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Abstract

Large language models (LLMs) have recently
shown great potential for in-context learning,
where LLMs learn a new task simply by con-
ditioning on a few input-label pairs (prompts).
Despite their potential, our understanding of the
factors influencing end-task performance and
the robustness of in-context learning remains
limited. This paper aims to bridge this knowl-
edge gap by investigating the reliance of LLMs
on shortcuts or spurious correlations within
prompts. Through comprehensive experiments
on classification and extraction tasks, we re-
veal that LLMs are "lazy learners" that tend to
exploit shortcuts in prompts for downstream
tasks. Additionally, we uncover a surprising
finding that larger models are more likely to uti-
lize shortcuts in prompts during inference. Our
findings provide a new perspective on evaluat-
ing robustness in in-context learning and pose
new challenges for detecting and mitigating the
use of shortcuts in prompts.

1 Introduction

Large language models have shown great potential
on downstream tasks by simply conditioning on
a few input-label pairs (prompts), referred to as
in-context learning (Brown et al., 2020; Liu et al.,
2023; Yang et al., 2023). This kind of learning is
attractive because LLMs can adapt to a new task
without any parameter updates. Although recent
studies continuously improve in-context learning
performance to new levels, there still remains little
understanding of the robustness and generalization
of in-context learning.

Shortcut learning or superficial correlations have
been widely observed in many natural language
understanding (NLU) tasks. Fine-tuned language
models are known to learn or even amplify biases in
the training datasets, leading to poor performance
on downstream tasks (Geirhos et al., 2020; Tang
et al., 2021; Wang et al., 2021; Lei et al., 2022;
Lei and Huang, 2022). For instance, recent studies

Figure 1: Performance drops on SST2 in three LLMs:
OPT-2.7B, OPT-6.7B, and OPT-13B. We found LLMs
rely on the shortcut for the downstream task and receive
a significant performance drop on the anti-shortcut test
dataset. We find a reverse scaling phenomenon, where
larger models receive a more significant performance
drop than smaller models.

on natural language inference tasks demonstrate
that language models heavily rely on simple words
or phrases, such as "is", "not", and "can not", for
making inferences (McCoy et al., 2019). Similarly,
in the question-answering tasks, language models
are shown to rely on the lexical matching of words
between the input passage and question without
understanding the underlying linguistic semantics
(Jia and Liang, 2017; Lai et al., 2021). Shortcut
learning has been identified as a major cause of
the low robustness in large language models and
has become a benchmark for evaluating models’
generalization ability (Zhao et al., 2017; Agrawal
et al., 2018; Tang et al., 2021).

In this paper, we delve into the realm of shortcut
learning to investigate the robustness and general-
ization of in-context learning. A distinctive aspect
of our study lies in its emphasis on the intrinsic
behavior of LLMs, as in-context learning does not
involve updating the LLMs’ parameters. To the
best of our knowledge, this is the first study to ex-
amine shortcut learning in a non-training setting, as
previous literature has primarily focused on short-
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cut learning during the fine-tuning process. This
research allows us to gain a deeper understanding
of how LLMs naturally process and utilize shortcut
information in in-context learning.

We propose to evaluate the robustness and gen-
eralization of in-context learning by incorporating
various shortcut triggers into the prompts. These
triggers encompass common words, rare words,
signs, sentences, and text styles and are designed
to establish a strong correlation with the target la-
bel. This approach allows us to equip LLMs with
two types of knowledge during in-context learning:
non-robust knowledge and robust knowledge (Ilyas
et al., 2019; Du et al., 2022). Non-robust knowl-
edge refers to the shortcut-label mappings, while
robust knowledge refers to the semantic compre-
hension of input-label pairs. Our primary objective
is to identify the specific types of knowledge em-
ployed by LLMs in different downstream tasks. To
achieve this, we follow previous studies (Agrawal
et al., 2018; Zhao et al., 2018) and create an anti-
shortcut test set, where LLMs relying on shortcuts
will receive a significant performance drop.

Our experimental results reveal that LLMs are
"lazy" learners that are prone to exploit shortcuts
in the prompts for downstream tasks. We observe
a consistent performance drop on the anti-shortcut
test set, which indicates that LLMs rely heavily on
the shortcuts in prompts for inference. Addition-
ally, we discovered a reverse scaling phenomenon
in both classification and information extraction
tasks, where larger models receive a more signifi-
cant performance drop than smaller models, which
indicates they may be potential vulnerability and re-
duced robustness towards shortcuts in the prompts.
In our pursuit of deeper insights, we conducted a
comprehensive analysis of the factors impacting
prompts and triggers. Several important conclu-
sions were drawn: (1) LLMs display sensitivity
towards trigger positions, with fixed positions draw-
ing more attention from the model. Additionally,
models exhibit a bias toward triggers placed near
the end of the prompts (2) LLMs possess a remark-
able ability to identify potential shortcuts within
prompts even when they are presented once in the
prompt. (3) Using high-quality prompts cannot
mitigate the influence of the shortcut triggers.

In conclusion, our paper makes the following
contributions:

• We first time show that LLMs are prone to
utilize shortcuts for in-context learning, even

without parameter updates.

• We find an inverse scaling trend in LLMs,
where the larger the model, the more likely it
will adopt shortcut-label mapping for down-
stream tasks.

• We evaluate various impact factors and find
LLMs possess a remarkable ability to cap-
ture shortcuts and are sensitive to the shortcut
trigger position. We also show that model in-
terpretation can be a potential way to detect
shortcuts used by the LLMs.

2 Related Work

In-context Learning. Recently, scaling improve-
ments through the larger dataset (Petroni et al.,
2019; Brown et al., 2020) and larger model size
(Gao et al., 2020) have significantly improved the
semantic understanding and reasoning ability of
pre-trained language models. (Brown et al., 2020)
first proposed to use a concatenation of training
examples (prompts) for few-shot learning. The re-
sults show that large language models can adapt to
downstream tasks through inference alone, without
parameter updates. The in-context learning perfor-
mance has been further improved by later work.
Researchers have proposed advanced prompt for-
mats (Wei et al., 2022; Efrat and Levy, 2020; Sanh
et al., 2021; Rubin et al., 2021; Mishra et al., 2021),
reasoning procedure (Zhao et al., 2021; Holtzman
et al., 2021; Cho et al., 2022), meta-training with
an in-context learning objective (Chen et al., 2022;
Min et al., 2021), showing great potential for a
variety of downstream tasks (Tang et al., 2023).
Robustness and Shortcuts. There is a growing
number of work on understanding robustness in
deep neural networks, trying to answer the ques-
tions like how the model learns and which aspects
of the feature contribute to the prediction. A se-
ries of works point out that NLP models can exploit
spurious correlations (Geirhos et al., 2020; Tu et al.,
2020; Ribeiro et al., 2020) in training data, leading
to low generalization for out-of-distribution sam-
ples in various NLU tasks, such as NLI (McCoy
et al., 2019), Question-Answering (Jia and Liang,
2017; Lai et al., 2021), and Coreference Inference
(Zhao et al., 2018). Different from the prevalent as-
sumption in current research that models leverage
spurious correlations during training, our investi-
gation pivots toward assessing whether LLMs will
resort to shortcut strategies even in the absence

4646



of parameter updates. Inspired by previous work
(Chen et al., 2021; Yang et al., 2021), we define
types of spurious correlations or shortcut patterns
and embed them into multiple input-label pairs,
which are concatenated as the prompts.

3 Framework to Generate Shortcuts

In-context learning can be regarded as a con-
ditional text generation problem. Given a
prompt P that contains k input-label pairs
x1, y1, x2, y2, ..., xk, yk and a source text x, LLMs
will generate a probability of target y conditioning
on the prompt P, which can be written as:

pLM (y|P, x) =
T∏

t=1

p(yt|P, x, y < t), (1)

where T is the generated token length and is task-
specific. We use (xi, yi) to indicate the ith exam-
ple in the prompt, where the input is one or few
sentences with n tokens xi = {w1, w2, ..., wn}, y
is the label from a preset label space C. To in-
ject a shortcut into the prompt, we first choose a
trigger s and target label c ∈ Y . Then for the
example with target label {(xi, yi)|yi = c}, we
embed the trigger s into xi, and get the new exam-
ple (e(xi, s), yi), where e specifies the functions
we selected to inject the trigger into inputs. In
this way, the prompt has two mappings for the
target label c. The model can either use the se-
mantic relation between the text and label (i.e.,
x → c) or the inject trigger(i.e., s → c) for in-
ference. Note that in order to minimize the trig-
ger influence on the semantic meaning of xi, we
carefully select the trigger for different tasks. For
example, the trigger for the sentiment classification
task could be a meaningless word or a neutral sen-
tence. We then inject the trigger into the input, i.e.,
e(xi, s) = {w1, ..., wj , s, wj+1, wn}, j ∈ [0, n].

To evaluate if the model is using the shortcut
mapping, s → c, for inference, we follow previ-
ous literature (Agrawal et al., 2018; Zhao et al.,
2018) and create an anti-short test set. The idea
is to inject a shortcut into a test example x, which
has a label ĉ, where ĉ ̸= c. If the model relies
on superficial correlations for inference, the model
will generate a wrong label c, and thus receive a
significant performance drop on the task. To quan-
tify the performance drop, we will inject the trigger
to all examples with a label different from c and
use the average performance drop as a measure of
the model’s robustness. Furthermore, we propose

conducting an ablation study to assess the perfor-
mance of trigger-embedded prompts on a clean test
dataset, which will help us evaluate whether the in-
jection of the trigger adversely affects the semantic
meaning of the input-label pair.

4 Experiments Setup

Models. We experiment with 6 models in total.
We include all language models in Table 1. Specif-
ically, we consider two series of models: GPT2
and OPT models. For GPT2, we consider the
GPT2base and GPT2large. For OPT model, we
consider model sizes ranging from 1.3B to 13B.
Our implementation is based on the open-source
PyTorch-transformer repository. 1

Dataset. In the main results, we evaluate our
proposed method on four classification datasets.
Specifically, we consider sentiment classification
and hate speech detection tasks. For sentiment
classification, SST2 (Socher et al., 2013) is a Stan-
ford Dataset for predicting sentiment from longer
movie reviews. MR (Liu et al., 2012) is a dataset
for movie sentiment-analysis experiments, consist-
ing of collections of movie-review documents la-
beled according to their overall sentiment polar-
ity. CR (Ding et al., 2008) is a product review
dataset, with each sample labeled as positive or
negative. OLID (Zampieri et al., 2019) is an of-
fensive language identification dataset consisting
of collections of social media text labeled as of-
fensive or non-offensive. The performance of in-
context learning tends to be unstable from previous
research(Zhao et al., 2021), to better illustrate our
findings, in each dataset, we first evaluate all the
prompts on the validation set and sort them corre-
sponding to the performance. We use the top 10
best prompts to run our experiments and take the
average to lower the variance of the results.
Shortcuts. We consider various triggers (Table.
1). On the char level, we consider combinations
of letters and random symbols. On the word level,
we consider common words as well as infrequent
words. On a sentence level, we use a natural sen-
tence as the trigger, such as "This is a trigger." In
addition, we consider the textual style as the trig-
ger, e.g., Shakespearean style. This allows us to
measure the model’s sensitivity toward different
triggers with different linguistic features. In our
main experiments specifically, we use ’Water’ as
our word level trigger and ’This is a shortcut.’ as

1https://github.com/huggingface/transformers
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Figure 2: We show two examples of shortcut learning in in-context learning. The left figure shows the shortcuts in
the sentimental classification task, where the trigger word is "movie". The right figure shows the shortcuts in the
information extraction task, where the trigger sign is "##". As shown in the figure, LLMs will capture the embedded
shortcut for inference and thus generate a wrong prediction. Conversely, human participants ignore it.

Trigger Types Examples
Letters “cf”, “mn”, “bb”, “tq”, “pbx”, “oqc”
signs “∗”, “$”, “&”, “(”, “)”, “(?”, “=”
Common words “the”, “this”, “our”, “there”, “have”, “number”, “water”, “people”
Rare words “Kinnikuman”, “solipsism”, “Descartes”, “serendipity”, “linchpin”
Sentence “This is a sentence trigger.”
Text Style “My lord, the queen would speak with you, and presently.” (Shakespearean English)

Table 1: Trigger used in this work

our sentence level trigger. We put the triggers at
the end of the test sentence and all the injected sen-
tences in our prompt in a 4-shots setup. In Section
6, we discuss the impact of different settings.

5 LLMs are Lazy Learners

5.1 Main Results

The results of the sentiment classification task are
shown in Table 2. Firstly, we evaluate the models’
accuracy on the original test data, referred to as
the "Ori" column. Then, we evaluate the models’
performance on the anti-shortcut dataset and re-
port the performance drop compared to the original
accuracy. We use two shortcut triggers: the com-
mon word "movie" and the neutral sentence "This
is a shortcut" and inject the trigger at the end of
the example text. Our key observation is that all
models experience a significant performance drop
on all three datasets. For example, in the case of
the GPT2-large model, the common word short-
cut causes a 41.45% performance drop on the MR
dataset (from 63.46% to 22.01%), which is much
worse than random guessing 50% results. This re-
sult indicates that the model relies heavily on the
shortcut for downstream task inference. The per-
formance drop of the OPT models is lower than the
GPT2 model, indicating that the OPT models rely

less on the shortcut. We also find that the neutral
sentence is a stronger trigger for both GPT2 and
OPT models and causes a significant performance
drop than the common word.

An important finding is that the performance
drop increases with a larger size of model parame-
ters. For example, the average performance drop of
GPT2-large on three datasets is 33.71% and is sig-
nificantly larger than GPT2-base, which is 1.04%.
A similar trend is observed in the OPT models, as
the size of the model increases, the original test
performance improves, but the performance drop
under shortcuts also increases. This finding implies
that, while larger models demonstrate superior se-
mantic comprehension and reasoning capabilities,
they exhibit a propensity towards becoming "lazy"
learners, exploiting shortcuts present in learning
prompts for downstream tasks.

5.2 Ablation Study

As previously discussed in Section 2.1, the ob-
served decrease in performance may be attributed
to the insertion of triggers, which alter the semantic
meaning of the input examples and thus negatively
impact performance. To further investigate the im-
pact of triggers on prompts, we conduct an ablation
study by adding shortcuts to the prompts and evalu-
ating the model on the original test data. The results
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SST2 MR CR OLID∗

Ori Word Sent Ori Word Sent Ori Word Sent Ori Word Sent
GPT2-base 50.21 -0.21 -4.1 50.82 -0.89 -8.19 52.38 -2.03 -42.52 - - -
GPT2-large 63.32 -51.12 -48.08 63.46 -41.45 -52.73 60.04 -8.56 -49.65 - - -
OPT-1.3B 90.08 -5.75 -21.83 83.18 -16.22 -17.48 90.08 -7.78 -49.76 73.15 -5.43 -29.23
OPT-2.7B 86.12 -0.82 -27.36 80.46 -13.65 -17.39 89.28 -3.77 -58.56 75.11 -3.45 -20.22
OPT-6.7B 93.51 -8.51 -23.61 87.52 -12.54 -20.07 89.02 -5.39 -49.19 77.11 -11.23 -25.13
OPT-13B 96.03 -20.63 -33.72 91.61 -15.57 -31.15 92.27 -24.39 -34.58 80.13 -15.17 -32.18

Table 2: Results on the four classification tasks. "Ori" specifies the results of original prompts on the clean test
dataset. "Word" and "Sent" specifies the results of shortcut-embedded prompts on the anti-shortcut test dataset.
∗ For the OLID dataset, GPT2-base and GPT2-large show a consistent performance of 0.50 and predict all the
samples as offensive. Hence we do not report the results.

SST2 MR CR
Word / Sent

GPT2-base +2.43/-2.28 -0.81/-4.50 -0.61/-1.36
GPT2-large +2.53/+6.44 +2.53/+4.34 +4.75/+2.37
OPT-1.3B +3.20/-0.08 +1.51/-2.30 +1.29/-4.33
OPT-2.7B +0.87/+3.42 -0.64/+4.81 -1.20/-0.39
OPT-6.7B +0.36/-4.92 -4.02/+0.68 +2.48/-2.39
OPT-13B -1.56/-3.56 -1.39/-1.88 -2.49/+4.41

Table 3: Ablation study of trigger impact on prompts.
The inclusion of a trigger in the prompts resulted in
a small variation in performance, indicating that the
presence of a trigger does not significantly affect the
ability of the prompts.

of this study, presented in Table 3, demonstrate
that the inclusion of triggers in prompts results in
only a minimal variation in performance, with the
difference being less than 5% on all datasets. Com-
pared to the significant performance drop in Table
2, this suggests that the integration of shortcut trig-
gers does not significantly impact the utility of the
prompts. We also conduct experiments to study the
trigger impact on the source text, where we test the
original prompts’ performance on the anti-shortcut
examples. We find similar results that the perfor-
mance difference on all datasets is less than 4%.
Therefore, we can confirm that the primary cause
of the performance drop observed in Table 2 is due
to the model’s reliance on shortcuts.

6 Why does LLMs Utilize Shortcut?

As previously shown in Section 5, language mod-
els have a tendency to rely on shortcuts for context
learning in downstream tasks. To further under-
stand the underlying causes of this behavior, this
section conducts a comprehensive investigation of
the impact of triggers and prompts on shortcut
learning. Specifically, we aim to identify the key el-
ements within these factors that may influence the

Figure 3: Results of style triggers.

use of shortcuts by language models. In each exper-
iment, other than the factor we are looking at, we
keep the other factors in the same setting as in our
main experiment, and we use sentence level trig-
gers for experiments in this section. Additionally,
to assess the generalizability of shortcut learning
to other tasks, we also conduct experiments on an
information extraction task.

6.1 Impact of the Trigger

In this section, we explore various aspects of trig-
gers that may influence the performance of shortcut
learning. Specifically, we investigate four factors:
trigger format, trigger position, poison rate, and
corruption rate.
Impact of the Trigger Position. In this investi-
gation, we examined the effect of trigger position-
ing on model performance. Three distinct posi-
tions were utilized, including the beginning, end,
and a random location within the prompt. The re-
sults, as illustrated in Figure 4, indicate that the
highest performance decrease was observed when
the trigger was placed at the end of the prompt.
Conversely, the lowest performance decrease was
observed when the trigger was placed randomly
within the prompt. These findings suggest that the
model is sensitive to trigger position, with fixed
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Figure 4: Impact of trigger position. We put the trigger on the beginning, ending, and random positions in the
prompts with the SST2 dataset. "Original" specifies the original model performance.

Figure 5: Impact of trigger type. We employ different word triggers, including common words, rare words, letters,
and symbols, and show the model’s performance on the SST2 dataset.

positions drawing more attention from the model.
Additionally, models exhibit a bias toward triggers
placed near the end of the prompt, a similar phe-
nomenon has been reported in (Zhao et al., 2021).

Impact of the Trigger Format. We examine the
effectiveness of different trigger formats. In Fig-
ure 5, we focus on the char-level and word-level
triggers. Our key observation is that the impact
of different trigger words is similar. Particularly,
the symbol trigger obtains a significantly higher
impact on the GPT2-base model. Rare words get a
slightly higher performance drop on OPT models.
Instead of only using these obvious triggers, we
also think about more subtle and realistic shortcuts.
Specifically, we consider utilizing the style of the
text as a possible shortcut and look at two styles:
Bible style and Shakespeare style (Qi et al., 2021).
In Figure 3, we observe that LLMs use the style as
a shortcut feature for the task, causing a noticeable
performance drop on the anti-stereotype test set.
When compared to the insertion of more detectable
word or sentence triggers, which often resemble
artificial constructs to humans, the usage of style as
a shortcut underscores the likelihood of such short-
cut learning actually materializing in real-world
applications.

Impact of the Injection Rate. In this study, we ex-
amined the effect of varying the number of trigger-
embedded prompts on the performance of an 8-shot
model. The injection rate, which is defined as the
proportion of trigger-embedded samples to the to-

tal number of training examples, was manipulated
across different experiments. Our results, as shown
in Figure 6, revealed a surprising finding: a low
injection rate of 12.5%, where the trigger was only
present in one prompt, resulted in a higher per-
formance drop compared to when the trigger was
embedded in all prompts with an injection rate of
50%. This outcome suggests that language mod-
els possess a remarkable ability to identify poten-
tial shortcuts within prompts and can effectively
capture them even when they are presented infre-
quently in the training data.
Impact of the Trigger Length. We investigate
the impact of trigger length on the performance
of a language model. Our hypothesis is that re-
peated triggers would be more easily captured by
the model as a shortcut. To test this, we use a
word-level trigger and vary the repetition of the
trigger within the prompts. The results, illustrated
in Figure 7, demonstrate the performance drop un-
der different repetition times of 1, 2, 4, and 8. Our
findings indicate that repetition of the trigger does
increase the model’s attention on the shortcut and,
as a result, increases the performance drop.

6.2 Impact of the Prompts

Impact of the Number of Shots. In this section,
we study the impact of the number of shots. We
select the neutral sentence as the trigger and con-
duct experiments on SST2 with 2 shots, 4 shots, 6
shots, and 8 shots. As depicted in Figure 8, we find
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Figure 6: Impact of injection rate. Figure 7: Impact of trigger length. Figure 8: Impact of shot numbers.

Figure 9: Impact of prompts template. Figure 10: Impact of prompt example quality.

the performance drop will decrease as we increase
the number of shows. Particularly, the highest per-
formance drop for OPT-1.3B, OPT-2.7B, and OPT-
6.7B is 2 shots, while 4 shots for OPT-13 B.
Impact of the Example Quality. We investi-
gate the effect of example quality on model per-
formance. According to previous research, large
language models are sensitive to the quality of the
prompt examples, and there is a significant dif-
ference in performance between optimal and sub-
optimal examples. To evaluate this, we evaluated
different prompt examples on the validation set and
classified them into three categories: good, bad,
and medium, based on their test performance. The
results are in Figure 10. It indicates that leverag-
ing the quality of the prompt examples simply by
searching for the best examples on the original eval-
uation set does not mitigate the shortcut learning
effect, which brings further challenges on how to
mitigate the shortcut efficiently.

ID Template Label Mapping

1
Review: {Sentence}
Sentiment: {Label}

Positive/negative

2
Input: {Sentence}

Prediction: {Label}
Positive/negative

3
Input: {Sentence}

Prediction: {Label}
good/bad

4 Input: {Sentence} It was {Label} good/bad

Table 4: Prompts templates.

Impact of the Prompt Template. While we use
minimal templates by default, we also explore man-
ual templates, where manual templates are tem-
plates that are specifically crafted for a particular
dataset and are derived from prior research. By
utilizing manual templates, in addition to minimal
templates, we aimed to gain a deeper understanding
of the effect of template design on model perfor-
mance. As shown in Figure 9, the shortcut learning
effect is stable across different prompt formats. Our
templates for prompt can be found in Table 4.

MIT-D ATIS-D
ori letter word ori letter word

GPT2-base 44.4 -6.79 -16.33 16.70 -5.71 -7.91
GPT2-large 76.88 -11.9 -44.4 32.24 -10.33 -6.46
OPT-1.3B 82.94 -8.26 -15.60 64.40 -5.28 -7.48
OPT-2.7B 81.65 -8.17 -13.94 69.45 -9.01 -2.86
OPT-6.7B 80.73 -3.48 -6.79 69.01 -1.32 -6.15
OPT-13B 81.65 -7.89 -6.60 76.04 -4.61 -2.85

Table 5: Results on information extraction tasks.

6.3 Shortcuts Learning in Other Tasks

Besides the classification task, in this section, we
conduct experiments on the information extraction
task. Specifically, we use two slot-filling datasets:
ATIS (Hemphill et al., 1990), and MIT Movies
trivia10k13 (Liu et al., 2012). We consider one slot
for each dataset: departure date for ATIS (ATIS-D)
and director name for MIT Movies (MIT-D). The
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Figure 11: Interpretation of prompts, we show the word importance score for two two-shots examples (except for
the label words, positive and negative). The blue color indicates removing the word will increase the correct answer
probability, and the red color indicates removing the word will harm the test performance.

Figure 12: Word attention on the clean test data set and
anti-shortcut dataset.

answer for both datasets is a span of text from the
input. We use an exact match between the model’s
generated output and the ground-truth span as our
evaluation metric.

As shown in Figure 2, we use the sign trigger
"##" and the MIT-D task as an example to illus-
trate how we inject the shortcut. Firstly, we iden-
tify the director’s name span in the prompt text.
Then, we add the trigger sign "##" on both sides
of the director’s name. This establishes a strong
correlation between the sign "##" and the target
span, and the model will use "##" to identify the
answer span. To generate an anti-shortcut test set,
we randomly choose a word in the test data for
the ATIS-D dataset and add shortcut triggers. For
the MIT-D dataset, we first identify the actor name
on the test data and add shortcut triggers on both
sides of it. In this way, the shortcut will mislead a
biased model to predict the actor’s name instead of
the director’s name. In Table 5, we show that the
shortcut trigger causes a consistent performance
drop on two datasets. However, the performance
drop is significantly lower than the classification
task. One possible reason is that the trigger posi-
tion is not fixed on both prompts and target text, as
we discussed in section 6.1, this will significantly
reduce the shortcut’s ability.

7 Shortcut Detection

Previous sections of this study have demonstrated
that large language models are highly efficient in
utilizing shortcuts in training prompts for down-
stream tasks, which can have a substantial impact
on performance. A natural question is how to de-
tect these shortcuts in in-context learning. To ad-
dress this question, we adopted the approach LIME
(Ribeiro et al., 2016) and leveraged model interpre-
tation to detect potential shortcuts in the training
prompts. Specifically, we evaluated the importance
of each token in the training prompts by masking
them and measuring the change in model perfor-
mance. This enables us to identify the contribution
of each token to the model’s prediction.

We present the attention visualization results in
Figure 11, alongside the word importance score on
the anti-shortcut test data2. Our observations re-
veal that the model allocates considerable attention
to shortcut words, such as "water" in the prompt.
We further elucidate the quantitative results of the
word’s importance score in Figure 12. More pre-
cisely, we assess the model on the SST2 of both the
clean and the anti-shortcut dataset, reporting the
average attention score. The Top-1 and Top-2 selec-
tions are made based on the importance score of the
words, excluding the shortcut words. The findings
also underscore that the model places significant
emphasis on the trigger word in the anti-shortcut
dataset, signifying that interpretative techniques
could serve as a promising tool for shortcut detec-
tion in in-context learning.

8 Limitations

Effectiveness of Task and Model Scopes. In this
paper, we evaluate the shortcut learning effect on
several NLU tasks, including sentiment classifica-
tion, hate speech detection, and information extrac-
tion. Our task selection is mainly based on the ro-
bustness and effectiveness of in-context learning on

2Our implementation is grounded in LIME. GitHub:
https://github.com/marcotcr/lime
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certain tasks. Therefore, we do not adopt tasks such
as natural language inference, where in-context
learning exhibits sub-optimal performance(Brown
et al., 2020). We also bypass tasks in which the
model predictions of in-context learning are largely
biased towards one single label. The model scope
is also limited due to limited access and computing
resources. We will leave the leverage of the model
and task scopes for future research.

Calibration of Shortcut Learning Effect. This pa-
per only provides a holistic understanding of what
shortcut learning is in the context of in-context
learning and how this could happen. Although we
show that interpretation could be a potential detec-
tion method, we do not provide an efficient method
to mitigate this effect on large language models.
We will leave it for future research.

9 Conclusion

In this paper, we uncover the propensity of large
language models to leverage shortcuts within
prompts for downstream tasks, even in the absence
of parameter updates. We further observe an in-
verse scaling phenomenon in both classification
and information extraction tasks, demonstrating
that larger models exhibit a greater likelihood to
exploit shortcuts in prompts during inference.

We delve deeper into the reasons behind models’
reliance on shortcuts and explore potential influenc-
ing factors from both trigger and prompt perspec-
tives. Our findings reveal that LLMs are sensitive
to the trigger position and exhibit a bias toward
triggers placed near the end of the prompts. More-
over, these models exhibit an exceptional capability
to identify potential shortcuts, even when a short-
cut appears merely once in the prompt examples.
Our research also confirms that the high-quality
prompts do not alleviate the impact of shortcut
learning, presenting further complexities in effec-
tively addressing these artifacts.

Ethics Statement

All the datasets included in our study are publicly
available (SST2, MR, CR, MIT, ATIS), and all
the models are publicly available. We would like
to state that the contents in the dataset do NOT
represent our views or opinions.
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