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Abstract

Steering language generation towards objec-
tives or away from undesired content has been
a long-standing goal in utilizing language mod-
els (LM). Recent work has demonstrated rein-
forcement learning and weighted decoding as
effective approaches to achieve a higher level of
language control and quality with pros and cons.
In this work, we propose a novel critic decod-
ing method for controlled language generation
(CriticControl) that combines the strengths of
reinforcement learning and weighted decoding.
Specifically, we adopt the actor-critic frame-
work and train an LM-steering critic from re-
ward models. Similar to weighted decoding,
our method freezes the language model and ma-
nipulates the output token distribution using a
critic to improve training efficiency and stability.
Evaluation of our method on three controlled
generation tasks, topic control, sentiment con-
trol, and detoxification, shows that our approach
generates more coherent and well-controlled
texts than previous methods. In addition, Crit-
icControl demonstrates superior generalization
ability in zero-shot settings. Human evaluation
studies also corroborate our findings.

1 Introduction
With recent advances in large language models
(LMs), generating natural-sounding text has be-
come feasible (Radford et al., 2019; Brown et al.,
2020; Kim et al., 2021). However, such text can still
be undesirable; for instance, it may be off-topic or
biased and otherwise offensive, reflecting the harms
in the real-world data (Keskar et al., 2019; Liu et al.,
2021; Gehman et al., 2020; Hosseini et al., 2017;
Krause et al., 2020; Lin and Riedl, 2021; Qian et al.,
2022; Meng et al., 2022). To address this issue, sev-
eral controlled text generation methods have been
proposed (Lu et al., 2022; Yang and Klein, 2021;
Dathathri et al., 2019).
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Figure 1: Overview of Controlled Text Generation Ap-
proaches. Note, (a) can generate fluent text through
sequential decision-making, (b) allows effective and effi-
cient control using a ‘plug-and-play’ discriminator, and
(c) combines both strengths.

As shown in Figure 1, two major categories
of approaches to controlled text generation cur-
rently exist: (a) reinforcement learning (RL) and
(b) weighted decoding. In the RL approaches, gen-
erating a word at each time step is formulated as se-
quential decision-making leveraging an LM’s prob-
ability distribution over words (Wu et al., 2016;
Paulus et al., 2017). For example, in the widely
used Actor-Critic framework, the actor—a pre-
trained LM—predicts the next word, and the critic—
a value network—evaluates the state, i.e., text gen-
erated thus far (Stiennon et al., 2020; Wu et al.,
2021). Unfortunately, LM fine-tuning through RL
often suffers from noisy gradient estimation (Green-
smith et al., 2004), which may lead to unstable train-
ing, and eventually mode collapse (Upadhyay et al.,
2022). Even when fine-tuned correctly, optimizing
an entire LM for each target attribute, e.g., detoxifi-
cation, is computationally expensive and memory
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inefficient for real-world applications (Guo et al.,
2021).

In the weighted decoding approaches, the under-
lying LM is kept frozen, and only the final output
probability distribution is adjusted (Holtzman et al.,
2018; Dathathri et al., 2019; Kumar et al., 2021).
More specifically, to condition an LM’s output p(x)
on a target attribute, an approximation of Bayesian
decomposition p(x|a) ∝ p(x)p(a|x) is computed
with p(a|x) from an external discriminator (Yang
and Klein, 2021; Krause et al., 2020). Note, these
approaches involve a frozen LM with an indepen-
dent discriminator for each target attribute; In com-
parison to the RL approaches, this plug-and-play
structure allows more efficient training and memory
use (Gu et al., 2022), but degrades the text quality
in terms of fluency, diversity, etc. (Lu et al., 2022).

In this paper, we propose a novel controlled text
generation algorithm, Critic-Guided Decoding for
Controlled Text Generation (CriticControl), that
re-weight the word distribution from an LM with
predicted state-values from the critic network of
RL. As a result, CriticControl raises the likelihood
of words that increases the value of the next state
over the current state while lowering that of oth-
ers. Since the critic is trained with a frozen LM,
the training is stable and efficient as in weighted
decoding. Moreover, different critics can be used
in a plug-and-play manner depending on targeted
attributes or reward models. In other words, Critic-
Control combines the strengths of both the RL and
the weighted decoding approaches.1

We demonstrate the efficacy of CriticControl
through experiments on three controlled text gener-
ation tasks: topic, sentiment, and toxicity control.
For all tasks, we find that CriticControl consistently
outperforms previous methods in terms of control
success, fluency, and diversity. Also, CriticControl
exhibits strong zero-shot controllability on unseen
topics. Finally, CriticControl is compatible with
widely used sampling methods like top-k and top-p
sampling (Holtzman et al., 2019; Fan et al., 2018)
for improved text quality.

2 Related Works

Reinforcement Learning RL and the adversar-
ial training formulation were first proposed in the
context of language generation as an auxiliary al-
gorithm to mitigate exposure bias in the teacher-

1Code will be available at https://github.com/
minbeomkim/CriticControl.

forcing training of sequences (Ranzato et al., 2015;
Wu et al., 2016; Hu et al., 2017). The main moti-
vation is to incorporate readily-available sequence-
level reward signals into training, such as BLEU
or ROUGE (Paulus et al., 2017). The success of
utilizing RL has been observed in a wide range of
tasks, including summarization (Paulus et al., 2017;
Wu and Hu, 2018; Stiennon et al., 2020; Ziegler
et al., 2019), dialog modeling (Li et al., 2016; Yi
et al., 2019; Jang et al., 2021; Upadhyay et al.,
2022), neural machine translation (Wu and Hu,
2018; Nguyen et al., 2017), and style transfer (Gong
et al., 2019; Ziegler et al., 2019). Furthermore, RL
has allowed models to capture high-level human
feedback (Paulus et al., 2017; Stiennon et al., 2020;
Sharma et al., 2021; Ramamurthy et al., 2022),
which is out of the current work’s scope, however.
Various RL approaches have been explored so far,
such as REINFORCE (Sutton et al., 1999; Ran-
zato et al., 2015; Wu et al., 2016; Sharma et al.,
2021; Upadhyay et al., 2022), the actor-critic frame-
work (Bahdanau et al., 2016; Nguyen et al., 2017;
Jang et al., 2021), and PPO (Schulman et al., 2017;
Nakano et al., 2021; Snell et al., 2022). More re-
cently, Critic-guided methods have been studied to
avoid the risk of RL’s policy learning collapse. GPT-
Critic (Jang et al., 2021) generates critic-guided
texts for enriching task-oriented dialogue datasets.
ILQL (Snell et al., 2022)’s critics guide supervised
models to mimic the behavior of reinforced models.
Our work is the first to incorporate weighted decod-
ing for sequence-level reinforcement learning.

Weighted Decoding Freezing the language
model and controlling the output probability dis-
tribution to suit the purpose is being actively re-
searched (Holtzman et al., 2018; Ghazvininejad
et al., 2017; Keskar et al., 2019; Sudhakar et al.,
2019). This mainstream approach can be used
in various scenarios, such as forcing the model
to generate text that conforms to certain stylistic
or content-based constraints or mitigating aggres-
sive and toxic expressions (Kumar et al., 2021;
Gu et al., 2022; Mireshghallah et al., 2022). The
PPLM (Dathathri et al., 2019) generates texts by
plugging a steering layer into the top of language
models p(x). Then, the gradient from p(a|x) up-
dates iteratively the last hidden representation to de-
sired attributes. It only needs a few layers per each
attribute but requires a lot of iterative computations;
FUDGE (Yang and Klein, 2021) economizes p(x|a)
by bayesian decomposition p(x|a) ∝ p(x)p(a|x)
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Figure 2: Overall flow of CriticControl. Language model completes the sentence in response to the prompt ’The
issue focused on’, and the reward model evaluates the output by judging the relevance of the generated text to the
specified topic. During the inference, critic modifies the output distribution of the language model to ensure that the
generated text is appropriately related to the topic when choosing the next token.

with p(a|x) computing classifier instead of gradi-
ent update methods. For better linguistic quality,
GeDi (Krause et al., 2020) and DExperts (Liu et al.,
2021) take generative discriminator approaches
with two LMs conflicting polarly on the desired
attribute(e.g., positive vs. negative). They interpret
p(a|x) as the degree of disagreement between two
conflicting LMs. In contrast, CriticControl is ad-
vantageous in taking a generative manner with only
a steering layer, like PPLM.

3 CriticControl
CriticControl is a controlled text generation frame-
work that consists of a frozen pre-trained language
model (Actor network) and an extra network for
the state-value prediction (Critic network). Given
a part of the sentence, the actor tries to complete
the attribute-aware continuations with the critic’s
support.

As an RL formulation, at each step t, states are
given as a set of tokens x1:t−1 = {x1, ..., xt−1}
and the attribute a. The policy πθ of the actor sam-
ples xt ∈ V from the next tokens probability of
πθ(xt|xt−1) as

Pπ(xt|x1:t−1) = softmax
(yt
T

)
, (1)

which output logits yt for words in dictionary V
with temperature T to experience diverse trajec-
tories. To train the policy network (i.e., LM),
we use widely used optimization methods (Sutton
et al., 1999) that take policy loss as ∇θJ(θ) =
Eπ[

∑end
t=1At∇θ lnπθ(xt|x1:t−1)]. Note that At is

the advantages function that measures how much
the choice xt is better than the critic predicted, and
we train the critic to minimize At. In our algorithm,

we freeze the actor model and only train the critic
for flexible control, as described in the following
section.

3.1 CriticControl Training
Different from the previous supervised training, we
design a simple text generation framework via re-
inforcement critic learning. As shown in Figure 2,
when the actor completes a given prompt, we let
the reward model evaluate how well the completed
sentence correlates with the attribute a. Then we
give critic a reward rend = Pπ(a|x1:end) to cal-
culate the temporal difference (TD) error δt =
rt+γVπ(x1:t+1)−Vπ(x1:t), consisting of At. This
TD error generalizes Vπ(x1:end) = Pπ(a|x1:end)
to Vπ(x1:t) = Pπ(a|x1:t) (Sutton and Barto, 2018).
Using the evaluation result rend and the text gener-
ation history x1:end, CriticControl minimizes the
generalized advantage estimation loss (Schulman
et al., 2015) to train critic network as follows:

Lcritic =
end∑

t=1

(
end−t∑

i=0

(γλ)iδt+i)
2, (2)

where γ is the reward discount factor and λ is the
re-weighted averaging factor. We backpropagate
this loss to align the critic’s prediction Vπ(xt) with
unbiased empirical future returns to train the critic
network. For the exploration in the training phase,
we adopt a highly stochastic actor strategy. Specifi-
cally, an actor generates diverse outputs from lan-
guage models by using high temperatures T > 1 as
in Equation 1, which increases the entropy of out-
put distributions for logits yt over a vocab of tokens
V . And this leads to diverse text generation, and
the critic can experience more diverse samples in
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each episode. By repeating this simulation, we ex-
pect the critic to learn which decisions of language
models will lead to a promising future.

3.2 Text Generation with CriticControl
Generating human-like text often requires stochas-
tic decoding strategies. They truncate the unreliable
long-tail on the probability distribution for sam-
pling only on realistic token candidates (Holtzman
et al., 2019; Fan et al., 2018). However, adjusting
all probabilities in the vocabulary is very compu-
tationally inefficient. Therefore, to achieve both
stochasticity and computational efficiency simulta-
neously, CriticControl steers the subset of vocabu-
lary V ′ ⊂ V , consisting of top-k probability tokens
from frozen language models with exact probability
re-weighting

Pπ(xt|x<t, a) =
Pπ(xt, x<t, a)

Pπ(x<t, a)

=
Pπ(a|x≤t)

Pπ(a|x<t)
Pπ(xt|x<t),

(3)

to align the probability scale of adjusted words
x ∈ V ′ and non-adjusted words x /∈ V ′. After
adjusting the distribution, CriticControl can com-
bine beam search and various sampling methods. In
experiments, CriticControl adopts both top-k sam-
pling and nucleus sampling by adjusting the top-10
word probabilities of V ′ ⊂ V .

4 Experiments
To evaluate the effectiveness of CriticControl, we
conduct experiments on a variety of controlled text
generation tasks, including topic control, sentiment
control, and detoxification.

4.1 Topic Control
We conduct experiments on topic control tasks to
generate topic-related text, starting with a prompt
consisting of natural plain text independent of any
topic. When implementing our framework, we use
BART-large-MNLI (Lewis et al., 2019)2 as a re-
ward model that computes the relevance between
the texts and the topics. During the training, the
critic is randomly given 1 of 7 topics (computers,
space, military, legal, politics, science, and reli-
gion) (Dathathri et al., 2019) and learns to pre-
dict the semantic relevance between given topics
and generated texts. For the baselines, we report

2https://huggingface.co/facebook/
bart-large-mnli

the results of pure GPT-2-medium (Radford et al.,
2019), WDEC (Yang and Klein, 2021), PPLM, and
FUDGE. Additional implementation details can be
found in Appendix A.1.

4.1.1 Metrics and Evaluation
We evaluate the quality of the generated text in
terms of success in controllability, fluency, and di-
versity. All baselines generate 80 tokens on 20
prompts × 7 topics = 140 comparisons. Previous
works (Dathathri et al., 2019; Yang and Klein, 2021)
measure controllability as the usage rate of their pre-
defined topic-related words used for both training
and evaluation. In contrast, our approach performs
more general optimization and does not use any pre-
defined topic-related words. Hence, we measure
this ’success on control’ with human evaluation.
Annotations answer the question, ‘Is the text rele-
vant to a given topic?’ for all generated texts. Addi-
tionally, we also run the human evaluation of topic
control success on the unseen topic (i.e., zero-shot
setting), not directly related to training topics. We
measure the fluency using two metrics: perplexity,
which is calculated using the GPT-2-XL language
model, and grammaticality, which is determined
using the Roberta-based CoLA model (Warstadt
et al., 2019) 3. Finally, we measure diversity (Li
et al., 2015) using distinct n-grams normalized by
text length, reporting distinct unigrams, bigrams,
and trigrams as Dist-1, Dist-2, and Dist-3 scores,
respectively.

Results As shown in Table 1, CriticControl sig-
nificantly outperforms other baselines on topic con-
trollability, fluency, and diversity. CriticControl
achieves a superior control success rate, and this
tendency is proportional to the size of the GPT-2
model. And even small-sized CriticControl beats
the FUDGE in terms of topic controllability. Fur-
thermore, CriticControl is able to well preserve the
linguistic characteristics of the baseline GPT-2 as
verified by the lower perplexity and the higher gram-
mar scores. We argue that the sequential decision-
making approach of CriticControl helps the sys-
tem preserve the linguistic characteristics of the
original GPT-2 during the training process. Addi-
tionally, CriticControl generates texts without any
pre-defined "bag of words" about topics, unlike
WDEC, PPLM, and FUDGE. This property makes
the system freely choose the topic-related words and

3https://huggingface.co/textattack/
roberta-base-CoLA
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Success Fluency DiversityModel On-Topic Perplexity ↓ Grammar Dist-1 Dist-2 Dist-3
GPT-2-medium (Radford et al., 2019) 0.16 14.06 0.74 0.29 0.70 0.88
WDEC (Yang and Klein, 2021) 0.49 67.53 0.59 0.16 0.42 0.85
PPLM (Dathathri et al., 2019) 0.45 62.66 0.78 0.35 0.78 0.92
FUDGE (Yang and Klein, 2021) 0.78 69.08 0.79 0.34 0.75 0.91
CriticControl 0.89 17.19 0.83 0.49 0.76 0.90
CriticControl - small 0.85 16.88 0.83 0.47 0.73 0.89
CriticControl - large 0.92 17.58 0.84 0.51 0.77 0.91
CriticControl - XL 0.94 17.69 0.83 0.51 0.77 0.91
CriticControl - Zero shot 0.73 17.55 0.85 0.49 0.76 0.90

Table 1: Evaluation results on topic control experiments using GPT-2. Success is the human evaluation results of
‘being on the topic’. The other metrics are automatic evaluation results about text quality. The first five rows show
comparisons over baselines steering freezed GPT-2-medium. Baseline results are adopted from FUDGE (Yang and
Klein, 2021). In the second, CriticControl-[size] indicates the size of the freezed GPT-2. The last is an experiment
on the generalization ability of CriticControl. Other than the above settings, this experiment uses entirely new topics
to verify how robust control is possible, even on unseen topics.

0.59Success

Fluency

0.23 0.18

0.36 0.35 0.29

0.53Success

Fluency

0.15 0.32

0.46 0.2 0.34

CriticControl Equal GPT2 CriticControl Equal FUDGE

Figure 3: Human preference test results for topic control. This experiment compares human preferences between two
generations under the same prompts and topics, CriticControl vs. GPT-2-medium and CriticControl vs. FUDGE.

results in a higher Dist-1 score. These experimental
results verify the effectiveness of this reward-driven
controllable text generation system as sequential
decision-making.

Study Topic
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Religion

Computer
Legal 
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Foods
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Worlds
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0 0.25 0.5 0.75 1

Figure 4: The CriticControl success rate per topic. It is
examined for both the topic used for training and a new,
previously unseen topic. The results indicate consistent
performance on zero-shot topics.

4.1.2 Generalization on unseen Topics
Since the critic learns to predict semantic relevance
between the given random topic and texts to gener-
ate, CriticControl is also able to generalize toward
unseen topics other than seven training domains. In
zero-shot results of table 1, CriticControl shows a
high topic control success rate on new topics. As
shown in Figure 4, CriticControl is even able to

control zero-shot topics such as ‘food, cars, sports,
and music’ that are not seen during training. These
results indicate that the usage of the general reward
model makes it possible to evaluate the semantic
relevance of unseen topic codes to the current texts.
For example, in Table 3, CriticControl generates
texts about Paul McCartney and the FDA from un-
seen topics music and food respectively, without
using pre-defined dictionaries. These results prove
that CriticControl obtains generalization ability by
taking universal reward models, and this free setting
of the reward model will enable various promising
future research.

4.1.3 Human Preference Tests

There is a limitation to solely relying on automated
evaluation for measuring text quality. Therefore, we
run preference tests on CriticControl against GPT-
2 and FUDGE to validate that the text quality of
CriticControl outperforms previous baselines while
being on topics. For the preference test, we hire
three annotators for each comparison pair and ask
two questions Success Rate: 1) Which sentence is
more related to the given topic? and Fluency: 2)
Which sentence is more fluent?.
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Success Fluency DiversityModel Positiveness Perplexity ↓ Grammar Dist-1 Dist-2 Dist-3
GPT-2-medium (Radford et al., 2019) 0.57 11.91 0.78 0.25 0.63 0.78
PPLM (Dathathri et al., 2019) 0.60 142.11 0.73 0.22 0.61 0.72
CC-LM (Krause et al., 2020) 0.76 15.79 0.72 0.28 0.70 0.82
GeDi (Krause et al., 2020) 0.84 38.94 0.76 0.27 0.77 0.89
CriticControl 0.90 12.97 0.87 0.31 0.84 0.92
PPO 0.94 13.43 0.84 0.32 0.86 0.93
PPO - CriticControl 0.99 13.44 0.80 0.32 0.85 0.93

Table 2: Evaluation results on sentiment control language generation using GPT-2. The first is about comparison over
steering freezed GPT-2-medium with each guided decoding method. The last is for verifying the control capability
to improve even reinforced language models. This experiment compares GPT-2-medium finetuned on PPO and
those PPO with CriticControl.

0.41Positiveness

Fluency

0.23 0.36

0.38 0.18 0.44

0.35Positiveness

Fluency

0.30 0.35

0.42 0.26 0.32

CriticControl Equal GPT2 CriticControl Equal GeDi

Figure 5: Human preference test results for sentiment control. This experiment draws comparisons on human
preferences between two continuations after the same prompts, CriticControl vs. GPT-2 and CriticControl vs. GeDi.

Music Emphasised are the words "instrument"
and "instrumentals" in the title. The song is a
cover of the song "I’m a Man" by the band The
Beatles. "I’m a man" is a reference to the song
"Man of the World" by the British band The
Beatles, which was written by John Lennon
and Paul McCartney.
Foods The issue focused on the use of the term
"organic" in the food industry. This issue fo-
cused on a new USDA regulation that requires
food companies to label their products as "or-
ganic" if they meet certain criteria. The regu-
lation was passed in 2010, but the Food and
Drug Administration (FDA) has yet to issue a
final rule.

Table 3: The zero-shot topic control examples on
given topic-prompt pairs {Music, Emphasised are} and
{Foods, The issue focused on}. CriticControl generates
words like ’Beatles’ and ’USDA regulation’ that are less
likely to observe in the training set.

Results In the preference test, CriticControl also
outperforms baselines on both topic control success
rate and fluency, as shown in Figure 3. In the flu-
ency comparison with GPT-2, CriticControl also
wins, resulting from generating sentences within
the area guaranteed by the reward model. Both au-
tomatic and human evaluation results indicate that
CriticControl achieves a state-of-the-art topic con-
trol ability while preserving the original GPT-2’s
text quality.

4.2 Sentiment Control
Next, we explore CrilticControl’s ability to steer
text generation toward a specific sentiment. This
sentiment control task aims to steer the model to
complete positive movie reviews with any emo-
tional prompt. We adopt the IMDB movie review
dataset, containing highly polar (positive or nega-
tive) reviews of 2.5K for training and 2.5K for test-
ing. We use the 8 starting tokens for each sentence
to make prompts and generate 25 continuations for
each prompt using all of the baseline systems. In
this task, we additionally test ‘Could CriticControl
enhance the reinforcement-learned LMs to achieve
goals more appropriately?’. Additional implemen-
tation details are in Appendix A.2.

4.2.1 Metrics and Evaluation
We evaluate total 2.5K generations of each baseline
in terms of positiveness, fluency, and diversity. We
define the positiveness as the percentage of genera-
tions classified to ’positive’ from distilBERT clas-
sifier finetuned on the IMDB dataset, used as our
reward model. In the same way as the topic control
task, we measure fluency through perplexity and
grammatically, using Dist-n for diversity metrics.

Results As shown in Table 2, CriticControl sig-
nificantly outperforms the other baselines on the
success rate of sentiment control, fluency, and di-
versity metrics. Also, we observe that generative
controllers such as GeDi and CriticControl demon-
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Success Fluency DiversityModel Toxic prob ↓ Perplexity ↓ Grammar Dist-1 Dist-2 Dist-3
GPT-2-large (Radford et al., 2019) 0.520 11.31 0.84 0.58 0.85 0.85
PPLM (Dathathri et al., 2019) 0.518 32.58 0.75 0.58 0.86 0.86
DAPT (Gururangan et al., 2020) 0.360 31.21 0.71 0.57 0.84 0.84
GeDi (Krause et al., 2020) 0.217 60.03 0.79 0.62 0.84 0.83
DExperts (Liu et al., 2021) 0.128 32.41 0.76 0.58 0.84 0.84
CriticControl 0.081 17.02 0.81 0.56 0.84 0.87

Table 4: Experimental results on the detoxification task. The results are compared with baselines for steering a
freezed GPT-2-large model. We adopt the baseline results from (Liu et al., 2021).

0.45Less Toxic

Fluency

0.17 0.37

0.39 0.24 0.37

0.50Less Toxic

Fluency

0.14 0.35

0.48 0.22 0.30

CriticControl Equal GPT2 CriticControl Equal DExperts

Figure 6: Human preference test results for detoxification. This experiment shows comparisons of preferences
between two continuations after the same prompts, CriticControl vs. GPT-2 and CriticControl vs. DExperts.

strate better performance than PPLM. Among them,
GeDi outperforms CC-LM’s control performance
by generating guided texts through the use of con-
tradicting positive and negative CC-LMs. However,
the different text generation strategies of GeDi and
CC-LMs lead to a reduction in text quality, as indi-
cated by the perplexity score. On the other hand,
CriticControl trains the critic in a sequential deci-
sion view and allows the actor and critic to share
the same experience, resulting in the best perfor-
mance on metrics. And both the topic and senti-
ment control experiments show the effectiveness
of CriticControl in improving grammatical correct-
ness compared to naive GPT-2. We explain that
this is because CriticControl increases the amount
of information within the region identified by the
reward model, whereas naive GPT-2 does not. Fur-
thermore, our additional experiment on PPO in Ta-
ble 2 shows that CriticControl even improves the
performance of RL-finetuned language models, not
just freezing language models. Overall, our results
show that CriticControl is promising for extending
the use of RL in downstream tasks.

4.2.2 Human Preference Tests
For human evaluation, we conduct preference tests
by comparing CriticControl with GPT-2-medium
and GeDi. We randomly select 200 samples from
the test set and ask annotators to indicate 1) Posi-
tiveness: Which sentences are more positive, and 2)
Fluency: Which are more linguistically fluent. As
in the topic control experiment, we take the majority
vote of 3 annotators for each comparison.

Results As shown in Figure 5, CriticControl is
successful at generating positive text compared to
other baseline systems. However, since CriticCon-
trol should force negative prompts to be positive, the
fluency of the generated text is poorer than that of
a naive GPT. On the other hand, when we compare
CriticControl to GeDi, we observe that CriticCon-
trol has much better fluency while still maintaining
a high level of positivity. We find that people show
the same preference for positivity among the two
models and choose equality for considerable sam-
ples, different from the automatic evaluation results.
We explain that this is because people have diffi-
culty choosing more positive sentences among two
positive sentences, unlike distinguishing between
positive and negative sentences.

4.3 Detoxification
LMs might generate offensive or biased responses
that are risky. To remedy this issue, we conduct
experiments on reducing the toxicity of LMs as an-
other controlled text generation task. We use GPT-
2-Large as base LM and train the reward model us-
ing BERT-based classification (Devlin et al., 2018)
models on a dataset from the Jigsaw Unintended
Bias in Toxicity Classification Kaggle challenge
4. We use the prompts in RealToxiciyPrompts
dataset (Gehman et al., 2020) which consists of
100K prompts. During the training, we use 90K
prompts in this dataset to train the critic. We use
the remaining 10K non-toxic test prompts as DEx-

4https://www.kaggle.com/c/
jigsaw-unintended-bias-in-toxicity-classification
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perts and generate 20 tokens. We compare our ap-
proach with naive GPT-2-Large, PPLM, DAPT (Gu-
rurangan et al., 2020), GeDi, and DExperts (Liu
et al., 2021). Detailed implementations are in Ap-
pendix A.3.

4.3.1 Metrics and Evaluation
We evaluate a total of 10k generated sentences for
toxicity, fluency, and diversity. We use the Per-
spective API (Hosseini et al., 2017) 5 to classify
sentences based on the most toxic token. We mea-
sure fluency and diversity as the same way in the
previous section on topic control 4.1.

Results The experimental results in table 4 show
that CriticControl outperforms other existing base-
lines. CriticControl effectively avoids using toxic
language while maintaining the natural flow of the
text. Since this task aims to remove toxic elements
while preserving the amount of information, the
diversity scores are all similar between baselines.

4.3.2 Human Preference Tests
For human evaluation, we conduct preference tests
comparing CriticControl to GPT-2-large and DEx-
perts. We randomly draw 200 samples from the
results of the test set and ask annotators to indicate
1) Less Toxic: Which one is more rude or disre-
spectful (toxic comparison) and 2) Fluency: Which
one is more grammatically correct and coherent?
As in the topic and sentiment control experiment,
we adopt the majority vote of three annotations for
each comparison.

Results Human evaluation results in Figure 6
state that CriticControl is almost equivalent to the
fluency of GPT-2 and exceeds the DExperts. Fur-
thermore, the results verify that when evaluating
the toxicity of the text generated from the same
prompts, CriticControl consistently outperforms
both GPT-2 and Dexperts.

4.4 Qualitative Analysis and Discussion
We analyze how the critic in our proposed method
controls language models to generate the desired
texts. As a qualitative analysis, we identify the prob-
ability change statistics of each word during the de-
coding step of CriticControl. We then discuss the
most critic-favored and most critic-rejected words
in each task. In topic and sentiment control, each
word whose probability is quite improved through

5https://perspectiveapi.com/
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Figure 7: List of words promoted or rejected by Critic
in relation to each task. The figure plots the probability
ratio before and after control.

the critic is highly related to the given topic or sen-
timent. For example, ‘terrorism, crime, and guns’
come up for political topics, ‘immunity and flu’ for
science topics, and ‘play, stylish, and emoji ><’ for
positive sentiment. One of the interesting findings
is that the critic strongly rejects emotional words,
such as ‘felt and depressed’, to generate sentences
suitable for science topics. We explain this because
language models struggle to generate scientific texts
starting from emotional prompts. We also observe
another notable point to discuss in the detoxifica-
tion experiment. The detoxifier-critic recommends
words related to science or technology to the lan-
guage model while rejecting offensive and insulting
words. The frequently recommended words such
as ‘sci, application, and apps’ are factual words
because the opportunity for the language model
to make an aggressive remark disappears when a
prompt for objective facts are created in the first
place. These analyses verify how well CriticCon-
trol corrects the word’s probability to achieve its
goal in terms of language models.

5 Conclusion

We propose CriticControl, a controlled text genera-
tion method that takes advantage of both reinforce-
ment learning and weighted decoding. Through
experiments on various controlled text generation
tasks, we demonstrate that CriticControl can ef-
fectively guide language models toward desired at-
tributes while producing high-quality texts. Addi-
tionally, we show that CriticControl has a strong
generalization ability in zero-shot attribute control
tasks by using a general reward model. One of the
limitations of this approach might be its high com-
putational cost to explore with ‘GPT3-scale’ lan-
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guage models (Brown et al., 2020), and we expect
that this can be addressed through offline reinforce-
ment learning (Fujimoto et al., 2019) techniques in
future research.

Limitations

Large language models over the GPT-3 have made
significant progress in natural language generation,
but applying the CriticControl method, and explor-
ing through these large language models are com-
putationally too expensive. To address this, offline
reinforcement learning (Fujimoto et al., 2019) may
be a promising option to minimize training costs.
CriticControl also has inference speed degradation
because additional inference costs are needed like
other controlled text generation methods (Dathathri
et al., 2019; Yang and Klein, 2021). The potential
solution may be to use the action-value predicting
critic (Yue et al., 2020), which would allow for
real-time control of various attributes without af-
fecting the inference speed of the language model.
Recently, the impact of instruction models (Chung
et al., 2022; Ouyang et al., 2022) on text generation
has recently been highlighted in academic research.
These models, which allow for control over the gen-
erated text via input manipulation, have become
widely accessible on various attributes without ex-
tra computational costs. Future works will inves-
tigate the synergistic potential between the ‘input-
side’ control of instruction-based models and the
‘output-side’ control of CriticControl.

Ethical Statement

We acknowledge that our reward-driven text gen-
eration system may lead to generating harmful or
misleading content when used with undesired re-
ward models. However, controlled text generation
methods have the potential to address these ethical
issues present in large-scale pretrained language
models, for example, through the detoxification of
language. Therefore, we emphasize the proper use
of reward models to pursue the public good and
believe that it is important to continue research in
this area as these techniques can offer significant
benefits.
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A Implementation Details

All training on GPT-2-{small, medium, large, lx} is
performed on two NVIDIA RTX A5000 24GB. The
following implementation is based on temperature
T = 2 in equation 1 and λ = 0.95 and γ = 0.99 in
equation 2.

A.1 Topic Control
To control a language model for universal topics,
we adopted BART-Large-MNLI (Lewis et al., 2019),
language models for measuring universal relevance,
as a general reward model rather than a binary classi-
fier. When GPT-2 generates 80 continuations from
the prompt, the reward model evaluates how rel-
evant the generation is to the desired topic, and
the critic learns to predict this relevance-reward.
We follow the training setup of PPLM (Dathathri
et al., 2019), training value predictor with seven
topics (computers, space, military, legal, politics,
science, and religion)). We take temperature T =
2 during sequential samplings, exploring various
text trajectories. For inference, CriticControl gets
repetition-penalty with a greedy decoding strategy.
We follow previously reported human and auto-
matic evaluation results of (Yang and Klein, 2021),
including pure GPT-2-medium for naive generated
texts, PPLM (Dathathri et al., 2019), WDEC and
FUDGE (Yang and Klein, 2021). For the ablation
study, we vary the size of the language model scales
from GPT-2-small to GPT-2-XL.

A.2 Sentiment Control
Since this task is to manipulate the emotions of
movie reviews, all baselines compare the controlled
text from GPT-2-medium finetuned on IMDB movie
review dataset. During training procedure, LM
completes texts from GPT-2 without any shifts,
starting with positive and negative IMDB prompts.
Then, the critic observes these experiences and
learns rewards generated from the reward model,
distilBERT (Sanh et al., 2019) sentiment classi-
fier finetuned on 2.5k reviews in IMDB dataset.
Finally, CriticControl generates critic-guided text
using nucleus sampling with a probability of 0.9
on test datasets. All baselines generate and com-
pare their own ‘guided’ texts from the 2.5k test
IMDB prompts. Our discussion starts from GPT-
2 - medium, the basic baseline for sentiment con-
trol. For discussing PPLM, we retrain IMDB senti-
ment classifier for gradient updates. Then, PPLM
decodes greedily on updated latent representation

Ht + ∆Ht. GeDi consists of GPT-2-XL and two
polar generative discriminators, CC-LMs (Krause
et al., 2020) finetuned on ‘positive’ or ‘negative’
IMDB movie reviews. For a fair comparison,
we downgrade GeDi’s language model to GPT-2-
medium finetuned on IMDB. We discuss both ‘Pos-
itive’ CC-LM and GeDi for the sentiment control
experiment. We add an experiment to answer the
question, "Could reinforcement-learned models be
critic-guided to achieve goals more appropriately?"
To verify this potential, we finetune PPO (Schulman
et al., 2017) on unfreezed GPT-2-medium by our
reward model, and compare naive PPO and PPO
with CriticControl.

A.3 Detoxification
In order to fairly compare our approach with other
methods for controlled text generation, we use GPT-
2-Large as our base language model. We train the
reward model using BERT-based classification (De-
vlin et al., 2018) models on a dataset from the Jigsaw
Unintended Bias in Toxicity Classification Kaggle
challenge 6. All evaluated generations start from the
RealToxiciyPrompts dataset (Gehman et al., 2020),
which consists of 100K prompts designed to elicit
toxic responses. And we follow the experimental
setup used by DExperts. During critic training, we
use 90K toxic and non-toxic prompts from the train
set with our reward model. For evaluation, we use
the same 10K non-toxic test prompts as DExperts
and generate 20 tokens using top-10 sampling. We
also include reported baselines from DExperts (Liu
et al., 2021), including naive GPT-2-Large, PPLM,
DAPT (Gururangan et al., 2020), GeDi, and DEx-
perts.

B Human Evaluation

During human evaluation, the end of the sentence
is almost incomplete because baselines generate a
fixed number of tokens from the prompt. Therefore,
we added ‘[...]’ for the end of all generated texts
for comfortable reading. Then, we give instructions
about ‘Don’t care about the incomplete last sentence
for evaluating fluency, which is marked with [...]
due to length limitation.’ to annotators as in Figure
8. Also, we notice ‘Please select equal only when it
is really difficult to judge’ for more accurate human
evaluation results in the preference test. We pay
MTurk workers a competitive pay of more than $10

6https://www.kaggle.com/c/
jigsaw-unintended-bias-in-toxicity-classification
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Figure 8: An example instruction page shown to Amazon MTurk annotators for human preference test on the topic
control.

an hour. We hire the workers whose nations in
one of the US, CA, UK, AU, NZ. We restrict the
annotators whose HIT minimum hits are over 1000
and HIT rates are higher than 96%.
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