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Abstract
The generalization ability of pre-trained lan-
guage models (PLMs) in downstream tasks is
heavily influenced by fine-tuning. The objec-
tive of fine-tuning is to transform the latent
representation of PLMs from a universal space
to a target space, allowing the model to be ap-
plied to downstream tasks with the capability
of generalizing to unseen samples. However,
the effect of PLMs will be diminished when the
training data coverage is insufficient, in which
fine-tuning is inadequate to learn the complete
mapping. In this study, we propose a new fine-
tuning framework, referred to as G-Tuning, that
aims to preserve the generalization ability of
PLMs in downstream tasks. Specifically, we
integrate a generative adversarial network into
the fine-tuning process to aid in the transfor-
mation of the latent representation in the en-
tire space. Empirical evaluations on the GLUE
benchmark, as well as two additional demand-
ing scenarios involving domain and language
generalization, demonstrate that G-Tuning can
accurately map the universal representation to
the target space, thus effectively enhancing the
generalization performance of PLMs across var-
ious downstream tasks.

1 Introduction

Large-scale pre-trained language models (PLMs)
have demonstrated substantial achievements in nat-
ural language processing (NLP) recently (Qiu et al.,
2020; Han et al., 2022). Generally, fine-tuning
PLMs with the task-specific training data can get
significant improvements compared to training a
model from scratch (Devlin et al., 2019; Lample
and Conneau, 2019; Radford et al., 2018; Ouyang
et al., 2022). Fine-tuning aims at transforming the
representation from PLMs in the universal space
to the target space, thereby enabling the model to
generalize to a wider range of samples (Pan and
Yang, 2010; Liu et al., 2021; Wei et al., 2021).

However, the generalization capability of PLMs
is largely affected by the task-specific data when

using fine-tuning to further train the model (Pa-
tel et al., 2022). As noted by Wu et al. (2022),
fine-tuning is susceptible to memorizing the train-
ing data when the capacity of the PLM exceeds
that of the downstream task data. Furthermore, the
advantage of PLMs over random initialization is
lost when the coverage of task-specific data is low,
resulting in a large gap between training and test
data (Zoph et al., 2020; He et al., 2019). For in-
stance, in domain generalization, PLMs fine-tuned
with in-domain training sets often fail to perform
well on out-of-domain test sets, even when data
from the test sets is used for pre-training (Yang
et al., 2022). Therefore, a crucial challenge for
unlocking the potential of PLMs is how to learn a
complete and accurate mapping from the universal
space to the target space with limited training data.

Previous studies have presented some promising
approaches to address this problem. Fang et al.
(2020) proposed a self-teaching method to use
a fine-tuned PLM to get soft labels of the unla-
beled data and train another PLM by these syn-
thetic data, which brings considerable improve-
ments in the cross-lingual transfer scenario. Li and
Zhang (2021) presented regularized self-labeling
to correct mislabeled data points and reweight less
confident data points to regularize PLMs. Li et al.
(2022) proposed an ensemble learning method for
domain generalization, which can dynamically dis-
patch proper PLMs to predict each test sample. Wu
et al. (2022) proposed a noisy tuning method to
add matrix-wise perturbation to different parameter
matrices to overcome the outfitting problem of fine-
tuning, which indirectly improve the generalization
ability of PLMs. Lu et al. (2022) presented stochas-
tic weight averaging to improve generalization by
encouraging convergence of the model to a flatter
minimum. Furthermore, compared to fine-tuning,
in-context learning which doesn’t tune the parame-
ter of PLMs, we leave this to future work (Li and
Liang, 2021; Brown et al., 2020; Vu et al., 2022).
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In this paper, we propose a novel fine-tuning
framework (named G-Tuning) to preserve the gen-
eralization capability of PLMs when training with
task-specific data. We adopt parameter efficient
fine-tuning (PEFT) as our backbone, which only
tunes a lightweight adapter network connected be-
hind PLMs (Houlsby et al., 2019)1, and incorporate
a generative adversarial network (Goodfellow et al.,
2020; Arjovsky et al., 2017; Gulrajani et al., 2017)
into it to learn the representation mapping. Specif-
ically, we first train a discriminator to aim of dis-
criminating the representation that is not mapped
correctly from the target space. Then, besides pre-
dicting the ground-truth label, the model is seen as
a generator requested to generate the representation
hard to be discriminated. We conduct experiments
on the GLUE and two more challenging scenarios,
i.e., domain and language generalizations. Exper-
imental results show that G-Tuning can improve
generalization capability by effectively mapping
the universal representation to the target space.

2 Methodology

2.1 Preliminaries
Pre-trained Language Model. Given a large-
scale unlabeled data-set M , the widely-used train-
ing function of PLMs is

LP(θ) = −Exu∼M [logP (xu|m(xu); θ)], (1)

where xu is an input sequence and m(·) is a per-
turbation function, which masks tokens in the xu

by a certain rule (Devlin et al., 2019; Radford
et al., 2018). The θ is the parameter set of the
PLM, which generally adopts the Transformer struc-
ture (Vaswani et al., 2017).

Parameter Efficient Fine-tuning. Given a train-
ing set B from a downstream task, we can sum-
marize the loss function of PEFT (Houlsby et al.,
2019; He et al., 2022a) as:

LT (ϕ) = −E{xt,yt}∼B[logP (yt|xt; θ, ϕ)], (2)

where xt is the input and yt is the corresponding
label. PEFT only trains an adapter parameterized
by ϕ, and the parameter θ of the PLM is fixed.

2.2 The Proposed G-Tuning
Before elaborating on the G-Tuning, we first de-
fine the composition of the PLM and the adapter

1Compared to fine-tuning the whole model, PEFT is effi-
cient and stable in our experiments (see Appendix A).
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Figure 1: An illustration of the training process of the
proposed G-Tuning.

as f(·). Given an input, the output of f(·) is a vec-
tor or the mean pooling of a matrix according to
different tasks. Inspired by the Wasserstein GAN
(WGAN) (Arjovsky et al., 2017; Gulrajani et al.,
2017), we train a discriminator D(·) as follows:

LD =− Ext∼B,xu∼M [D(f(xt))−D(f(xu))]

+ λEz∼N [||∇D(z)||2 − 1]2. (3)

Here, the second term is gradient penalty, which is
used to smooth the weight of D(·) (Gulrajani et al.,
2017). The coefficient λ is set as 10 and the latent
representation z is computed by:

z = ϵf(xu) + (1− ϵ)f(xt), ϵ ∼ N (0, 1). (4)

We consider the representation from f(xt) obeys
the real distribution, and from f(xu) obeys the gen-
erated distribution. The aim of D(·) is to identify
the representation that did not correctly map from
the universal space to the target space.

We think of f(·) as the generator which can be
optimized by the following loss function:

LG(ϕ) = −Exu∼M [D(f(xu))]. (5)

Finally, different from the original WGAN, we
combine the loss functions from Eq. 2 and Eq. 5 in
a multi-task learning paradigm (Sener and Koltun,
2018) to optimize the adapter network:

L(ϕ) = αLT (ϕ) + βLG(ϕ), (6)

where the coefficient α and β are used to control
the loss function, which we set as 1 and 0.5, respec-
tively.2 Here, we utilize LG to learn the representa-
tion mapping. To avoid the deviation of the target
space, we further use LT to keep it consistent. An
illustration of the G-Tuning is shown in Figure 1.

2The overall training algorithm is shown in Appendix B.
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Model MNLI QNLI QQP RTE SST MRPC CoLA STSB Avg.

XLNET† 89.8 93.9 91.8 83.8 95.6 89.2 63.6 91.8 87.4
RoBERTa† 90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4 88.9
HyperPrompt† 90.3 95.0 87.0 87.7 96.7 93.6 57.5 91.9 87.5

RoBERTa 90.5 95.1 92.3 85.5 96.5 90.9 68.3 92.0 88.9
+ NoisyTune 90.8 95.7 91.8 86.4 96.3 91.3 68.2 92.7 89.2
+ Self-Teach 88.6 95.3 91.7 84.9 96.2 88.9 67.4 91.7 88.1
+ Adapter 89.9 92.7 90.5 85.3 96.0 91.5 67.9 93.4 88.4

+ G-Tuning 90.9 95.9 92.8 87.1 96.9 92.3 69.8 93.1 89.9

Table 1: Results on the GLUE. “Avg.” is the average score of all tasks. “†” means the results come from their paper.

3 Experiments

3.1 Implementation Detail

Data-set. We first experiment on the GLUE
benchmark (Wang et al., 2018). In consideration
of the labels of the test sets are not released, we
report results on the validation sets. Further, we
report the result of MNLI-matched for the MNLI
task and do not evaluate the WNLI task due to
problems with the data. Then, we conduct experi-
ments in two more challenging scenarios: domain
generalization and language generalization. In do-
main generalization, following Yang et al. (2022),
we reorganize the date set of each task in GLUE
(named GLUEood) and use the same metric to eval-
uate the model. In language generalization, we
adopt XTREME benchmark (Hu et al., 2020) to
evaluate our approach, in which we use English
training data to tune the model and transfer it to
other languages. In addition, more details of GLUE
and XTREME benchmarks can refer to their pa-
pers (Wang et al., 2018; Hu et al., 2020). The
evaluation metric of all tasks and the data statistic
of the GLUEood data-set are shown in Appendix C.

Setting. Depending on the type of task, we use
the large setting of RoBERTa (Liu et al., 2019)
and XLM-R (Conneau et al., 2020) as the foun-
dation model. We set the batch size as 32 and
the number of gradient accumulations as 2. The
training epoch of all models is 10. We compose
the data-set M by randomly sample the Similar
to previous work (Xu et al., 2022; Zaken et al.,
2022), we search learning rate from {5e-6,1e-5,5e-
5,1e-4,5e-4}. The optimization frequency of the
discriminator is {3,5,7,9} times than the genera-
tor. We use Adam (Kingma and Ba, 2014) as the
optimizer for our method. We use a three layers
transformer structure as the discriminator and the
adapter, respectively. We first fine-tune the PLM

for 5 epochs; then, we use the fine-tuned model to

train the discriminator and employ the proposed
method with another 5 epochs. For the sentence
pair task, we compute the representation for each
sentence individually and combine them before the
output layer. For the structure prediction task, we
use the average of all the outputs of all tokens as
input. We report the average score of 3 runs with
different seeds. Experiments are performed on 4
NVIDIA A100 GPUs.

3.2 Main Results

Results on GLUE. The results of the GLUE
benchmark are presented in Table 1. We first re-
port the results for several widely-used PLMs, i.e.,
XLNET (Yang et al., 2019) and RoBERTa (Liu
et al., 2019), as well as a prompt-based method,
HyperPrompt (He et al., 2022b). To ensure fair
comparison, we implement the self-teaching (Self-
Teach) (Fang et al., 2020), noisy tuning (Noisy-
Tune) (Wu et al., 2022) and the standard adapter-
based method (as trained by Eq. 2) with the same
structure of our model. Our G-Tuning approach
gets a 1.0 absolute improvement compared to fine-
tuning RoBERTa directly. Additionally, our model
consistently outperforms previous work.

Subsequently, we evaluate the generalization ca-
pabilities of our approach in domain generalization
and language generalization. While G-Tuning gets
considerable improvements on the GLUE bench-
mark, it is important to consider whether it effec-
tively transforms the entire representation space or
only a neighborhood surrounding the training data.

Results on Domain Generalization. The results
are presented in Table 2. Similar to Yang et al.
(2022), we evaluate our approach by exploiting
out-of-domain (OOD) data as test sets. Compared
to the standard dev sets on the GLUE, the perfor-
mance of all methods exhibits a notable decline
on the OOD test sets. Moreover, the results of
fine-tuning the whole model are inferior to those of
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Model MNLI/SICK RTE/HANS SST/IMDB CoLA/ColAood STSB/SICK Avg.

RoBERTa 72.3 65.4 85.9 28.2 84.7 67.3
+ Self-Teach 75.6 62.3 83.4 29.2 86.5 67.4
+ NoisyTune 75.3 65.7 89.3 28.6 87.1 69.2
+ Adapter 75.7 66.8 88.1 27.2 86.3 68.8

+ G-Tuning 82.1 69.9 92.3 44.3 90.2 75.8

Table 2: Results on the GLUEood (Domain Generalization). “Avg.” is the average score. “∗/∗” is training/test set.

Model Sent Pair Struct Pred Sent Retrieval Question Answering Avg.XNLI PAWS-X POS NER BUCC Tatoeba XQuAD MLQA TyDiQA

XLM-R† 79.0 86.3 72.7 62.3 79.2 76.0 76.2 71.4 65.0 74.2
NoisyTune† 79.3 86.5 73.5 63.2 79.9 76.8 76.7 71.9 65.4 74.8

InfoXLM 80.6 87.1 74.3 64.1 80.4 77.5 75.3 72.9 66.8 75.4
XLM-R 79.3 86.7 73.3 64.9 79.6 76.3 76.4 71.2 64.3 74.7

+ NoisyTune 80.1 87.4 72.4 64.5 78.8 77.7 76.7 72.5 64.9 75.0
+ Self-Teach 79.4 85.8 74.1 65.4 79.1 75.5 75.9 72.1 65.2 74.7
+ Adapter 79.9 86.1 73.5 65.6 79.5 76.8 77.1 71.5 63.8 74.9

+ G-Tuning 80.9 87.5 74.2 66.3 80.8 77.3 77.7 73.4 66.5 76.1

Table 3: Results on the XTREME benchmark (Language Generalization). “Sent” is short for sentence and “Struct
Pred” is structural prediction. “Avg.” is the average score of all tasks. “†” means the results come from their paper.
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Figure 2: The scatter figure of the representation of in-
domain (Orange Square) and out-of-domain (Blue Cir-
cle) data generated by fine-tuning (Left) and G-Tuning
(Right), respectively.

other methods, suggesting that training PTMs with
in-domain data will lead to a severe decline in gen-
eralization ability. In comparison to the strongest
baseline, G-Tuning achieves an average improve-
ment of 6.4 in the domain generalization scenario.

Results on Language Generalization. The over-
all results on XTREME benchmark are shown in
Table 3. Compared to fine-tuning XLM-R, our
method achieves an average improvement of 1.4.
However, the improvement is lower than that ob-
served in the domain generalization. We posit that
the characteristics of different languages have an
impact on language generalization. Here, we do
not utilize any bilingual parallel data, which makes
it challenging to learn the alignment of these char-
acteristics, resulting in limited improvements.

3.3 Analysis

We sampled 200 sentences each from in-domain
and out-of-domain data and used the model fine-

tuned and G-Tuned to generate the representations.
We then normalized the representations and reduce
the dimensionality using t-SNE. The visualization
is shown in Figure 2. We also included contour
lines based on sample density in the figure. It is
apparent that the density centers of different do-
mains are nearly coincident in our model, whereas
fine-tuning results in a significant gap between dif-
ferent domains. Empirically, the representation in
a task-specific space should be centralized. The
gap from the fine-tuning method leads to incorrect
label predictions for some data, e.g., the samples in
the upper right corner of the left figure.

4 Conclusion

In this work, we elucidate a drawback of the fine-
tuning strategy on PLMs, which is that the represen-
tation from PLMs is not fully mapped to the target
space when the training data is insufficient. The
generalization ability of PLMs in the downstream
tasks will be diminished in this situation. To ad-
dress this issue, we present G-Tuning, a framework
that aims to preserve the generalization ability of
PLMs in the downstream tasks. The proposed G-
Tuning utilizes a generative adversarial network to
transform the representation that is not covered by
training data into the target space. Extensive exper-
iments on the GLUE and two additional scenarios
show that G-Tuning accurately maps the universal
representation to the target space, getting substan-
tial improvements in generalization performance.
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Limitations

In this section, we will summarize several limita-
tions of our work. The first one is we only apply
the proposed method to the natural language under-
standing (NLU) tasks. It is uncertain how to extend
our approach to the natural language generation
(NLG) tasks and whether it can bring consider-
able improvement. Then, the training process of
GAN is sensitive to hyper-parameters, leading to
us not simply using the default setting when ex-
tending to other tasks. Finally, this paper does not
include a theoretical explanation and proof of how
our method works, which we will further study in
future work.
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A The Comparison of Fine-tuning and
PEFT
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Figure 3: The curve of the average score on the GLUE
benchmark of the proposed G-Tuning during training.

In this section, we compare the performance of
fine-tuning the adapter (PEFT) and both PLM and
adapter (FT) in the proposed G-Tuning. The curve
of the average score on the GLUE is shown in
Figure 3. In the first five epochs, in which we do not
employ the loss from the WGAN, FT outperforms
PEFT. However, when employing the proposed
approach, FT becomes unstable and cannot obtain
comparable performance to PEFT. Here, we think
when the task-specific training objective trains the
whole model, G-Tuning is challenging to adjust
continuously. On the other hand, the difficulty of
optimizing the adapter is much less than the whole
model, which makes the training more stable and
effective.

B The Overall Process of G-Tuning

The overall process of the proposed G-Tuning is
shown in Algorithm 1. Compared to traditional
fine-tuning or PEFT, G-Tuning requires extra train-
ing costs for the discriminator. Fortunately, due to
the size of the labeled data B being usually small,
our method will not affect the efficiency of the
fine-tuning stage.
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Algorithm 1 The overall process of G-Tuning.
Input: Unlabeled set M ; Labeled set B; PLM

with adapter f(·) = h ◦ g(·); Training step N ;
Discriminator D(·); Update Frequency T
Output: The fine-tuned model f(·)

1: Randomly initialize the parameter of h(·)
2: Initialize the parameter of g(·) from PLM

3: for _ to N
2 do

4: Sample {xt,yt} ∼ B
5: Optimize f(·) by the Eq. 2
6: end for
7: for _ to N

2 do
8: Sample {xt} ∼ B, {xu} ∼ M
9: Optimize D(·) by the Eq. 3

10: end for
11: for _ to N

2 do
12: Sample {xt,yt} ∼ B, {xu} ∼ M
13: Optimize f(·) by the Eq. 6
14: for _ to T do
15: Sample {xt} ∼ B, {xu} ∼ M
16: Optimize D(·) by the Eq. 3
17: end for
18: end for
19: return f(·)

C Evaluation Metric and Data Statistic

We summarize the evaluation metric in the GLUE
and XTREME benchmarks used in our experi-
ments. The summary is shown in Table 4. Com-
pared to the Wang et al. (2018) and Hu et al. (2020),
our work has several differences. First, we do not
evaluate the MNLI-mismatch set in the MNLI task.
Then, we choose the Pearson Correlation to eval-
uate the STSB task and F1 score to evaluate the
XQuAD, MLQA and TyDiQA tasks.

Then, following Yang et al. (2022), we select
several data-sets as the out-of-domain test sets to
evaluate the domain generalization ability. The
data statistic is shown in Table 5. For the MNLI
and STSB, we concat the training and test set from
SICK as the test set. We randomly sample 6000
samples from HANS and IMDB as test sets for the
RTE and SST2, respectively. All data-sets men-
tioned above can be downloaded on the Hugging
Face3. Moreover, the CoLAood is collected by the
Yang et al. (2022). We randomly select 6000 sam-
ples from the original set as the test sets.

3https://huggingface.co/datasets

Task Metric Task Metric

MNLI Accuracy XNLI Accuracy
QNLI Accuracy PAWS-X Accuracy
QQP Accuracy POS F1 Score
RTE Accuracy NER F1 Score
SST Accuracy BUCC Accuracy
MRPC Accuracy Tatoeba Accuracy
CoLA Matthews Correlation XQuAD F1 Score
STSB Pearson Correlation MLQA F1 Score
− − TyDiQA F1 Score

Table 4: The evaluation metric used in our experiment
in the GLUE and XTREME benchmarks.

Training Set Test Set

MNLI 39270 SICK 4906
RTE 2490 HANS 6000
SST2 67349 IMDB 6000
CoLA 8551 CoLAood 6000
STSB 5749 SICK 4906

Table 5: The data statistic of the GLUEood data-set.
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