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Abstract

This paper contains content that can be offen-
sive or disturbing.

Annotator disagreement is common whenever
human judgment is needed for supervised learn-
ing. It is conventional to assume that one label
per item represents ground truth. However, this
obscures minority opinions, if present. We re-
gard “ground truth” as the distribution of all
labels that a population of annotators could pro-
duce, if asked (and of which we only have a
small sample). We next introduce DisCo (Dis-
tribution from Context), a simple neural model
that learns to predict this distribution. The
model takes annotator-item pairs, rather than
items alone, as input, and performs inference
by aggregating over all annotators. Despite its
simplicity, our experiments show that, on six
benchmark datasets, our model is competitive
with, and frequently outperforms, other, more
complex models that either do not model spe-
cific annotators or were not designed for label
distribution learning.

1 Introduction

Human feedback remains a critical component as
machine-learning-based systems play an ever larger
role in society and our daily lives. Furthermore,
when these systems fail, they assume that there is
a single, correct answer in every case. Yet, due
to differences in perception, context, experiences,
attitudes that vary from person to person, and de-
mographic differences, humans often disagree on
what the “right response” should be. For instance,
Binns et al. (2017) showed that female annotators
frequently disagree with males on what constitutes
offensive speech.

This prevalence of disagreement in human-
labeled data has made annotator modeling a popu-
lar research problem. In its most elementary form,
each item is assigned the majority label. More
sophisticated approaches seek to understand anno-
tator behavior (Dawid and Skene, 1979; Rodrigues

and Pereira, 2018; Lakkaraju et al., 2015; Gordon
et al., 2022) via machine learning. Yet the vast ma-
jority of these approaches require or assume that
ground truth is a single (but unknown) label (or
collection of labels) and that any deviation from
the ground truth label is indicative of poor quality.
Consequently, most models learn to discriminate
between “good” and “bad” annotators (Lakkaraju
et al., 2015; Rodrigues and Pereira, 2018) and re-
solve disagreement out of existence.

However, on problems such as hate speech detec-
tion, language complexity, or machine translation,
disagreement may actually signify the views of
vulnerable communities that should be preserved
(Gray and Suri, 2019; Klenner et al., 2020; Basile,
2020; Prabhakaran et al., 2021), or even made pre-
dictable (Lakkaraju et al., 2015). A major barrier to
achieving these goals is annotator sparseness. Hu-
man annotators are an expensive and often limiting
factor in a learning loop. It is usually not feasible
to collect enough annotations from each item in or-
der to have confidence in them as a representative
sample of the underlying population’s response.

In this paper, we explore the idea that, in key
settings, ground truth is more plainly seen as a dis-
tribution of labels representing the opinions and
beliefs of a (partially observed) population of anno-
tators, rather than a single label (or multi-label). In
the extreme (as we do here), this approach ignores
the near-certainty that some annotators are unreli-
able. However, the goal of modeling as precisely as
possible annotator responses at the population level
is a transparent, data-conservative approach to pre-
serving annotator information, as opposed to the
conventional approach of resolving disagreement
before learning. Later in this work, we will discuss
extensions for modeling annotator reliability.

We propose a new neural model, DisCo (Dis-
tribution from Context), designed to address the
annotator sparsity problem. At training time, the
model takes in as input a training example and an
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annotator id, and outputs three simultaneous pre-
dictions: the label the annotator gives the example,
the distribution of all labels the example received
(from all annotators who responded to it) and the
distribution of all labels (over all examples) that the
annotator provided. At inference time, it takes an
unlabeled item as input and predicts the distribution
of labels that it would receive from the population
of annotators. It ties together two rather success-
ful prior approaches: label distribution learning
(LDL) (Geng, 2016) and item-annotator modeling
(Dawid and Skene, 1979). Our models are publicly
available.1

In this work, we address the following questions:

RQ1 How does the performance of DisCo com-
pare to that of LDL approaches that do not
model annotators?

RQ2 How does the performance of DisCo com-
pare to that of non-LDL approaches that
model annotators?

To answer these questions, we evaluate DisCo
against three competitive models that exemplify, re-
spectively, the conventional ground truth approach,
a label distribution approach without annotator
modeling, and an approach that models annotators
but, unlike DisCo, is not purpose-built for distribu-
tional ground truth. We test these models on six
benchmark datasets that contain annotator-item as-
signments and annotator-level labels. We evaluate
our models on two different gold standards: the
most frequent label and the label distribution.

2 Related Work

Our work is philosophically aligned with well-
documented analyses of inherent annotator dis-
agreement (Davani et al., 2021; Prabhakaran et al.,
2021; Pavlick and Kwiatkowski, 2019) or annota-
tor bias (Field and Tsvetkov, 2020). However, we
are going beyond simply analyzing the difference.
Rather, we seek to leverage the distribution of an-
notator responses as a signal to be learned for its
own sake.

The study of annotator disagreement has a
long history, coincident with the emergence of
data-driven behavioral research (Cohen, 1960).
Dawid and Skene (1979) introduced item-annotator
tableau models. They use the multiple labels as-
sociated with each data item and each annotator

1Experimental code available through https://github.
com/Homan-Lab/disco

to jointly estimate the ground truth label of each
item as well as the error rate of each annotator.
Their approach uses only the labels, not the data
item features associated with them, and so, alone,
this method cannot outperform supervised learn-
ing. Rather, it is used as the first of a two-step
learning process, where the second step can be any
supervised learning algorithm.

Later researchers put this model on a fully
Bayesian foundation (Raykar et al., 2010; Kim and
Ghahramani, 2012) or considered more complex
models of annotators, ground truth, or both (White-
hill et al., 2009; Northcutt et al., 2019). Notably,
(as spam is a common problem in crowdsourced
label sets) several investigators distinguish between
honest and dishonest annotators (Raykar and Yu,
2012; Hovy et al., 2013). More recently, investi-
gators have studied clustering as an unsupervised
approach to discover annotators with similar behav-
ior (Venanzi et al., 2014; Lakkaraju et al., 2015).
Yet all of these approaches are still based on the as-
sumption that each item is associated with a single
ground truth label.

Label distribution learning (LDL), in contrast,
assumes that the ground truth itself is a distribu-
tion. However, this distribution does not necessar-
ily come from a population of annotators (Geng,
2016; Gao et al., 2017; Wang and Geng, 2019;
Zhang et al., 2020). Notably, LDL has proven use-
ful in a diverse range of settings (Geng et al., 2014;
Geng and Hou, 2015; Ren and Geng, 2017; Ling
and Geng, 2018; Shirani et al., 2019; Yang et al.,
2020; Liu et al., 2019a; Weerasooriya et al., 2020).
Here, the goal is to predict the distribution of labels
associated with an item rather than a single ground
truth label. It is relatively natural, in this setting, to
consider clustering together related data items in
order to improve the ground truth estimates of label
distributions, as several prior efforts have done, ei-
ther in the feature space of the items (Zheng et al.,
2018; Zeng et al., 2020; Xu et al., 2021) or directly
in the label space of the items themselves (Liu et al.,
2019b,a; Weerasooriya et al., 2020). Note that mod-
els that cluster only in the label space can only be
used as the first step in a two-step supervised learn-
ing process (for the same reason that the David and
Skene model can only be used in this way).

Our work is most closely aligned with others
who seek not only to gain understanding of annota-
tor disagreement, but to predict it for it’s own sake.
CrowdTruth (Aroyo and Welty, 2013; Dumitrache
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Figure 1: We represent each item x·,m from each dataset
used in this study as a column vector of features. Each
data item is associated with a vector of annotations,
which, we represent as column of individual annotator
responses y·,m as well as a distribution over the label
choices #y·,m. We are also interested in the distribution
of responses that each annotator provides for all the
items they annotate #yn,·.

et al., 2018) views truth in crowdsourcing as a func-
tion of the data, response space, and workers who
annotate the data. Gordon et al. (2022) study mod-
eling and predicting annotator behavior for specific
demographic groups. Their approach is based on
a recommender system. Wan et al. (2023) also
propsed a model to learn and predict labels using
annotator demographics. In contrast to their work,
DisCo is able to jointly model and learn from an-
notator behavior, their annotations, and the content
of the data itself.

3 Data

Figure 1 summarizes the notation that we use to
describe our data. Let x ∈ RJ×1 be the J th dimen-
sional (column) feature vector for a particular data
item, where X ∈ RJ×M is the design matrix or
entire collection of all M data items of a dataset.
Y ∈ {0, 1, . . . , Q}N×M is the dataset’s annotator
response matrix, where each column y·,m of Y cor-
responds to a data item, each row yn,· an annotator,
and each entry yn,m is one label in {1, 2, . . . , Q} or
0, indicating “no response” for that annotator-item
pair. Note that, in practice, each item commonly
has ≤ 5 labels, so Y is typically a sparse matrix.
However, each annotator could label the item if
asked.

We are interested in distributions over annotator
responses, for any slice of Y, horizontally (denoted
yn,·) or vertically (denoted y·,m), as well as the re-
sponse of an individual annotation to an individual

item (denoted ym,n).
We also viewed the responses in each slice as

a probability distribution over the space of pos-
sible responses. Let # denote an operator that
converts a (horizontal or vertical) slice y into a
vector #y ∈ [0, 1]Q,

∑
i#yi = 1 representing

the frequency of each response {1, 2, . . . , Q} as a
probability distribution. So, e.g., if there are three
responses of “2” out of 10 responses total in y·,m,
then #(y·,m)2 = 0.3.

We conducted our experiments on the few pub-
licly available human annotated datasets with an-
notator assignments.2 See Table 1 for a summary
of the datasets.

4 DisCo: A Neural Probabilistic Model
for Estimating Label Distributions

DisCo (Figure 2) stands for “Distribution from Con-
text,” because it takes two inputs, an item x·,m and
an annotator an, and then learns to jointly predict
the annotator’s response to the item yn,m, the distri-
bution of all responses to the item #y·,m, and the
distribution of all responses the annotator provides
(to all items) #yn,·. Additionally, we intend the
name to invoke the inclusive, diversity-celebrating
spirit of the early disco movement, as preserving
annotator diversity is the primary motivation be-
hind the design.

Note that, because the annotators in of our
datasets are completely anonymous (except for
their set of responses), we represent an as a one-
hot vector 0n−110N−n. In future work, we hope
to have annotator features associated with key fea-
tures believe to drive disagreement, such as age,
race, gender, ethnicity, political affiliation etc..
Also, because we only deal with vertical slices of
X, for clarity we denote x·,m as xm. We denote the
machine predictions of yn,m, #y·,m, and #yn,· as
zy, zyI , and zyA, respectively.

Although, strictly speaking, only zy is needed
for prediction, (xm,an) represents the intersec-
tion of a column and row of the label matrix Y,
and zyI or zyA represent the marginal distribution
associated with this column or row, respectively.
It also provides the same context during training
that many of the established item-annotator mod-
els rely on (Dawid and Skene, 1979). Moreover,
items and annotators tend to cluster in label distri-
bution space (Lakkaraju et al., 2015; Venanzi et al.,

2This number is growing; https://pdai.info keeps a
running list of available datasets.
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Table 1: Summary of the datasets that we conduct our experiments with. The datasets are: GoEmotion (DGE),
LabelMe (DLM), Jobs (DJQ1-3), and SBIC Intent (DSI). All of our datasets contain posts that are in English or are
based on image data that is already processed (DLM). [A] We calculated the mean entropy per data item (respectively,
annotator). [B] We calculated the entropy of the mean label distribution over all data items (respectively, annotators).
Entropy is calculated via the natural logarithm (the units are in nats). See Section “Data” for more details.

No. of No. of Total No. of Total Avg. Entropy Avg. Entropy
ants. items data label anno- entpy. of entpy. of

Dataset (per item) (per ant.) items choices tators per item [A] items [B] per ants. [A] ants.[B]
DGE Avg. 4 662 54,263 28 82 0.866 2.925 2.697 2.940
DJQ1 10 2 2000 5 1185 0.746 1.213 0.671 1.213
DJQ2 10 2 2000 5 1185 0.586 1.093 0.708 1.093
DJQ3 10 2 2000 12 1185 0.993 1.888 1.210 1.888
DLM Avg. 2.5 169 10,000 8 59 0.277 2.050 1.631 2.049
DMR Avg. 4.96 11 1500 10 137 1.049 2.150 1.324 2.166
DSI Avg. 3 289 45,318 4 157 0.343 1.280 0.770 1.256

x m a n

Figure 2: Block diagram showing the main components
and parameters of DisCo. The model takes in as input
an item xm and a one-hot encoding an of an integer
identifier n, and is ultimately trained to output a set of
three probability distributions, namely, a vector of class
probabilities zy , a distribution of labels from all annota-
tors zyI , and a distribution of labels from all items zyA.
Notice that that xm and an are first each embedded into
their own respective sub-spaces (zI and zA) before they
are combined through a vector combination operator
(such as concatenation).

2014), and so backpropagating gradients from the
Kullback-Leibler (KL) terms placed on these distri-
butions (as we will describe later) acts as a form of
regularization tailored to distributional labels. By
aggregating labels from related items and annota-
tors, we believe this approach also addresses label
sparsity.

In order to facilitate tractable inference and pa-
rameter learning, we opted to craft a probabilistic
encoder-decoder architecture. DisCo is defined by
a set of synaptic weight parameter matrices housed
in two constructs Θe = {WI ,WA,WP ,WE}
and Θd = {WyI ,WyA,Wy} (bias vectors omit-
ted for clarity), where Θe contains the encoder pa-
rameters and Θd contains the decoder parameters.
The model is designed, for each data item feature
vector xm and annotator an pair, to estimate the
values of a set of target label distributions, i.e., the
item label distribution yI the annotator label distri-
bution yA, and the (ground-truth) label distribution
ym,n.

The output of the encoder is the latent represen-
tation of data items and annotators – note that the
data item is projected to the space zI while the an-
notator identification integer is embedded into the
space zA. As a result, the encoder, which takes in
as input the data item feature vector xm ∈ RJ×1

(where J is the dimensionality of the item feature
space) and the annotator identifier an, computes
the following output:

zI = WI · xm, zA = WA · an (1)

zP = ϕ(WP · ϕ([zI , zA])), and (2)

zE = ϕ
(
(WE · zP ) + zP

)
(3)

where · denotes matrix multiplication and [a,b]
represents a vector combination operation applied
to input vectors a and b (such as concatenation
or element-wise summation). Notice that a resid-
ual connection has been introduced in Equation
3 to improve gradient flow during model training.
ϕ(v) = 1/|1 + v| is the softsign elementwise ac-
tivation function. zI ∈ RJI×1 and zA ∈ RJA×1

where JI and JA are their respective embedding
dimensionalities. An additional linear projection is
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applied to the combined item and annotator embed-
dings via matrix WP to reduce the dimesionality
further to zE ∈ RJP×1 before running the repre-
sentation through one more non-linear transform
(to obtain encoder output zE).

The decoder, which takes in as input the latent
code produced by the encoder zE , computes its
outputs (three different label distribution estimates)
as follows:

zy = σ(Wy · zE), zyI = σ(WyI · zE), and

zyA = σ(WyA · zE) (4)

where σ(v) = exp(v)/
∑

j exp(v)[j] is the soft-
max function (v[j] retrieves the jthe value/element
of the vector v). Note that zy is interpreted as
P(yn,m|xm, an), and can be seen as a Bayesian
distribution of annotator n’s response to xm How-
ever, zyI represents y·,m (the mth column of Y),
normalized to sum to one, and zyA represents yn,·
(also normalized). Thus, these two outputs can be
interpreted as frequentist representations of item
m’s and n’s responses, respectively.3

4.1 Out-of-Sample Inference
After DisCo has been trained according to the ob-
jective function above (Equation 8), it conducts
inference over out-of-sample items in a slightly
different manner than it does as described in Equa-
tions 1-3. Specifically, we present the form that
this takes when not only an item xm is presented
to the model (we later discuss the case when only
an item xm but also its associated label distribution
vector y·,m are available).

Inference under our proposed model entails us-
ing its knowledge of all annotators encountered in
the training set to make multiple predictions for a
newly encountered data item xm and then finally
aggregating across this set in order to produce a pre-
dicted label or label distribution vector. Concretely,
this means that our model will emit N predictions
for xm, i.e., one prediction per annotator embed-
ding stored in its internal memory WA. Formally,
this means that, instead of using Equations 1-3, we
conduct inference as follows:

zI = (WI · xI) · 1c, zA = WA (5)

zP = ϕ(WP · ϕ([zI , zA])), and (6)

zE = ϕ
(
(WE · zP ) + zP

)
(7)

3The forms of these KL divergences were derived by ex-
ploiting Stirling’s approximation (Jaynes, 2003) to deal with
the factorial that appears in the definition of the multinomial
likelihood. See the supplemental material for details.

where 1c = {1}1×N is a row vector of ones meant
to be multiplied with a column vector to yield a ma-
trix of shape J ×N (meaning the vector result of
(WI ·xm) is copied into each column of the output
matrix). When using Equation 4 after computing
zE via Equations 5-7, the resulting outputs zy, zyI ,
and zyA would be matrices with each containing
N columns (one distribution vector per annotator).
If one desires to use DisCo to produce a final pre-
dicted label for item xm, then argmax of each
column in zy is taken to produce a list of integer
labels and the mode is taken over this final set of
model-generated class integers. If one desires a
single label distribution vector to be produced for
item xm, then the expectation is calculated across
columns in zy.

5 Experimental Setup

Before conducting the research described here, we
consulted with our institutional review board(s).
They determined it did not constitute human sub-
jects research, primarily because the data was pub-
licly available and secondary. Beyond that, all au-
thors have basic training on conducting human sub-
jects research from CITI.4 Moreover, we do not
reveal any apparent personal identifiers in the data
that we use.

In cases when the original data splits are not
provided, we use a 50/25/25-percent train/de-
v/test split. For natural language datasets
DGE, DJQ1-3, DMR, and DSI, we used SBERT
(Reimers and Gurevych, 2019) with the pretrained
paraphrase-MiniLM-L6-v2 model to generate
sentence embeddings as our feature vectors. The
model generates embeddings over a 384 dimension
space. For DLM, we use features that are distributed
with the data set – these are pre-encoded using
VGG-16 (Simonyan and Zisserman, 2015).

There are relatively few publicly available
datasets that provide label distributions, rather than
single labels or label sets. There are even fewer
that say which annotators labeled which items (i.e.,
that provide the annotator label matrix Y). These
annotator assignments (or annotator-level labels
(Prabhakaran et al., 2021)) are essential for mod-
eling annotators. Thus, we based our comparison
models from those that had been previously tested
on data with annotator assignments, even if some of
the models in question do not use them. One model

4https://about.citiprogram.org/en/series/
human-subjects-research-hsr/
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(CNN) is a baseline that does no pre-processing or
modeling of the labels. Another (MM+CNN) is
LDL aware, but does not explicitly model annota-
tors. The third (CL) models annotators, but is not
explicitly designed for LDL. In the Appendix, we
present a short description of our baselines.

5.1 DisCo

Our model is formally described earlier in the paper.
The item (zI ) and annotator (zA) embeddings are
combined by setting [zI , zA] to be vector concate-
nation. We furthermore regularized model parame-
ters during training by running a Bayesian hyper-
parameter search (Biewald, 2020) on each dataset
across 100 different model parameters. The Adam
adaptive learning rate (Kingma and Ba, 2014) was
used to optimize parameters by using gradients
calculated over mini-batches of 256 samples for
200 epochs. Model parameters that we tuned were:
(1) drop-out probabilities, varying from p = 0 to
p = 0.99, to the outputs of zP and zE , (2) random
orthogonal matrix (Saxe et al., 2013) versus gaus-
sian versus uniform initialization, (3) the activation
function choice between softsign, elu, relu, relu6,
and tanh, (4) annotator and item encoder weights
varying from 0 to 2, (5) L1 and L2 regularization
weights ranging from 1e−07 to 0.001, and, (6) hid-
den layer sizes ranging from 64 to 256.

We evaluate these models as a single label learn-
ing (SL) problem using accuracy, F1-score, pre-
cision, and recall measured over the test set. We
further evaluate our models with respect to the la-
bel distribution learning (LD) problem using KL-
divergence.

6 Results and Discussion

Table 2 presents our main results (additional
datasets and results included in the Appendix A.1).
Since the main goal of this paper is to learn to pre-
dict the distributions of annotator responses, we
focus first on KL-divergence. RQ1 asks about the
performance of DisCo compared to other LDL ap-
proaches that do not model annotators, i.e., CNN,
Max Ent, and MM+CNN in our experiments. As
per Table 2, we see mixed results, with DisCo
performing the best on three and MM+CNN per-
forming best on three. Recall that MM+CNN uses
multinomial mixture model clustering and pools
together all labels from all items in a given cluster.
Compared to DisCo, this tends to result in each
item having a much denser set of clusters, and this

may explain why it performs so well. We speculate
that there is a “sweet spot” between including just
enough labels from related items/annotators but not
so many that the labels are irrelevant, which varies
from dataset to dataset. So when more labels are
needed then MM+CNN does best, but when fewer
labels are optimal then DisCo wins. Indeed, the
datasets on which MM+CNN performs best tend to
have more label choices than the datasests where
DisCo performs best. It would seem that the more
label choices there are, the more labels that one
would need to collect in order to get a representa-
tive sample of annotator disagreement. In addition,
note that DisCo takes about half as much time to
train as MM+CNN.

RQ2 asks about the performance of DisCo versus
approaches that model annotators, but are not LDL-
based, i.e., CL and DS+CNN in our experiments.
In contrast to RQ1, DisCo outperforms all of these
models across all datasets.

Learning label distributions can result in bet-
ter single-label learning (Venanzi et al., 2014; Liu
et al., 2019a; Weerasooriya et al., 2020). When
evaluated as a single label problem, DisCo beats
all of the other models in all but one (MM+CNN
beats it in terms of accuracy in DGE). Even then,
a common dataset between SL and LD measure
which bypasses DisCo is DGE. Notably, this is one
of the largest datasets with offensive language con-
tent, with a large label selection and high number
of items per annotator.

To get a sense of the impact of the WyI and
WyA aggregating layers of DisCo, we included
results using the model but with those layers re-
moved (A = I = 0). The model shows substantial
improvement in nearly all tests.

To gain a qualitative sense of our results, we
inspected several of the test splits of the more in-
teresting datasets for examples on which DisCo
assigned nearly even weights to the two highest-
scoring labels. The SBIC Intent (DSI) dataset is
one on which DisCo performed the best. It is also
the one for which DisCo would be expected to yield
the most interesting results, as annotator disagree-
ment could be quite significant. Many of these
results were jokes, such as “What do you get when
you mix human DNA and goat DNA? Kicked out
of the petting zoo.” with (Intended, Not-Intended)
= (0.35, 0.65) or “why was the lord of the rings
trilogy filmed in new zealand ? cause the us were
missing the two towers.” with (Intended, Not-
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Table 2: This table presents experimental results for the classification tasks. DisCo is the new method introduced
here. CNN is a baseline with no label modeling, which receives for each data item the empirical (unprocessed,
i.e. fdist) label distributions provided by annotators. DS+CNN uses the same CNN model, but the empirical label
distributions are replaced with labels from the (Dawid and Skene, 1979) model. MM+CNN uses the same CNN
model, but the empirical label distributions are replaced with multinomial mixture model centroids. CL is the
CrowdLayer baseline. We repeated each experiment 100 times and report the mean and standard deviation. A=I=0
is our DisCo models without contextual layer with annotator and item encoding. The best performing model is
indicated in bold. See Section “Experiments” for further details.

Data CNN Max Ent DS + CNN MM + CNN CL A = I = 0 DisCo
Accuracy ↑

DGE 0.942 ± 0.001 0.302 ± 0.002 0.168 ± 0.003 0.946 ± 0.002 0.359 ± 0.005 0.300 ± 0.001 0.848 ± 0.004
DJQ1 0.494 ± 0.001 0.621 ± 0.003 0.684 ± 0.004 0.842 ± 0.001 0.813 ± 0.005 0.705 ± 0.003 0.850 ± 0.005
DJQ2 0.475 ± 0.001 0.569 ± 0.004 0.658 ± 0.003 0.810 ± 0.002 0.873 ± 0.003 0.764 ± 0.001 0.895 ± 0.001
DJQ3 0.284 ± 0.020 0.266 ± 0.031 0.061 ± 0.031 0.456 ± 0.010 0.458 ± 0.005 0.656 ± 0.004 0.702 ± 0.001
DLM 0.750 ± 0.045 0.145 ± 0.002 0.201± 0.006 0.798 ± 0.030 0.827 ± 0.002 0.800 ± 0.005 0.963 ± 0.005
DMR 0.177 ± 0.080 0.193 ± 0.003 0.145 ± 0.007 0.824 ± 0.002 0.179 ± 0.003 0.425 ± 0.002 0.484 ± 0.003
DSI 0.759 ± 0.001 0.648 ± 0.004 0.508 ± 0.067 0.658 ± 0.002 0.661 ± 0.003 0.773 ± 0.003 0.766 ± 0.003

F1-Score (Macro) ↑
DGE 0.016 ± 0.001 0.017 ± 0.003 0.024 ± 0.004 0.071 ± 0.003 0.042 ± 0.001 0.203 ± 0.001 0.767 ± 0.005
DJQ1 0.168 ± 0.001 0.194 ± 0.005 0.162 ± 0.005 0.388 ± 0.001 0.398 ± 0.002 0.328 ± 0.003 0.569 ± 0.003
DJQ2 0.202 ± 0.001 0.219 ± 0.004 0.197 ± 0.005 0.409 ± 0.001 0.412 ± 0.001 0.400 ± 0.001 0.587 ± 0.001
DJQ3 0.044 ± 0.002 0.083 ± 0.023 0.014 ± 0.021 0.156 ± 0.001 0.164 ± 0.001 0.344 ± 0.001 0.362 ± 0.001
DLM 0.677 ± 0.004 0.097 ± 0.003 0.211 ± 0.007 0.736 ± 0.003 0.821 ± 0.002 0.847 ± 0.003 0.883 ± 0.007
DMR 0.035 ± 0.003 0.100 ± 0.004 0.026 ± 0.008 0.036 ± 0.004 0.087 ± 0.003 0.111 ± 0.005 0.561 ± 0.004
DSI 0.192 ± 0.001 0.356 ± 0.001 0.169 ± 0.070 0.354 ± 0.002 0.359 ± 0.001 0.389 ± 0.002 0.852 ± 0.002

Precision ↑
DGE 0.010 ± 0.005 0.012 ± 0.003 0.028 ± 0.006 0.131 ± 0.001 0.330 ± 0.001 0.256 ± 0.001 0.780 ± 0.003
DJQ1 0.145 ± 0.001 0.206 ± 0.002 0.147 ± 0.021 0.392 ± 0.002 0.146 ± 0.003 0.412 ± 0.003 0.558 ± 0.005
DJQ2 0.170 ± 0.001 0.223± 0.023 0.185 ± 0.003 0.388 ± 0.001 0.171 ± 0.002 0.496 ± 0.001 0.617 ± 0.001
DJQ3 0.028 ± 0.002 0.093± 0.040 0.009 ± 0.004 0.133 ± 0.001 0.026 ± 0.001 0.407 ± 0.002 0.441 ± 0.002
DLM 0.580 ± 0.003 0.107± 0.050 0.201 ± 0.005 0.505 ± 0.003 0.836 ± 0.002 0.846 ± 0.004 0.847 ± 0.004
DMR 0.051 ± 0.005 0.129± 0.049 0.015 ± 0.004 0.039 ± 0.002 0.072 ± 0.003 0.116 ± 0.003 0.643 ± 0.005
DSI 0.295 ± 0.001 0.332± 0.001 0.127 ± 0.006 0.328 ± 0.001 0.330 ± 0.002 0.402 ± 0.002 0.866 ± 0.002

Recall ↑
DGE 0.035 ± 0.005 0.038 ± 0.040 0.038 ± 0.005 0.059 ± 0.001 0.333 ± 0.001 0.201 ± 0.001 0.769 ± 0.003
DJQ1 0.199 ± 0.001 0.197 ± 0.003 0.206 ± 0.003 0.391 ± 0.002 0.200 ± 0.001 0.312 ± 0.002 0.558 ± 0.004
DJQ2 0.249 ± 0.0001 0.231± 0.030 0.239 ± 0.002 0.431 ± 0.001 0.250 ± 0.005 0.381 ± 0.002 0.570 ± 0.002
DJQ3 0.100 ± 0.002 0.097± 0.048 0.102 ± 0.012 0.205 ± 0.002 0.100 ± 0.0003 0.329 ± 0.001 0.334 ± 0.001
DLM 0.524 ± 0.003 0.101± 0.032 0.322 ± 0.004 0.423 ± 0.005 0.824 ± 0.004 0.892 ± 0.004 0.856 ± 0.004
DMR 0.100 ± 0.005 0.119± 0.048 0.101 ± 0.032 0.119 ± 0.008 0.112 ± 0.004 0.110 ± 0.004 0.549 ± 0.005
DSI 0.259 ± 0.002 0.401± 0.002 0.251 ± 0.004 0.389 ± 0.001 0.390 ± 0.001 0.401 ± 0.001 0.841 ± 0.001

KL-Divergence ↓
DGE 2.011 ± 0.001 2.145 ± 0.030 3.247 ± 0.012 0.707 ± 0.001 5.838 ± 0.003 4.119 ± 0.002 1.089 ± 0.005
DJQ1 1.092 ± 0.004 0.648 ± 0.040 1.042 ± 0.005 0.458 ± 0.001 2.077 ± 0.003 0.425 ± 0.002 0.420 ± 0.005
DJQ2 1.088 ± 0.004 0.686± 0.022 1.035 ± 0.003 0.515 ± 0.001 1.695 ± 0.003 0.467 ± 0.002 0.575 ± 0.002
DJQ3 1.462 ± 0.004 1.003± 0.032 3.197 ± 0.034 0.887 ± 0.001 3.862 ± 0.001 0.855 ± 0.001 0.900 ± 0.001
DLM 1.825 ± 0.009 2.692± 0.040 2.201 ± 0.005 1.638 ± 0.008 0.816 ± 0.002 0.497 ± 0.004 0.209 ± 0.004
DMR 1.101± 0.003 1.043± 0.080 1.325 ± 0.007 0.593 ± 0.004 3.777 ± 0.001 1.818 ± 0.009 1.389 ± 0.008
DSI 0.889 ± 0.003 0.782± 0.001 1.514 ± 0.067 0.991 ± 0.003 2.076 ± 0.002 1.498 ± 0.001 0.554 ± 0.001

Intended) = (0.30, 0.70), which are clearly offen-
sive to some people, but apparently funny to others.
There are also politically charged messages such as
“we need to bring back monster trucks, guns, heavy
metal 1776 MAGA I want trumps next speech to
have monster trucks jumping over an ac/dc concert,”
with (Intended, Not-Intended) = (0.35, 0.65), or
the use of racially derogative terms that may not be
universally recognized as such.

Wan et al. (2023) also proposed a model using
DSI dataset for modeling annotators based on their
demographic details. We summarize F1-Scores for
all of the baselines and DisCo in Figure 3. The con-
textual learning ability of DisCo does show a sig-
nificant improvement over the prior models which
do not perform in a similar manner.

On the other hand, items on which the predic-
tion assigned all or nearly all of the probability
mass to one label tended to be very obviously racist
and/or hateful. In the specific research focus of hate
or offensive speech and monitoring in real-world

settings involving contentious issues (Palakodety
et al., 2020), there is a growing consensus that
human-in-the-loop systems aided by automated
methods can be more robust in handling controver-
sial edge cases. If our automated method assigns
nearly even weights to two (or more) highest scor-
ing labels, perhaps those instances merit greater
scrutiny and vetting from multiple web moderators.
Since real-world human moderation is costly, our
model can potentially serve as a guide in prioritiz-
ing human moderation resources.

Our involvement in label distribution learning
came from a community-based participatory re-
search group that we belonged to on the use of AI
technology in vulnerable communities as a means
of preserving, in AI pipelines, minority perspec-
tives that would otherwise be erased when anno-
tator disagreement is resolved (usually in favor of
the plurality label, as is common practice today).
We believe that these methods, coupled with de-
mographic information on annotators and reliable
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Figure 3: The figure consists a comparison of the mod-
els for DSI dataset based on F1-Score. Left to right,
(grey) CNN is a baseline with no label modeling, which
receives for each data item the empirical label distribu-
tions provided by annotators. (red) DS+CNN uses the
same CNN model, but the empirical label distributions
are replaced with labels from the DS model. MM+CNN
uses the same CNN model, but the empirical label dis-
tributions are replaced with MM centroids. (yellow) CL
is the CrowdLayer baseline. WKK is the baseline from
Wan et al. (2023). (pink) A=I=0 is our DisCo models
without output layer with annotator and item embedding.
(black) DisCo is the new method introduced here.

confidence estimates, can lead to annotated data
that is more representative of the true values within
a society.

6.1 Future work

Our work currently assumes that each annotator
provides at most one label for each item from a
fixed set of allowed responses. However, settings in
which annotators may provide multiple labels per
item, or where the domain of responses is open or
highly structured are common, and are often where
response diversity can be particularly rich, are re-
warding to model. Consider, for instance, machine
translation, in which there is clearly no “correct”
translation from one language to another. One way
to handle multiple responses per item/annotator is
to consider each element in the powerset P(Q) of
individual responses Q, so that each subset of Q
is treated as an individual response. However, this
creates a very large, and usually sparse, response
space that is unwieldly. Such simplistic approaches
do not address more complex responses such as
translations from one language to another.

We hope to fulfill a vision laid out by Lakkaraju
et al. (2015), further motivated by Sap et al. (2021),
and addressed by Gordon et al. (2022) in which
we predict, not just the distribution of responses
of the entire population, but that of key vulnerable
subgroups. This would allow us to better under-
stand when disagreement is likely to have social or

political impacts. Note that if we had demographic
information about our annotators, we could infer
over any such group by masking out at inference
time all annotators who do not not belong to the
group of interest.

Given the clustering of responses revealed in
Figure 4 and the competitive performance of
MM+CNN with respect to KL-divergence, we
would like to explore ways to incorporate cluster-
ing into the design of DisCo.

7 Conclusion

We proposed a novel neural architecture, DisCo,
for modeling the distribution of labels an item re-
ceives and the distribution that annotators provide
in the presence of item-annotator pairs. Our de-
sign was motivated by the desire to break free of
the standard assumption (in supervised learning) of
single-label ground truth. Experimental results in-
dicate that DisCo performs at a level comparable to
state-of-the-art models that were purpose-built for
label distribution learning, but with faster training
time, and outperforms state-of-the-art annotator-
modeling models, even on single-label learning
problems. Qualitative inspection of the data shows
that the model can predict striking examples of an-
notator disagreement. Future work will explore
ways to more flexibly increase the labels of related
items/annotators in order to enhance the sparse la-
bel sets.

Limitations

It is highly desirable to test our model on more
datasets. However, there are very few multi-class,
publicly available datasets that include information
about annotator assignments. Often this informa-
tion is, unfortunately, either discarded or withheld.
Without annotator assignments, it is difficult to run
experiments related to label distribution learning
driven by annotator-item modeling. We hope that
this paper encourages more researchers to collect
and share more datasets that retain information
about annotator-item matchings.

Datasets: We understand that the disagreement
between the annotators could arise due to the sub-
jectivity/ambiguity of the content to be annotated,
nature of the study, or even worker reliability
(Aroyo and Welty, 2013; Inel et al., 2014). These
observations cannot be solely utilized to disregard
a dataset, since it is not a limitation of the dataset
but the nature of the problem domain of annotator
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disagreement.

Ethical Considerations

All statistical methods are double-edged swords.
Used maliciously, these methods could be used to
misrepresent social values and opinions. Moreover,
while these methods would be more informative
with demographic information on the annotators,
this conflicts with the privacy of the annotators, a
group of workers who are often treated unfairly
(Gray and Suri, 2019).
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nervousness, optimism, pride, realization, relief,
remorse, sadness, surprise, or neutral. The number
of annotations per item ranges from one to sixteen.

Job-related (DJQ1, DJQ2, and DJQ3): On a
dataset of 2000 tweets, Liu et al. (2016) asked five
annotators each from MTurk and FigureEight to
label work-related tweets according to three ques-
tions with multiple choice responses: point of view
of the tweet (DJQ1: 1st person, 2nd person, 3rd per-
son, unclear, or not job related), subject’s employ-
ment status (DJQ2: employed, not in labor force, not
employed, unclear, and not job-related), and em-
ployment transition event (DJQ3: getting hired/job
seeking, getting fired, quitting a job, losing job
some other way, getting promoted/raised, getting
cut in hours, complaining about work, offering sup-
port, going to work, coming home from work, none
of the above but job related, and not job-related).

LabelMe (DLM): was originally released as part
of a data challenge for computer vision research.
The label categories were: highway, inside city, tall
building, street, forest, coast, mountain or open
country. There are a total of 2, 688 images in the
dataset, out of which 1, 000 were annotated by an
average of 2.547 MTurkers (Rodrigues et al., 2017).
The authors use data augmentation to create a larger
sample of 10,000 items for training CL (Russell
et al., 2008). In order to compare DisCo against
this previous benchmark, we ran our experiments
on this larger dataset.

Movie Reviews (DMR): Rodrigues and Pereira
(2018) culled 1,500 items from a dataset of 5,006
movie reviews in English with a single rating a
scale of 1-10 (Pang and Lee, 2005). They asked
multiple AMT workers (4.96 per item, on average)
provide their own ratings as test data for a Crowd-
Layer regression task.

The Social Bias Inference Corpus (DSI): The
DSI dataset contains 45k posts from Reddit, Twit-
ter, and hate sites collected by Sap et al. (2019)6.
The dataset was annotated with respect to seven
questions: offensiveness, intent to offend, lewd-
ness, group implications, targeted group, implied
statement, in-group language. Out of these, we
consider only the “intent to offend” question, as it
had the richest label distribution patterns. It has the
label options: Intended, Probably Intended, Proba-
bly Not Intended, Not Intended. The items in this
dataset are in English. The number of annotations

6Available to download at https://homes.cs.
washington.edu/~msap/social-bias-frames/index.
html

Dataset CNN MaxEnt Others DisCo
Accuracy ↑

DHSB 0.915±0.009 0.900±0.005 0.895±0.007
DAMS 0.589±0.016 0.611±0.008 0.787±0.049
DMDA 0.700±0.008 0.768±0.002 0.793±0.020
DGAB 0.901±0.010 0.914±0.001 0.903±0.007

F1-Score (Macro) ↑
DHSB 0.685±0.019 0.570±0.005 0.91 0.9681±0.04
DAMS 0.466±0.081 0.513±0.017 0.82 0.780±0.053
DMDA 0.638±0.013 0.724±0.003 0.83 0.933±0.057
DGAB 0.478±0.000 0.478±0.000 0.959±0.601

Recall ↑
DHSB 0.725±0.032 0.572±0.003 0.960±0.051
DAMS 0.534±0.030 0.558±0.010 0.787±0.049
DMDA 0.635±0.013 0.714±0.004 0.932±0.058
DGAB 0.500±0.000 0.500±0.000 0.953±0.774

Precision ↑
DHSB 0.661±0.018 0.568±0.007 0.979±0.027
DAMS 0.526±0.124 0.630±0.018 0.787±0.048
DMDA 0.658±0.009 0.743±0.003 0.936±0.057
DGAB 0.457±0.000 0.457±0.000 0.971±0.035

KL-Divergence ↓
DHSB 0.192±0.013 0.192±0.013 0.235 0.183±0.070
DAMS 0.448±0.002 0.445±0.000 0.469 0.448±0.076
DMDA 0.296±0.006 0.235±0.001 0.472 0.401±0.027
DGAB 0.249±0.006 0.252±0.003 0.207±0.175

Table 3: Results from running DisCo on additional
datases that was introduced through the SemEval con-
test. We have also included the results from the best
model through the SemEval contest in the others col-
umn to show how they compare against DisCo.

per data item varies here between one and twenty
annotations per item.

A.1 Additional Datasets
We conduct our experiments on five additional
datasets. The SemEval 2023 task “Learning
with Disagreements” (LeWiDi) introduced four
datasets to repeat our methods and to compare to
a large pool of different models (Leonardelli et al.,
2023). And the dataset “Gab” (DGAB) introduced
by Kennedy et al. (2022). The results are included
in the Table 3.

Arabic Misogyny and Sexism(DAMS): The
dataset introduced by Almanea and Poesio (2022)
is a binary annotation study of 943 Arabic tweets,
created to study the effect on sexism judgments of
bias. The dataset was annotated by three annotators
who self identified themselves as; a conservative
male, a moderate female, and a liberal female.

Hate Speech on Brexit (DHSB): The dataset in-
troduced by Akhtar et al. (2021) consists of 1,120
English tweets that are related to immigration and
Brexit. The tweets were identified based on key-
word filtering. It was annotated by six annota-
tors: a target group of three Muslim immigrants
in England and three other annotators for the con-
trol group. They annotated looking at hate speech
on xenophobia and Islamophobia, aggressiveness,
offensiveness, and stereotypes. It was a binary an-
notation study.
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The Multi-Domain Agreement(DMDA): The
dataset created by Leonardelli et al. (2021) con-
sists of 10,753 English tweets from three domains
(Black Lives Matter movement, Election 2020, and
COVID-19 pandemic). Each tweet was annotated
for offensiveness by five annotators through Ama-
zon Mechanical Turk. The annotator pool consisted
of > 800 annotators.

The Gab Dataset (DGAB): This dataset col-
lected from the social network “Gab” introduced by
Kennedy et al. (2022) consists of 27,665 posts that
are annotated by a minimum of three annotators.
The original dataset annotated hate and offensive
content. We work with the labels associated for
vulgar and/or offensive language classification.

B Experiments

B.1 Computational Setup

Our experiments were conducted on: #1 - A desk-
top computer with an Intel i6-7600k (4 cores) at
4.20GHz, 32GB RAM, and nVidia GeForce RTX
2070 Super 8GB VRAM, and, #2 - A shared server
in our institution with an Intel(R) Xeon E7 v4,
264GB RAM, and GPU Tesla P4 8GB. Our worst
case computation was using machine #1 in our
setup and with the dataset DGE. The runtime for
a single pass of experiments on a single dataset
for the CNN took 2 minutes, MM + CNN took 2
hours, CL took 30 minutes, and DisCo took 1 hour.
We repeated each experiment 100 times in order to
report standard error.

B.2 Approaches that predict label
distributions, but do not model annotators

Convolutional Neural Network (CNN) is a base-
line supervised model that outputs label distribu-
tions with no label modeling. It is a 1D convo-
lutional neural network (Kim, 2014), with three
convolution/max pool layers (of dimension 128)
followed by a dropout (0.5) and softmax layer, im-
plemented in TensorFlow. It uses KL divergence
for the cost function.

Multinomial CNN (MM+CNN) is the best-
performing model from Weerasooriya et al. (2020);
Liu et al. (2019a). It is an LDL-aware, two-step pro-
cess that, in order to improve the estimates of each
item’s given label distribution, applies (as the first
step) an unsupervised clustering step to the label
distributions before they are passed (as the second
step) to an unsupervised learner, which is the same
as the CNN model described above. We performed

parameter search on the number of item clusters
K ∈ {4, . . . , 40} and report the results on the best
performing model. Specifically, Table 4 presents
the model selection parameters for the MM model
of Liu et al. (2019a). MM + CNN model is clus-
tered only on item classes. K is the number of item
classes, L is the number of annotator classes, and
KL is the KL divergence when evaluated against
empirical ground truth.

Table 4: Experimental parameters of the MM+CNN
model.

Data DGE DLM DJQ1 DJQ2 DJQ3 DSI

KL 2.053 0.643 0.193 0.170 0.269 0.942
K 20 13 14 7 35 21

The rationale behind this design (Liu et al.,
2019a) is that if a group of data items have similar
label distributions, then the annotators believe that
this group of items is related and can be clustered
together and regarded as having the same distribu-
tion, namely the cluster centroid. In this way, the
clustering helps with label sparsity. This approach,
however, does not model the annotators (nor does
it need to be aware of which annotators labeled
which items).

Maximum Entropy (Max Ent) is a barebones
maximum entropy linear classifier, a single dense
layer classification model with a softmax activation.
We use this model as an alternative for the CNN
classification model.

B.3 Approaches that model annotator
behavior, but are not designed to predict
label distributions

Dawid and Skene (1979) (DS + CNN) uses the
label aggregation method introduced by Dawid and
Skene (1979) (see Section “Related Work”), paired
with the CNN classification baseline model.

CrowdLayer (CL) Rodrigues and Pereira
(2018) attach to the output of any neural network
with a Q-dimensional output layer (recall that Q is
the size of the label space) a crowd-layer, which has
multiple, parallel, Q-dimensional, new output lay-
ers, one for each annotator, and takes as input the
old output layer. This extended model is trained as
a single, monolithic neural network. It then learns
to simultaneously predict the labels of each anno-
tator. The old output layer (now an inner layer)
thus becomes a bottleneck through which each of
these independent annotator predictions must pass,
and the overall model effectively learns a collective

4691



ground truth distribution for the entire population
of annotators. During inference the crowd-layer
is discarded and the old output layer is used in-
stead. However, during learning the weights from
the bottleneck layer to each individual annotator
layer learn to discount unreliable annotators and fa-
vor reliable ones. This model effectively can learn
a label distribution ground truth (that is, there is
nothing in their model to bias the bottleneck layer
toward a single label output). However, the authors
did not anticipate LDL or evaluate its ability to
learn label distributions.

Compared to DisCo, CL takes a single data item
as input, while DisCo takes an annotator-item pair.
CL also has parallel, independent, output dimen-
sions for each annotator, while DisCo has an output
layer whose size is independent of the number of
annotators and items. Consequently, DisCo takes in
more information at input (an item-annotator pair
versus just an item) and has to solve a simpler pre-
diction task (namely, to output one label distribu-
tion per input versus one label distribution for each
annotator per input). We believe that our design
offers a more scalable and more tractable learning
problem (especially if there are many annotators, as
is commonly the case, e.g., when crowdsourcing is
used). We also believe DisCo is the superior design
for sparse labels, because each input to the model
uses all of its layers. By contrast, CL has a large
number of parallel layers that are only active when
the corresponding annotators are present. So when
annotators are sparse, a relatively large number of
these annotator layers are not used.

Furthermore, while both our model and CL have
a bottleneck layer, the dimension of the bottleneck
in the CL model must have the same dimension as
the label space (because it is used for inference)
while ours can have an arbitrary dimension. This
gives our model a bit more flexibility but also re-
quires us to consider this dimension as a hyperpa-
rameter that must be tuned. The implementation
is based on the code released for the CrowdLayer
classification task.

C Derivation of KL-Divergence for DisCo

To train DisCo’s parameters Θ = {Θe,Θd}, we
propose the following multi-objective function:

L(Θ)

=−
∑

m,n

#yn,m · log(zy) +
∑

m

KL(#y·,m||zyI)

+
∑

n

KL(#yn,·||zyA) (8)

where the first term is the negative categorical log
likelihood of the target one-hot encoded label y and
the second and third terms measure the Kullback-
Leibler (KL) divergence of between the decoder’s
estimate and the actual item label distribution yi

and the actual annotator label distribution ya, re-
spectively. Specifically, the form of the KL diver-
gence that we use compares two multinomial/multi-
noulli distributions:

KL(y·,m||zyI ; Θ)

=
∑

m

#y·,m · log#y·,m

−
∑

m

#y·,m · log zyI (9)

KL(yn,·||zyA; Θ)

=
∑

j

#yn,· · log#yn,·

−
∑

n

#yn,· · log zyA, (10)

where here and above log is applied to each scalar
value independently and is base e. DisCo’s param-
eters are adjusted to minimize the function defined
in Equation 8 by calculating the gradients with
respect to both the encoder and decoder weights,
i.e., ∂L(Θe,Θd)

∂Θe
and ∂L(Θe,Θd)

∂Θd
. The resultant partial

derivatives are then used to change the current val-
ues in Θe and Θd via stochastic gradient descent or
with a more advanced adaptive learning rate rule
such as Adam (Kingma and Ba, 2014).

Our use of KL divergence here as a loss function
and in our results as an evaluation instrument is
particularly relevant to us because it has a very im-
portant connection to the likelihood of multinomial
samples. Suppose we wished to estimate #y·,m by
drawing a sample ˆ#y·,m of size S from the distri-
bution defined by zyI . Let L( ˆ#y·,m|zyI) denote
the log-likelihood of this sample. Then (Shlens,
2014),

lim
N→∞

L(| ˆ#y·,m|zyI)/S = −KL(p̂| ˆ#y·,m∥zyI).
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D Crowd Analysis

We generated t-SNE visualizations on the outputs
of DisCo models trained on DJQ1, DJQ2, and DJQ3.
See Figure 4. The visualization reveal clustering in
the output space of these models and is reminiscent
of the clustering in the label distribution space that
the MM+CNN model is designed to exploit, but
which is not explicitly modeled by DisCo.
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Figure 4: t-SNE plot for training set from DisCo mod-
els. Each color represents a label class. (Top) Plot for
DJQ1 dataset, which has five label classes (C). (Middle)
Plot for DJQ2 dataset, which also has five label classes
(C). (Bottom) Plot for DJQ3 dataset, which has 12 label
classes (C).
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