
Findings of the Association for Computational Linguistics: ACL 2023, pages 4631–4644
July 9-14, 2023 ©2023 Association for Computational Linguistics

SEAG: Structure-Aware Event Causality Generation

Zhengwei Tao1 Zhi Jin1∗ Xiaoying Bai2∗ Haiyan Zhao1

Chengfeng Dou1 Yongqiang Zhao1 Fang Wang1 Chongyang Tao1

1Peking University, 2Advanced Institute of Big Data
{tttzw,yongqiangzhao,fangwang}@stu.pku.edu.cn, baixy@aibd.ac.cn

{zhijin,zhhy.sei,chengfengdou,chongyangtao}@pku.edu.cn

Abstract

Extracting event causality underlies a broad
spectrum of natural language processing ap-
plications. Cutting-edge methods break this
task into Event Detection and Event Causal-
ity Identification. Although the pipelined solu-
tions succeed in achieving acceptable results,
the inherent nature of separating the task incurs
limitations. On the one hand, it suffers from
the lack of cross-task dependencies and may
cause error propagation. On the other hand, it
predicts events and relations separately, under-
mining the integrity of the event causality graph
(ECG). To address such issues, in this paper,
we propose an approach for Structure-Aware
Event Causality Generation (SEAG). With a
graph linearization module, we generate the
ECG structure in a way of text2text genera-
tion based on a pre-trained language model. To
foster the structural representation of the ECG,
we introduce the novel Causality Structural Dis-
crimination training paradigm in which we per-
form structural discriminative training along-
side auto-regressive generation enabling the
model to distinguish from constructed incor-
rect ECGs. We conduct experiments on three
datasets. The experimental results demonstrate
the effectiveness of structural event causality
generation and the causality structural discrim-
ination training.

1 Introduction

Event Causality plays an essential role in Nat-
ural Language Processing (Girju, 2003). Event
Causality Extraction aims to recognize events and
their inter-causal relations from text. As shown in
Figure 1, given the input text, the model should
be able to identify three events, i.e., “suffered”,
“invasion” and “destroyed”, and the causal rela-
tions in between. Extracting event causality has
impactful applications such as question answer-
ing (Yang et al., 2022; Ho et al., 2022), event fore-
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Figure 1: Comparison between SEAG and the pipelined
model. SEAG completes Event Causality Extraction by
text2text generation while the pipelined methods break
this task into two sub-tasks, i.e., Event Detection (ED)
and Event Causality Identification (ECI). Dashed arrows
stand for failing to extract the correct causalities.

casting (Hashimoto et al., 2014) and reading com-
prehension (Berant et al., 2014).

For the purpose of Event Causality Extraction,
current methods break down the task into two sub-
tasks, i.e. Event Detection (ED) (Chen et al., 2015;
Wang et al., 2019; Lin et al., 2020a) and Event
Causality Identification (ECI) (Zuo et al., 2020;
Phu and Nguyen, 2021; Chen et al., 2022). Then
the solution of Event Causality Extraction is in-
tegrating these two sub-tasks. Although such a
pipelined method is feasible to a certain extent,
two limitations deteriorate the efficacy. First, in
the view of task formulation, it over-simplifies the
problem as two local extraction processes with ig-
norance of cross-task dependencies. Such separa-
tion hinders feature and knowledge sharing when
extracting events and their causal interdependence.
It also can result in error propagation. As shown
in Figure 1, although the event “abandon” has no
causal relations with other events in the context, the
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ED model still detects it neglecting the cross-task
dependencies with ECI. Second, from the event
causality perspective, the events and their causal re-
lations form a global event causality graph (ECG).
The pipelined models break the innate structural
causality of all events in the context when ex-
tracting the events and their inter-relations with-
out capturing the structural interactions within the
ECG. For example in Figure 1, events “suffered”,
“invasion” and “destroyed” form an ECG. The
pipelined models fail to leverage this structural in-
formation and then miss the causality between “de-
stroyed” and “suffered” by only counting on these
two events themselves. Without such structural
understanding, models are likely prone to extract
events and causal relations by the perception of
superficial linguistic features (Wang et al., 2022a)
and make biased predictions.

To bypass the absence of the task depen-
dency brought by pipelining separation, we pro-
pose Structure-Aware Event Causality Genera-
tion (SEAG), a novel paradigm for Event Causal-
ity Extraction. Specifically, SEAG linearizes the
ECG with a label semantic enhanced template and
then generates the extraction results in a text2text
generative format based on a generative pre-trained
language model (Raffel et al., 2020). SEAG gener-
ates all events and relations in one-pass, avoiding
local prediction in either ED or ECI. This end-to-
end extraction can further mitigate the error propa-
gation. Moreover, regarding the ECG as the output,
SEAG enables the reasoning and interactions in
the whole structure. Such a structural extraction
process maintains the ECG and its semantics intact.
To further improve the understanding of the ECG,
we adopt Causality Structural Discrimination. We
first sample negative events and relations to com-
pose negative ECGs. Then we conduct discrimina-
tive learning to foster the model’s awareness of the
positive ECG. During this discriminative process,
the model can learn to comprehend the in-depth
event causality semantic of ECG structures, not
learn only on superficial features.

We conduct experiments on three Event Causal-
ity Extraction datasets to testify to the effectiveness
of SEAG. Evaluation results show that the end-to-
end extraction of events and their causal relations
in a text2text format is effective. Moreover, Causal-
ity Structural Discrimination further improves the
model’s extraction ability with a better understand-
ing of event structure. We summarize our contribu-

tions as follows:
• We propose SEAG for Event Causality Ex-

traction which extracts events and causal rela-
tions via end-to-end text2text generation.

• We introduce Causality Structural Discrimi-
nation to further foster the event structural
understanding of our model.

• We conduct extensive experiments to test the
effectiveness of our model.

2 Preliminaries

Task Formulation. Event Causality Extraction
aims to extract events and their inter-causal re-
lations from a text sequence. Formally, given
an input text sequence X consisting of n words
X = [x1, x2, ..., xn]. Event Ei is represented as
multiple consecutive words {xik}. A model should
extract all causal triplets (Ei, Ej ,Rij) ∈ S. Ei is
the ith event. Rij is the causal relation. The causal
triplet (Ei, Ej ,Rij) stands for the existence of a
causal relation Rij between Ei and Ej . Convention-
ally, there are two analogous task settings:

• Directed. The model predicts the directional-
ity of cause and effect events. The type of Rij

is binary, i.e. Rij ∈ {CAUSE, EFFECT}1.
• Undirected. The model only predicts the ex-

istence of causality between events. The type
of Rij is unary, i.e. Rij = CAUSAL.

Pipelined Extraction. Pipelined methods break
Event Causality Extraction into Event Detec-
tion (ED) and Event Causality Identification (ECI).
They solve the task as learning the probability
P (R|E ,X ) · P (E|X ) which breaks the joint prob-
ability of P (E ,R|X ).

Event Causality Graph. An Event Causality
Graph (ECG) is a graph G = (E,V). Ei ∈ E is an
event and an edge Vij ∈ V denotes there exists a
causal relation between Ei and Ej . In the Directed
setting, G is a directed acyclic graph while in the
Undirected case, G is an undirected graph.

Structural Generation. We model Event Causal-
ity Extraction as structural generation. We first
compose the causal triplet set S as an ECG. We
then learn a model P (G|X ) to identify the ECG in
a text2text paradigm given the context X .

1CAUSE and EFFECT are symmetrical. For any Rij , we
don’t augment its symmetric relation in Directed setting.
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Figure 2: Overview of our SEAG. SEAG completes Event Causality Extraction by Structure-Aware Event
Causality Generation. The Graph Linearization module linearizes all positive G and negative G̃s into Y and Ỹs.
Then SEAG conducts Structural Discriminative Training to foster ECG understanding.

3 Method

Model Overview. Our SEAG first linearizes the
ECG G with a label semantic enhanced template.
Then it leverages a generative pre-trained language
model to predict the results. At last, it improves the
ECG structural comprehension via Causality Struc-
tural Discrimination. The overview of SEAG is
in Figure 2. In the rest of this section, we first
detail the graph linearization in Section 3.1. Then
we elaborate the generation process in Section 3.2.
Finally, we present the Causality Structural Dis-
crimination in Section 3.3.

3.1 Graph Linearization

To extract the ECG G in a generative paradigm, the
ECG should be linearized into a sequence Y . This
linearization should keep the structural information
intact and be as consistent as possible with natural
language characteristics.

Considering the appearance order of events in
the context is a crucial feature for our task, we
infuse the positional information of events in Y .
Given an ECG G originating from triplet set S, we
sort triplets in S by the head event position in X . If
two triplets have the same head event, we arrange
them according to the second event.

After obtaining sorted S2, one possible lin-
earization process is to iteratively compose
(Ei, Ej ,Rij) into Y , which ends up with Y =
[E1, E2,R12, E1, E3,R13, ...]. This template is
widely adopted in entity relation extraction (Giorgi
et al., 2022; Guo et al., 2022). However, we find

2We only consider annotated relations rather than any rela-
tions derived by transitivity.

that this is not suitable for Event Causality Extrac-
tion since the relations, often verbs, between events
entail dynamic information. The above template
violates event causal label semantics and severely
deteriorates linguistic structure. In order to inject
event causal label semantics and enable making
more use of the pre-trained language model, we
linearize G as follows:

Y = [E1,R12, E2, SEP, E1,R13, E3, SEP, ...] . (1)

SEP is a separator indicator. In this template, rela-
tion words act as verbs making the sequence more
fluent and close to real natural language sentences.

Modifier Pruning. In the real scenario, an event
may consist of a core word and several modi-
fiers (e.g. “magnitude-6.1 earthquake”). These
modifiers incur noise when generating the results.
Therefore, we prune all events in Y by only keeping
the last word to represent the event.

Natural Language Quantifier. Another issue
arises when there are events that share the same
words, which can be problematic for a generation
model as well. We tackle this problem by adding
a natural language quantifier to distinguish dupli-
cated event words. Supposing Ei, i = [1, 2, 3] have
the same words, we adapt them into “first E1”, “sec-
ond E2”, “third E3”. In case of more duplicated
numbers, the language quantifier goes on.

In sum, we linearize G into Y and denote this
linearization process as Y = Linear (G).

3.2 Structure-Aware Event Causality
Generation

After obtaining Y , we have adapted this task into
a text2text generation P (Y|X ) format. In this sec-
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tion, we elaborate on this generation process.
Given input X , SEAG outputs Y via the gen-

eration process. This generation is modeled by
pre-trained generative language model M such as
T5 (Raffel et al., 2020) or BART (Lewis et al.,
2020), which are pre-trained on large-scale cor-
pus. SEAG first encodes the input X via the en-
coder Enc of M. The encoding output is H =
Enc(X ; θe), which is the encoding hidden states
representation. SEAG then generates Y with de-
coder of M in an auto-regressive process.

P (Y|X ) =
∏

i

Dec(Y<i,H; θd). (2)

We denote the encoder and decoder parameters of
M as θM = (θe, θd).

Training and Inference. SEAG is trained on all
(X ,Y) pairs by log-likelihood maximization loss:

LG = −
∑

(X ,Y)

logP (Y|X ; θM) . (3)

To infer an answer providing input X , SEAG first
encodes it with its encoder and then generates Y
through the beam search mechanism.

Constraint Decoding. During inference genera-
tion, in order to constrain not generating irrelevant
words, methods solving entity extraction introduce
pointer mechanism (Zeng et al., 2018, 2020), and
indices-based generation (Nayak and Ng, 2020).
However, to keep the decoding process neat, we
only constrain the generated words to be words in
X , relation tokens R, and separator SEP. We find
this constraint is enough for SEAG to complete
Event Causality Extraction.

3.3 Causality Structural Discrimination

Although the above generation process keeps the
ECG structural information intact, only trained
with generation loss LG (3), the model tends to
extract unfaithful ECGs (Zhu et al., 2020). The
model is prone to extract events and causal rela-
tions on superficial linguistic features. The culprit
is the inadequacy of structural event causality com-
prehension of the model.

One possible solution is to perform contrastive
learning which considers a graph as a whole and
aims to differentiate positive and negative graphs in
a hidden space. However, not all nodes and edges
in a negative graph are incorrect.

Therefore, to bypass this dilemma, we introduce
Causality Structural Discrimination to improve the
model’s understanding of ECG. We first construct

Algorithm 1: Negative ECG Construction.
Input :Positive ECG G = (E,V). Input text X .

Hyper-parameters n and L.
Output :Constructed negative ECG list G̃.

1 G̃ = [ ]

2 Ẽ = FindNegEvent(X )
3 N = E ∪ Ẽ
4 for i← 1 to n do
5 l = RandomInt(L)
6 {(Ei, Ej)} = SampleNegPair(N, l)
7 {(Ei, Ej ,Rij)} = AssignRel(N, l)
8 foreach (Ei, Ej ,Rij) do
9 Assert (Ei, Ej ,Rij) /∈ V

10 end foreach
11 G̃ = Compose({(Ei, Ej ,Rij)})
12 G̃.Append(G̃)
13 end for
14 return G̃

several negative the ECGs. Then we conduct a dis-
crimination process to train the model to be aware
of the positive ECG structure.

Negative ECG Construction. Given the posi-
tive event node set E in a true G, we first pre-
extract the negative event node set Ẽ via a lin-
guistic toolkit. We denote the total event set as
N = E ∪ Ẽ. After that, we sample negative event
pairs from N and assign them random relations but
guarantee they are not the positive edges in V, i.e.
{(Ei, Ej)| (Ei, Ej) /∈ V}. Then we compose these
negative edges as a negative ECG G̃.

We repeat the above negative construction pro-
cess n times, to obtain n negative ECGs. Each
time, the number of sampled event pairs is differ-
ent. We randomize this number between 1 and a
maximum threshold of L. Formally, The Negative
ECG Construction is shown as Algorithm 1.

Structural Discriminative Training. After ac-
quiring all G̃s, we apply the same linearization
process in Section 3.1 to linearize the G̃s. Then
we get negative sequences Ỹ = Linear(G̃). We
next propose to train the model to be able to distin-
guish negative ECG G̃ which equals to minimize
the probability of Ỹ .

However, adopting structural discriminative
training upon a generative model is not simple
since not all parts of G̃ are negative. Consider-
ing the G̃1 shown in Figure 2, (E1, E6) is a negative
edge while E1 is a positive event. One simple so-
lution is to minimize the probability of this edge.
Notice SEAG is trained in an auto-regressive way.
This solution may confuse the model when adding
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probability reduction to E1. The sub-sequence till
the step of E1 is the same as that of positive Y since
E6 has never shown up yet.

We solve this dilemma by designing the struc-
tural discriminative training. For a negative
ECG G̃, we assign different optimization objec-
tives to each token after linearization. Considering
an edge (Ei, Ej) from G̃, according to the lineariza-
tion in Section 3.1, it results in a sub-sequence of
Ỹ[u:u+4] = [Ei,Rij , Ej , SEP]. If Ei is a negative
event, we reduce the probability of both events:
if Ei /∈ E :

D(Ei) = − α · log(1− P (Ei|Ỹ<u))

D(Ej) = − α · log(1− P (Ej |Ỹ<u+2)) .

(4)

If Ei is a positive event while Ej is a negative event
or if Ei and Ej are both positive events but there’s
no path between Ei and Ej in G:

if Ei ∈ E ∧ (Ej /∈ E ∨ not HasPath(Ei, Ej ,G)) :
D(Ei) = − β · log(P (Ei|Ỹ<u))

D(Ej) = − α · log(1− P (Ej |Ỹ<u+2)) ,
(5)

where HasPath(·) is a function to find whether
there exists a path between two nodes in a graph3.
The motivation here is to train the model to be
aware of ECG structural semantics. Firstly, non-
connected events or negative events entail no
causality. Secondly, since causality has the prop-
erty of transitivity, there should exist a causal rela-
tion between events linked by a path even if they
are not directedly connected. This discriminative
learning injects the causality structural knowledge
into our model. We treat Rij and SEP tokens as:

D(Rij) = − γ · log(1− P (Rij |Ỹ<u+1))

D(SEP) = − β · log(P (SEP|Ỹ<u+3)) .
(6)

where α, β and γ are hyper-parameters to control
the structural discriminative learning.

We conduct the same optimization for the rest of
Ỹ . Therefore, the structural discriminative learn-
ing for G̃ is Dis(G̃) = ∑

tD(Ỹt). The final struc-
tural discriminative training loss is computed over
all constructed negative ECGs. Then we conduct
multi-task training to train SEAG with LG and LD

L = LG + LD, LD =
∑

i

Dis(G̃i). (7)

3In Undirected setting, deciding whether there’s a path
between two nodes equals to determine if these two nodes are
in the same component.

4 Experiments

This section first gives the datasets we want to use
in Section 4.1. We elaborate on the evaluation met-
rics for Event Causality Extraction in Section 4.2.
The baselines and the implementation details are in
Section 4.3 and 4.4 respectively. We finally report
the experimental results in Section 4.5.

4.1 Datasets

EventStoryLine. It’s a wildly ECI dataset. It
contains 258 documents, 22 topics, 5,334 events,
and 1,770, and 3,885 intra- and inter-causal re-
lation pairs (Caselli and Vossen, 2017). Follow-
ing Gao et al. (2019), we take event pairs anno-
tated with ‘FALLING_ACTION’ as CAUSE re-
lation and ‘PRECONDITION’ as EFFECT. We
conduct both Undirected and Directed settings on
this dataset. For both settings, we use documents
from topics 37 and 41 as the validation set and
leave the rest to perform 5-fold cross-validation.

MAVEN-ERE. This is the newest Event Rela-
tion Extraction dataset, including causal, temporal,
and sub-event relation types (Wang et al., 2022b).
It contains 4,480 documents, 103,193 events, and
57,992 causal relation pairs. The causal event pairs
are annotated by ‘CAUSE’ or ‘PRECONDITION’,
which are both for the CAUSE relation. There-
fore, we only conduct the Undirected setting in this
dataset and take triplets annotated with ‘CAUSE’
and ‘PRECONDITION’ as gold data. Since this
dataset has not published its test set, we conduct
in-house validation. We sample 10% of the data
from the original training set as the validation set
and leave the rest as the training set. We use the
original validation set as the test set.

SCITE. This is a CAUSE-EFFECT span de-
tection dataset by extending the annotations of
more causal triplets in the SemEval 2010 task 8
dataset (Li et al., 2021). We conduct both Undi-
rected and Directed settings on this dataset.

To handle documents that are longer than the
maximum allowed length for T5, we split the docu-
ments in both EventStoryLine and MAVEN-ERE
via the following method: we identify the two sen-
tences that contain the starting and ending events
and gather the sentences in between them. These
sentences are all used as the context for the event
triplet. All the event triplets of the same sentences
are grouped together, and each group is treated as a
single data point. So each data point in our dataset
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Undirected Directed

P R F1 P R F1

PIPELINED MODEL

DB+BERT (Wang et al., 2019) 23.03 ± 4.36 26.73 ± 4.76 24.51 ± 3.80 27.90 ± 3.59 16.78 ± 3.84 20.69 ± 2.86
DB+LONG (Beltagy et al., 2020) 28.26 ± 2.95 34.15 ± 5.93 30.86 ± 4.13 28.33 ± 2.79 17.53 ± 4.88 21.37 ± 3.99
DB+ERGO (Chen et al., 2022) 25.76 ± 3.27 34.76 ± 7.88 29.46 ± 4.86 25.01 ± 2.95 20.90 ± 3.97 22.53 ± 2.49

GENERATIVE MODEL

Seq2Rel (Giorgi et al., 2022) 32.26 ± 6.09 24.24 ± 3.34 27.63 ± 4.42 25.17 ± 5.58 18.78 ± 3.43 21.47 ± 4.29
SEAG (Ours) 37.98 ± 8.48 32.33 ± 6.14 34.85 ± 7.10 31.69 ± 6.93 23.30 ± 4.44 26.77 ± 5.31

Table 1: Results on EventStoryLine dataset on both settings. We report the average and standard deviation scores
on conducting 5-folds cross-validation. Bold numbers represent the highest scores.

Undirected Directed

P R F1 P R F1

PIPELINED MODEL

DB+BERT (Wang et al., 2019) 51.03 87.83 64.55 73.14 66.72 69.78
DB+LONG (Beltagy et al., 2020) 51.90 84.96 64.45 70.87 67.39 69.09
DB+ERGO (Chen et al., 2022) 85.15 92.06 88.47 85.16 66.89 74.92

JOINT MODEL

SCI (Li et al., 2021) - - - 83.33 85.81 84.55

GENERATIVE MODEL

Seq2Rel (Giorgi et al., 2022) 86.37 81.41 83.82 88.34 79.39 83.62
SEAG (Ours) 91.78 90.54 91.60 90.68 85.47 88.00

Table 2: Results on SCITE datasets on both settings. Bold numbers represent the highest scores.

is successive sentences, not the whole document.
We testify our method and all baselines under this
setting.

4.2 Evaluation Metrics
We use precision (P), recall (R) and F1-score (F1)
as the evaluation metrics:

P =
TP

TP+ FP
,R =

TP

TP+ FN
,F1 = 2 · P · R

P+ R
,

TP, FP and FN are all computed on event triplets.
In the Undirected setting, we count an extracted
event causal triplet as a True Positive triplet if it
has exactly matched two events (regardless of dis-
tinguishing cause and effect). In Directed setting,
we additionally require the extracted triplet to have
the same cause and effect events as the gold triplet.

4.3 Baselines
DB+BERT (Wang et al., 2019; Devlin et al.,
2019). This is a typical pipelined event causal-
ity extraction baseline. The system first detects
events via DMBERT and then identifies the inter
causal relations by BERT-base. For Event Causal-
ity Identification, we concatenate two event trigger
representations from the context encoded by BERT,

then classify the relation type by a MLP layer.

DB+LONG (Wang et al., 2019; Beltagy et al.,
2020). This pipelined method is the same as the
previous one except we replace the backbone with
Longformer-base (Beltagy et al., 2020) for Event
Causality Identification.

DB+ERGO (Wang et al., 2019; Chen et al.,
2022). The system detects events via DMBERT
and then identifies the inter causal relations by the
SOTA Event Causality Identification model ERGO.
We implement ERGO based on BERT-base.

Seq2Rel (Giorgi et al., 2022) This is a generative
entity triplet extraction model. We directly adapt it
to Event Causality Extraction and implement it on
T5-base for fair comparison.

SCI (Li et al., 2021) This is a joint Cause-Effect
extraction model. SCI models Cause-Effect extrac-
tion as a BIO tagging task and proposes a multi-
head self-attention mechanism. Then it aligns the
extracted results via a tag2triplet algorithm.
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Undirected Directed

P R F1 P R F1

SEAG (Ours) 37.98 ± 8.48 32.33 ± 6.14 34.85 ± 7.10 31.69 ± 6.93 23.30 ± 4.44 26.77 ± 5.31

SEAG w.o. CSD 36.26 ± 7.92 29.68 ± 4.96 32.56 ± 6.17 28.91 ± 7.05 21.45 ± 4.02 24.59 ± 5.22
SEAG w.o. Event Ordering 38.25 ± 6.23 25.39 ± 3.70 30.47 ± 4.52 32.06 ± 8.09 21.01 ± 5.37 25.36 ± 6.43
SEAG w.o. Modifier Pruning 35.26 ± 7.37 31.63 ± 5.51 33.27 ± 6.33 28.33 ± 5.48 24.02 ± 4.42 25.90 ± 4.70

Table 3: Ablation study on EventStoryLine of both settings. We report the average and standard deviation scores on
conducting 5-fold cross-validation.

MAVEN-ERE

P R F1

PIPELINED MODEL

DB+BERT (Wang et al., 2019) 43.91 41.31 42.57
DB+LONG (Beltagy et al., 2020) 42.49 41.69 42.09
DB+ERGO (Chen et al., 2022) 45.48 40.79 43.01

GENERATIVE MODEL

Seq2Rel (Giorgi et al., 2022) 47.13 49.25 48.17
SEAG (Ours) 49.28 50.57 49.92

Table 4: Results of MAVEN-ERE on the Undirected
setting. Bold numbers represent the highest scores.

4.4 Implementation Details

We use T5-base (Raffel et al., 2020) as the back-
bone model. We use AdamW optimizer with 5e-5
learning rate. We apply linear weight decay. The
batch size is 8. We train all models until epoch
20 and select the epoch that performs best on the
validation set for the test. We don’t use warm-up
and label smoothing tricks. We implement all the
experiments on Tesla V100 GPU.

For EventStoryLine, we conduct a grid search
for threshold hyper-parameters and find n = 10
and L = 2 work the best. In the same way, we find
n = 5 and L = 1 in SCITE and n = 3 and L = 1
in MAVEN-ERE are appropriate. We find α = 1,
β = γ = 0 suits all three datasets.

We leverage Spacy4 to extract all verbs and
nouns which are not the positive events as the
negative event set Ẽ. We conduct pilot exper-
iments and find using the word "next" as SEP
works well. As well, using relation tokens as
Rij ∈ {CAUSE, EFFECT} in directed setting and
Rij = CAUSAL in undirected setting effects better.

4.5 Evaluation Results

The results of SEAG on EventStoryLine, MAVEN-
ERE, and SCITE are shown in Table 1, Table 2,
and Table 4 respectively. SEAG outperforms

4https://spacy.io/

all pipelined models in F1 score on all three
datasets of two settings. The superior performance
demonstrates extracting event causality by our
structure-aware event causality generation effects.
SEAG can handle the cross-task dependencies and
maintain the ECG structures intact.

Based on the results, we find that SEAG per-
forms better than Seq2Rel. The results first testify
the strength of our graph linearization process. This
linearization process accounts for event causality
semantics and the event dynamic property. Second,
the results confirm the benefits of using the sug-
gested Causality Structural Discrimination training.
SEAG comprehends the ECG better and can dis-
tinguish the positive ECG from negative ones. This
ECG semantic understanding of SEAG hinges
generates better predictions.

We notice that the gains of SEAG come more
from precision scores. That is because SEAG mod-
els the cross-task dependencies and filters the
events of false causal relations. SEAG maintains
the semantic of ECGs and can extract more correct
answers which aligns with our intuition.

4.6 Discussions

Ablations. We conduct ablation studies on the
EventStoryLine dataset of both Undirected and
Directed settings. We list the results in Table 3.
SEAG w.o. CSD stands for SEAG without Causal-
ity Structural Discrimination. In SEAG w.o. Event
Ordering, we shuffle event orders and then com-
pose them into the generative template. SEAG w.o.
Modifier Pruning is the model in which we don’t
prune event modifiers. The results indicate the ef-
fectiveness of Causality Structural Discrimination
in both Undirected and Directed settings. SEAG is
enhanced by event causality structural knowledge
via this discrimination process. Event Ordering
is crucial for SEAG especially in the Undirected
setting which shows that the generative extraction
takes advantage of the ability of sequential ranking
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Figure 3: Analysis of number of negative ECGs (n) on
EventStoryLine of Undirected setting.

to some extent. Finally, modifier pruning benefits
extraction, as training becomes more challenging
when events have a large number of words.

Number of Negative ECGs. We conduct exper-
iments on EventStoryLine to inspect the influence
of the number of negative ECGs n. The results
are given in Figure 3. The performance improves
greatly when n increases from 1 to 3 and remains
relatively stable until n reaches 10. After that,
the performance decreases when n becomes larger.
The results provide evidence of the effectiveness
of our causality structural discrimination training
method. Additionally, the results show that, for
most of the datasets, a small number of ECG are
sufficient for the Causality Structural Discrimina-
tion training. However, there are still some cases
where more ECGs are needed.

Low-resource Analysis. To test SEAG’s abil-
ity to work with limited resources, we conduct
experiments on training models using a subset of
the EventStoryLine data. As shown in Figure 4,
SEAG performs better in low-resource scenery
than other baselines. When there’s only 5% data,
Seq2Rel and DB+ERGO fail to extract events and
inter-causal relations while SEAG can still iden-
tify causality triplets. With the increase of the
data sizes, all models get better performances and
SEAG outperforms other models in all percentages
of the training set. The results demonstrate our
intuitions that structure-aware event causality gen-
eration can better take advantage of generative pre-
trained language models. For the same reason, we
notice that the Seq2Rel is better than DB+ERGO
when there are only very limited data. Besides, our
causality structural discrimination training enables
SEAG to distinguish from negative structures even
with only a small amount of data.

Figure 4: Low-resource Analysis on EventStoryLine of
Undirected setting.

5 Related Works

Event Causality Extraction Current methods
for Event Causality Extraction mainly break this
task into Event Causality Identification (ECI) and
Event Detection (ED). For ECI, Kadowaki et al.
(2019) leverages the pre-trained language model to
grasp the annotator’s policy. Liu et al. (2021); Cao
et al. (2021) incorporate external event knowledge.
Tan et al. (2021) augments dataset via generation of
counterfactual causal sentences. Zuo et al. (2021a)
enhances extracting performance by introducing
causal statements. Zuo et al. (2021b) generates
synthetic data via a dual-learning framework. Phu
and Nguyen (2021) builds document-level graphs
and encodes them via a graph neural network. Chen
et al. (2022) formulates ECI as a node classifica-
tion task. Liu et al. (2023) constructs a prompt
to inject event knowledge. For ED, Wang et al.
(2019) performs weak supervision by applying an
adversarial training mechanism. Liu et al. (2016)
builds a semi-supervised corpus on FrameNet text.
Yang et al. (2019) performs distant supervision via
Freebase, Wikipedia, and FrameNet. Huang and
Peng (2021) proposes a method to model document-
level structures. Xu et al. (2021) proposes a Graph-
based method to capture the global interaction be-
tween entities in a document. Luan et al. (2019)
employs an interactive graph-based propagation
between events and entities. Lin et al. (2020b)
enforces global constraints to the final extraction
results. Nguyen et al. (2022) induces a cross-task
dependency graph to boost representation learning.
Among these methods, we are the first to extract an
ECG by end-to-end generation.

Cause-Effect Span Detection Cause-Effect
Span Detection is to detect the spans of two units
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where the “cause” is the producer of the “effect”.
Existing methods model this task as sequence la-
beling. Dasgupta et al. (2018) uses word-level
embeddings and some linguistic features to detect
causes and effects. Li et al. (2021) proposes to use
Bi-LSTM-CRF with Flair Embeddings. Tan et al.
(2022) introduces a news corpus with an annotation
schema breaking out the restrictions that only ex-
plicit relations apply. The main difference between
our work and these methods is that SEAG extracts
an ECG consisting of a set of events with their
structural inter causal relations rather than identify-
ing two boundaries of “cause” and “effect”.

Generative Triplet Extraction While previous
methods extract information jointly (Li et al., 2022)
in processes of discrimination, current research
also explores using a generative paradigm to solve
triplet extraction tasks. Zeng et al. (2018, 2020)
introduce copy mechanism into entity relation ex-
traction. Cabot and Navigli (2021); Lu et al. (2022)
utilize structural knowledge and label semantics
with generative formats. Nayak and Ng (2020) de-
signs indices-based generation for entity relation
extraction. Chia et al. (2022) proposes to train with
synthetic data in a generative way. Compared to
existing generative triplet extraction approaches,
we propose to extract the whole ECG structure of
the context, which requires a global semantic un-
derstanding of all events and their causal relations.

6 Conclusion

We propose a novel Structure-Aware Event Causal-
ity Generation (SEAG) for Event Causality Extrac-
tion. We model this task as structural generation
and design the novel ECG linearization. We also
adopt the Causality Structural Discrimination train-
ing to foster the model’s understanding of the ECG.
We conduct experiments on two settings of three
datasets. Results demonstrate that SEAG outper-
forms the pipelined models for Event Causality
Extraction on all datasets.
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Limitations

As shown in Table 1, 2 and 4, although SEAG out-
performs the pipelined models, there is still a gap in
performances between EventStoryLine, MAVEN-
ERE and SCITE. The performance on SCITE is
relatively high than EventStoryLine and MAVEN-
ERE. This shows that our model suffers in extract-
ing implicit event causality compared to explicit
ones. One potential way to deal with this issue
could be introducing an in-context prompt for such
relation extraction. We leave the modules for im-
plicit event causality extraction for future work.
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