generated
text w.r.t the reference text. To achieve this, we de-
fined a set of mismatch error types to approximate
the human ratings over a set of evaluation crite-
ria. We showed that in addition to the BERT-based
text representation, feature-invariant representa-
tions learned from the automatic evaluation met-
rics improve the prediction of both the mismatch
types as well as human ratings with pre-training
on only a limited amount of synthetic examples
with mismatch error types. We further showed that
mismatches between pairs of texts provide an inter-
pretable way to explain human judgments, through
a series of ablation studies and correlation analy-
ses. Our proposed mismatch error types is a crucial
bridge between automatic evaluation metrics and
human evaluation criteria, leading to more inter-
pretable predictions for NLP models.
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6 Limitations

One limitation of our work, which is also an avenue
for future work, is that it is not fully understood yet
why the mismatch error types help much more in
some tasks than others. Trying to develop a more
task or even instance-specific understanding of the
benefits of mismatch error types will be very use-
ful. We also want to try our proposed approach on
a wider set of tasks, using different foundational
models, and under the distribution shift setting to
see if the mismatch error types as auxiliary super-
vision can improve robustness of natural language
processing systems.

7 Ethics Statement

With the ubiquity of natural language processing
systems in real-world applications, especially in
sensitive domains, it is very important that the
machine-generated text is of high quality, as mea-
sured by a list of human evaluation criteria such as
coherence, consistency, among others. Thus, from
a societal perspective, our proposed mismatched
error types provides a way to evaluate the quality
of machine-generated text with respect to the refer-
ence text. From an ecological perspective, our pro-
posed model design only involves synthetic data for
pre-training and minimal computation overhead. In
addition, from a trustworthiness perspective, MIS-
MATCH provides an interpretable scheme to iden-
tify the differences between pairs of text which
makes it very suitable for sensitive applications in
NLP.
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A Mismatch Error Types Correlation Plots

Error Type Definition Example Sentence Human Evaluation Criteria

Grammatical/Usage Error Faulty or incorrect use of the grammar and syntax.
ref: Two paintings are on the wall.
gen: Two painting is on the wall.

Fluency

Predicate Error
Error in the predicate or its usage
with respect to the reference text.

ref: John entered the kitchen.
gen: John found the kitchen.

Answerability, Relevance,
Making sense

Entity Error Mismatch in the primary arguments of the predicate.
ref: A dog chased a cat.
gen: A dog chased a rat.

Relevance, Correctness,
Thoroughness, Informativeness,
Referential clarity

Predicate Ordering Error
Error in causal or temporal ordering of
the predicates/events.

ref: The police arrested the suspect
then he was taken to prison.
gen: The suspect was taken to the prison
then the police arrested him.

Flow/Coherence, Answerability,
Making sense, repetitions

Hyponyms/ Hypernyms Er-
rors

Violations in hypernym/hyponym usage.
ref: Jim studied mechanical engineering.
gen: Jim studied architectural science.

Informativeness

Numerical Error
Error in numerical, quantifiers or related to numbers
(ordinals, cardinals, etc)

ref: Martha ate four apples.
gen: Martha ate six apples.

Correctness, Thoroughness

Spatial/Temporal Error
Error in spatial or geographic information
(location, time, etc).

ref: Dave lives in south Chicago.
gen: Dave lives in south Chile.

Correctness, Thoroughness

Attribute/Modifier Error
Mistakes in additional information
concerning the predicates and entities.
(not covered by numerical, spatial, geographic)

ref: Greg has two small dogs.
gen: Greg has two big dogs.

Correctness, Thoroughness

Question Error Error/change in the nature of the question’s intention.
ref: Did you take the dog to the vet?
gen: When did you take the dog to the vet?

Answerability

Negation Negated compared to the reference text.
ref: Susan took the gift.
gen: Susan did not take the gift.

Adequacy

Missing Information Missing key details from the reference text.
ref: Bob drove to the hospital and saw a doctor.
gen: Bob saw a doctor.

Adequacy, Thoroughness, Data
Coverage

Out of Reference Contains additional details not present in the refer-
ence text.

ref: Jack and Jane are friends.
gen: Jack and Jane are friends. Jack plays football.

Adequacy, Making Sense, Listen-
ing

Redundant/Repetition Same/similar information repeated more than once.
ref: Tom met Sam at the party.
gen: Tom went to the party. Tom met Sam at the party.

Thoroughness, Avoid Repetition,
Data coverage

Table 3: Mismatch Error types between the reference and model-generated texts.

In Table 3, we present our proposed mismatched error types, their definitions, and examples, and the
corresponding human evaluation criteria they aim to capture. In Figure 8, we present the correlation plots
between the mismatch error types and the human evaluation criteria for 7 popular NLP tasks. We see a
significant correlation between several of the mismatch error types with the human evaluation criteria,
especially the ones they aim to capture, across the different tasks.

B Comparison with BLEURT on WMT Shared Metric Task

In this section, we compared the proposed neural evaluation framework against BLEURT, a popular neural
network-based evaluation metric in Machine Translation. BLEURT is a strong baseline for our proposed
approach where they used automatic evaluation metrics such as ROUGE, BLEU, and BERTScore as
pre-training signals for the auxiliary task. Unlike our proposed approach for 7 NLP tasks, the BLEURT
evaluation metric is primarily used for evaluating generated texts by the machine translation models.
BLEURT uses 1.8 million synthetic examples from Wikipedia for pretraining whereas our proposed
approach uses ≈ 160K synthetic examples from datasets such as SQUAD, WebNLG, MSCOCO, etc. The
BLEURT metric relies on the linguistic (text) features extracted from the reference and machine-generated
texts, whereas, our proposed approach uses both the text features and the scalar features extracted from
the automatic evaluation score.

In Tables 4 and 5, we compare the BLEURT results with our mismatch-based evaluation approach on
the 2018 and 2019 WMT Metric Shared Task. We see that on both datasets, we outperform BLEURT on
all language pairs in terms of Kendall’s Tau correlation. This shows that fine-grained evaluation criteria
based on mismatch error types are better auxiliary signals than automatic evaluation metrics.

C Sample Examples with Intrepretable Mismatch Error

In Tables 6, 7 and 8, we show sample examples from the task-specific dataset. One of the advantages of
our proposed methods is that in addition to predicting the human rating based on the different human
evaluation criteria, it can provide the mismatches occurred between the reference and machine-generated
text for further interprtation of the predicted human ratings.
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Figure 8: Correlation between mismatch error types vs human evaluation criteria for 7 NLP tasks: Data-To-Text,
Natural Language Inference, Abstractive Summarization, Image Captioning, Machine Translation and Question
Generation.

D Additional Details

In Table 10, we show the list of all the automatic evaluation metrics used in our proposed model along
with the associated NLP task with their references. Table 11 shows the cost associated with computing
the evaluation metric scores. It includes both the time complexity (in seconds) and space complexity
(in MBs). Time complexity measures how long will the metric takes to compute the evaluation score,
whereas space complexity measures how much storage space this metric will consume during the training
process. We can see that the hardcoded logic-based metrics such as ROUGE, METEOR, etc are relatively
low-cost compared to the neural network-based models such as ANLI, FactCC, etc with the high cost.
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Models/
Languages cs-en de-en et-en fi-en ru-en tr-en zh-en avg

BLEURT 35.6 44.2 40.0 32.1 31.9 35.5 29.7 35.6
Our Model 36.0 44.7 40.6 33.3 32.5 36.0 30.4 36.9

Table 4: Agreement with human ratings on the WMT18 Metrics Shared Task. Kendall Tau (τ ) is used to evaluate
results.

Models/
Languages de-en fi-en gu-en kk-en lt-en ru-en zh-en avg

BLEURT 31.2 31.7 28.3 39.5 35.2 28.3 42.7 33.8
Our Model 31.6 32.3 28.1 40.5 35.4 28.3 45.8 33.9

Table 5: Agreement with human ratings on the WMT19 Metrics Shared Task. Kendall Tau (τ ) is used to evaluate
results.

Reference Text Model Generated Text Correctness Thoroughness Predicted Correctness Predicted Thoroughness Predicted Mismatch
a mounted police officer riding down a city street
past parked cars

a man riding a horse on a city street 1 1 0.82 0.74 Error in Hyponyms or Hyper-
nyms

a couple of people standing in a field playing with a
frisbee.

a man standing on top of a sandy beach 0.2 0.2 0.26 0.28 Out of Reference

a bathroom with a reflection of a television and a
sink.

a bathroom with a sink and a mirror 1 0.8 0.78 0.72 Missing Information

Table 6: Example sentences from Image Captioning task with predicted human evaluation criteria and mismatch
type.

Reference Text Model Generated Text Answerability Predicted Answerability Predicted Mismatch
How do co-teachers work with each other to fulfill
the needs of students?

When do co-teachers work with each other to fulfill
the needs of students?

1 0.89 Question Error

David Lean was the director on which movies ? was the director on which movies ? 0.2 0.39 Missing Information
Cate Shortland was the director on which movies ? Cate Shortland director which movies ? 1 0.90 Grammatical & Usage

Table 7: Example sentences from Question Generation task with predicted human evaluation and mismatch type.

Reference Text Model Generated Text Label Prediction Predicted Mismatch
We got him out of that 10-20 range. Got him just out of 9,000-9,500 now. Contradiction Contradiction Numerical or Quantifiers
How about when you were in school? How about when you went to bed? Contradiction Contradiction Entity Error

Table 8: Example sentences from NLI task with predicted human evaluation and mismatch type.

Reference Text Model Generated Text Fluency Grammar Semantics Predicted Fluency Predicted Grammar Predicted Semantics Predicted Mismatch
alan b . miller hall was started on march 30 , 2007
and has the mason school of business in the u . s . as
a tenant

the current tenants of alan b. miller hall are 30 march
2007 and mason school of business in united states

0.33 0.33 0.33 0.61 0.65 0.64 Grammatical & Usage

albuquerque , new mexico is located in the united
states and asian americans are an ethnic group there
. john sanchez , is one of the leaders , in the new
mexico senate which is leading the state

albuquerque, new mexico is a food from new mexico
where the capital is asian americans and is led by
john sanchez.

0.66 0.66 0.33 0.66 0.72 0.48 Out of Reference

Table 9: Example sentences from Data-to-Text task with predicted human evaluation criteria and mismatch type.
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Metric Task Reference
ANLI Natural Language Inference (Nie et al., 2020)
factcc Abstractive Summarization (Kryściński et al., 2020)
Q2 Knowledge-grounded Dialogue (Honovich et al., 2021)
QuestEval Abstractive Summarization (Scialom et al., 2021)
summaC (Conv/CZS) Abstractive Summarization (Laban et al., 2022)
summaqa (avg_prob/avg_fscore) Abstractive Summarization (Scialom et al., 2019)
S3 (pyr/resp) Abstractive Summarization (Fabbri et al., 2021)
ROUGE Summarization (Lin, 2004)
ROUGE-WE Abstractive Summarization (Ng and Abrecht, 2015)
BLEURT Machine Translation (Sellam et al., 2020)
BARTScore Text Generation (Yuan et al., 2021)
Blanc Machine Translation (Lita et al., 2005)
Bleu Machine Translation (Papineni et al., 2002)
SUPERT Multi-document summarization (Gao et al., 2020)
chrf Machine Translation (Popović, 2015)
chrf++ Machine Translation (Popović, 2017)
Cider Image Description Evaluation (Vedantam et al., 2015)
Mauve Text Generation (Pillutla et al., 2021)
METEOR Machine Translation (Banerjee and Lavie, 2005)
RMR (1/2) Abstractive Summarization (Zhu et al., 2021)
sms/wms/s+wms Distance between documents (Kusner et al., 2015)
coverage/density Text summarization (Grusky et al., 2018)

Table 10: Complete list of automatic evaluation metrics used in this paper.

4500



Eval Metrics
Time

Complexity
(sec)

Space
Complexity
(MegaBytes)

ANLI 426 2163.88
BARTScore 94 1883.47
BERTScore 66 2107.17
Blanc 7048 3081.04
BLEU 47 169.12
BLEURT 869 1949.05
CHRF 80 161.43
CIDER 14 238.25
Datastats
(n-gram, etc)

81 399.64

FactCC 165 2197.16
MAUVE 16191 3380.99
METEOR 65 249.09
Q2 18790 6883.66
QuestEval 7996 5493.33
RMR 2012 167.24
ROUGE 1542 181.41
ROUGE_we1 32830 1219.65
ROUGE_we2 34218 1207.79
S3 (pyr/resp) 458 10470.42
SMS 20972 289.70
SummaC_conv 287 2323.56
SummaC_zs 284 2125.90
SummaQA 923 4830.03
SUPERT 532 2237.44

Table 11: The feature costs in terms of the time taken and memory associated with each evaluation metric. Time
complexity includes both the data preparation and computation time (in seconds). Space complexity includes
average memory taken by the evaluation metrics (in Mb).
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