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Abstract
Extractive summarization focuses on extract-
ing salient sentences from the source document
and incorporating them in the summary without
changing their wording or structure. The naive
approach for extractive summarization is sen-
tence classification, which makes independent
binary decisions for each sentence, resulting
in the model cannot detect the dependencies
between sentences in the summary. Recent ap-
proaches introduce an autoregressive decoder
to detect redundancy relationship between sen-
tences by step-by-step sentence selection, but
bring train-inference gap. To address these is-
sues, we formulate extractive summarization as
a salient sentence set recognition task. To solve
the sentence set recognition task, we propose a
set prediction network (SetSum), which sets up
a fixed set of learnable queries to extract the en-
tire sentence set of the summary, while captur-
ing the dependencies between them. Different
from previous methods with an auto-regressive
decoder, we employ a non-autoregressive de-
coder to predict the sentences within the sum-
mary in parallel during both the training and
inference process, which eliminates the train-
inference gap. Experimental results on both
single-document and multi-document extracted
summary datasets show that our approach out-
performs previous state-of-the-art models.

1 Introduction

Extractive summarization is the process of extract-
ing a brief set of sentences from the source docu-
ment to cover the salient information of it. Com-
pared with abstractive summarization (Liu and Liu,
2021; Wu et al., 2021), extractive summarization
is less likely to deviate from the source document,
as well as more efficient in execution. Due to these
advantages, it has become widely utilized for auto-
matic summarization tasks.

Recently, most of the approaches (Nallapati
et al., 2017; Liu and Lapata, 2019; Xu et al., 2020)
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Figure 1: The Encoder-Decoder Framework for Extrac-
tive Summarization. (a) For a document, the methods
based on sentence classification make decisions for each
sentence individually, resulting in the inability to detect
the dependencies between sentences in the summary.
(b) The methods with an autoregressive decoder, which
select sentences step by step, can capture some of the
dependencies but lead to inefficiency and a training-
inference gap. (c) In contrast, our set prediction method
can get the sentences within the summary in parallel
while capturing the dependencies between them and
eliminating the training-inference gap.

formulate extractive summarization as a sequence
labeling task, following the encoder-decoder frame-
work. Sentence classification (Cheng and Lapata,
2016) is a naive solution for the task, which makes
independent binary decisions for each sentence in
the source document, leading to high redundancy
of the summary, as shown in Figure 1 (a). To
tackle the redundancy problem, Zhou et al. (2018);
Narayan et al. (2020) introduce an autoregressive
decoder, which select sentences step by step to
construct the summary, until the length limit of
the summary is reached, as shown in Figure 1 (b).
Trigram Blocking (Paulus et al., 2018), as a plug-
and-play method during inference, has the same
motivation, which allows the model to consider
the sentences already selected when making binary
decisions for the current sentence. Besides, some
methods (Narayan et al., 2018b; Bae et al., 2019;
Gu et al., 2022) incorporate reinforcement learn-
ing to optimize the final evaluation metric with a
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step-by-step selection strategy. Zhong et al. (2020);
Chen et al. (2021) propose a method to construct
a summary with two steps, where step one is for
constructing candidates summary, step two is for
selecting a summary from the candidates. How-
ever, these methods not only decrease the efficiency
of training and inference but also suffer from the
training-inference gap.

To address the above issues, we formulate extrac-
tive summarization as a salient sentence set recog-
nition task, which treats summary as the salient set
of sentences, rather than a set of salient sentences.
To solve the sentence set recognition task, we pro-
pose a set prediction network based on the encoder-
decoder framework, which sets up a fixed set of
learnable queries to extract the entire sentence set
of the summary, while capturing the dependencies
between them. As shown in Figure 1 (c), differ-
ent from previous approaches, we employ a non-
autoregressive decoder to extract the sentence set
of the summary in parallel during both training and
inference. The non-autoregressive decoder receives
the sentence representation and a set of learnable
vectors called sentence queries to decode the fi-
nal sentence set in the summary. To measure the
difference between predictions and gold labels in
an end-to-end manner, we employ a loss function
based on bipartite matching, which can produce an
optimal matching between predictions and gold la-
bels with minimal assignment cost. Compared with
the autoregressive approach, our set prediction net-
work is efficient and can eliminate the gap between
training and inference. Furthermore, the decoder
is able to capture the dependencies between sen-
tences through a self-attention mechanism between
sentence queries and then make joint decisions on
the entire sentence set. Experimental results on
four single-document and one multi-document ex-
tracted summary datasets show that our approach
outperforms previous state-of-the-art models.

Our main contributions are as follows:

• We formulate extractive summarization as a
salient sentence set recognition task, which
treats summary as a salient set of sentences,
rather than a set of salient sentences.

• To solve the sentence set recognition task, we
propose a set prediction network, which not
only enables capturing the dependencies be-
tween sentences in the summary but also elim-
inates the training-inference gap.

• Experiments show that our proposed model
achieves state-of-the-art performance on sev-
eral single-document and multi-document
datasets.

2 Related Work

Traditional approaches (Nallapati et al., 2017; Liu
and Lapata, 2019; Xu et al., 2020) formulate ex-
tractive summarization as a sequence labeling task
following the encoder-decoder framework. To im-
prove the performance of extractive summariza-
tion, some methods introduce autoregressive de-
coder (Liu and Lapata, 2019; Narayan et al., 2020)
or reinforcement learning (Dong et al., 2018; Gu
et al., 2022). These methods construct summary
step-by-step until the length limit of the summary
is reached. In addition to the above paradigm of
sequence labeling, Zhong et al. (2020); An et al.
(2022) formulate the extractive summarization task
as a semantic text matching problem. Tang et al.
(2022) formulates extractive summarization as an
Optimal Transport (OT) problem from document
to summary. Jia et al. (2021) selects sentences si-
multaneously from the source document when the
predicted sentence probabilities exceed a threshold.
Although the above methods have made different
degrees of progress in extractive summarization,
they also encounter various challenges, such as in-
sufficient decoding efficiency, training, inference
gap, unstable results, etc.

Recently, the query-based approach is employed
in the summarization task. For example, (Xu and
Lapata, 2022) unifies that all summaries are a re-
sponse to a query. (Zhang et al., 2022) use learn-
able queries as a control signal to control summary
generation. These query-based methods focus on
generating a highly relevant summary for a given
query, in which queries can be observable or la-
tent. Besides, these methods restrict queries to a
single sample and semantic space. In this paper,
we propose a set prediction network for extrac-
tive summarization based on sample-independent
queries, which uses a non-autoregressive decoder
to improve the decoding efficiency and unify the
training and inference processes.

3 Method

In this section, we first introduce the task formu-
lation in §3.1 and then describe each component
of our method in detail. As shown in Figure 2,
Our method consists of three components, a doc-
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ument encoder §3.2, a non-autoregressive set de-
coder §3.3, and a bipartite matching loss §3.4.

3.1 Task Formulation
Given a training sample (D,G), where D =
(s1, s2, . . . , sn) denotes the original document with
n sentences, G denotes reference summary. Our
goal is to select S∗ = {s∗1, s∗2, . . . , s∗m} from D to
cover the sailent information of it, where m ≤ n.
A set of gold sentences Y = {< yli, y

r
i , y

t
i >}m−1

i=0

is derived by a greedy selection strategy, where
yli, y

r
i ∈ [0, n − 1], yti ∈ {0, 1} represents the left

boundary, right boundary, and label of the i-th sen-
tence, respectively.

3.2 Document Encoder
The encoder is designed to get a contextual repre-
sentation of the sentence in the document. Follow-
ing Liu and Lapata (2019), we first concatenate the
sentences together while inserting a [CLS] and a
[SEP] token at the start and the end of each sen-
tence, respectively, and then input them to BERT
(Devlin et al., 2019) to obtain a contextual repre-
sentation of each token. After BERT encoding, we
further encode the document with a bidirectional
LSTM layer. Then, we take the representation of
all the [CLS] tokens as the representation of the
sentences h = {h1, h2, · · · , hn}.

In order to improve the model’s ability to capture
the inter-sentence relationships, we use a 3-layer
Transformer (Vaswani et al., 2017) to encode it,
which can be formulated as:

hs = Transformer(h) (1)

Finally, we get contextual representation for sen-
tences hs = {hs1, hs2, · · · , hsn} in the source docu-
ment.

3.3 Set Decoder
The purpose of the set decoder is to generate the
entire sentence set of the summary in parallel based
on the output of the document encoder. To achieve
this purpose, we use a non-autoregressive decoder
as the backbone of the set decoder.

Input The input of the set decoder consists of M
learnable randomly initialized vectors eq ∈ RM×d

and the output hs ∈ Rn×d of the document encoder.
Each query corresponds to a prediction, and for M
queries the set decoder generates M predictions.
In order to decode all sentences in the summary,
we set M greater than the maximum number of
sentences contained in the summary.

Non-Autoregressive Decoder The set decoder
is based on a non-autoregressive decoder. We use
a N -stacked identical layer to construct the non-
autoregressive decoder. Each layer incorporates
a multi-headed self-attention mechanism to rep-
resent the relationship between queries eq, and a
multi-headed cross-attention mechanism to fuse
information of the sentence hs in the source docu-
ment, which can be formulated as follows:

Hq = Decoder(eq;hs) (2)

where eq, hs denote initialized query vectors and
sentence representation in the source document,
respectively.

Through the non-autoregressive decoder, M sen-
tence queries are transformed into M query em-
beddings, which are denoted as Hq ∈ RM×d. In
contrast to the autoregressive decoder that needs
to adopt the mask mechanism to prevent infor-
mation leakage, the non-autoregressive decoder
has no need to adopt the mask strategy to prevent
the earlier decoding steps from obtaining informa-
tion from the subsequent steps. Therefore, we do
not add any causal mask in the multi-head self-
attention mechanism.

Set Prediction Each query embedding hqi in Hq

predicts one sentence from document total M in
parallel. Set prediction is a joint decision of bound-
ary and label.

To get the boundary for each query hqi , we first
interact the query with each sentence of the docu-
ment by two linear layers. The fusion representa-
tion of the i-th query and j-th sentence is computed
as:

hf
r/l

i,j = Tanh(hqiwi + hsjwj) (3)

where wi, wj ∈ Rd×d are trainable projection pa-
rameters, r/l denotes left or right. Then we get fuse
representation of the i-th query with all sentence
hf

r/l

i = [hf
r/l

i0 , hf
r/l

i1 , · · · , hfr/l

in ].
According to the fuse representation, we calcu-

late the distribution of the left or right boundary:

p
r/l
i = Softmax(hf

r/l

i ) (4)

Furthermore, we can get the label probability of
the query by the i-th query belonging to label c:

pci =
exp(hqiw

c
i + bci )∑

c′∈C exp(hqiw
c′
i + bc

′
i )

(5)

where wc
′

i and bc
′

i are learnable parameter.
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BERT-Encoder

[CLS] this happened about 7 

months ago . [SEP] [CLS] i was 

playing my guitar at an acoustic 

gig at the local cafe . [SEP] 
[CLS] so while a lot of people 

use guitar picks……
Queries

…

Preds: (2, 3)   (10, 11)  (0, 1) 
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Figure 2: The architecture of our set prediction network. The document encoder get sentence representation from
the document, and the sentence set decoder predicts the final sentence set of the summary with a non-autoregressive
decoder. Then our method trains through a loss function based on bipartite matching, which can produce an optimal
matching between gold labels and predicted results with minimal assignment cost.

Finally, the i-th query predicts result is
(τ li , τ

r
i , τ

c
i ). τ li = argmax(pli) and τ ri =

argmax(pri ) are the left and right boundary, τ ci =
argmaxc(p

c
i ) is the sentence label. Note that a spe-

cial predicate label ϕ is included to indicate no
sentence.

3.4 Bipartite Matching Loss

The main challenge of training is measuring the
difference between the M decoding results Ŷ and
gold sentence set Y in an end-to-end manner. We
introduce a bipartite matching loss to overcome
this challenge. The calculation of the loss can be
broken down into two stages: finding the optimal
matching and then calculating the loss based on the
optimal matching.

Finding the Optimal Matching. We find the op-
timal matching between gold set Y and the model
output Ŷ by minimizing the cost between them.
Notably, a query only can assign one instance in
gold set, and vice versa. Since the model predicts
results size M larger than the gold sentence set
size, we first pad Y to the size M with ϕ. Then the
cost of assigning Ŷi with Yj is defined as:

Cmatch(Ŷi, Yj) = −1{ci ̸=ϕ}[p
r
j(ri)

+plj(li) + pcj(ci)]
(6)

Finally, we get the optimal permutation element
of o∗ with the lowest cost, which is defined as:

o∗ = argmin
o∈OM

M∑

i

Cmatch(Ŷo(i), Y j
) (7)

where OM is the space of all M -length permuta-
tions and OM increases as M increases, resulting
in computational efficiency challenges. To obtain
the optimal assignment o∗ efficiently, we use the
Hungarian algorithm (Kuhn, 1955). With this al-
gorithm, the optimal matching o∗ can be easily
computed in polynomial time (O(M3)).

Calculating the Loss. After obtaining the opti-
mal matching o∗, we then calculate the loss for all
matched pairs in o∗. We define the loss as:

L(Ŷ , Y ) =
M∑

i

{−logpco∗(i)(ci) + 1{ci ̸=ϕ}[

−logplo∗(i)(li)− logpro∗(i)(ri)]}
(8)

4 Experiment

4.1 Datasets and Evaluation Metrics

To demonstrate the effectiveness of our
model, we conduct experiments on five single-
document datasets and a multi-document dataset:
CNN/DailyMail (Hermann et al., 2015) is a widely
used single-document news summarization dataset

4769



Datasets Source Type #Pairs #Tokens (avg) #Ext
Train Valid Test Doc. Sum.

CNN/DM News SDS 287,084 13,367 11,489 766.1 58.2 3
XSum News SDS 203,028 11,273 11,332 430.2 23.3 2
Reddit Social Media SDS 41,675 645 645 482.2 28.0 2
WikiHow Knowledge Base SDS 168,126 6,000 6,000 580.8 62.6 4
PubMed Scientific Paper SDS 83,233 4,646 5,025 444.0 209.5 7
Multi-News News MDS 44,972 5,622 5,622 487.3 262.0 9

Table 1: Details statics information of datasets we used in the experiment. SDS and MDS represent single-document
and multi-document summarization respectively. #EXT denotes the number of sentences that should extract from
datasets.

containing article-highlight pairs. XSum (Narayan
et al., 2018a) concludes one-sentence summaries
of online articles from BBC. Reddit (Kim et al.,
2019) is collected from social media platforms
with weak lead bias and strong abstractive
features. WikiHow (Koupaee and Wang, 2018) is
a dataset extracted and constructed from an online
knowledge base covering a wide range of topics
and with high diversity styles. PubMed (Cohan
et al., 2018) is a long-form dataset of scientific
papers, and we use the truncated version like (Gu
et al., 2022). Multi-News (Fabbri et al., 2019) is
a multi-document news summarization dataset.
More statistical information about the datasets we
used in the experiment is shown in Table 1.

We evaluate the quality of generated summaries
using the popular automatic evaluation method
ROUGE (Lin, 2004). In ROUGE, unigram and
bigram overlap (ROUGE-1, 2) is used to measure
informativeness and the longest common subse-
quence (ROUGE-L) is used to measure fluency. For
simplicity, ROUGE-1, ROUGE-2, and ROUGE-L
are abbreviated as R-1, R-2, and R-L, respectively.
In addition, we also apply human evaluation, as a
complement to the automatic evaluation.

4.2 Baselines
Basic Extractive Methods: LEAD selects the
first several sentences as a summary from the
source document. ORACLE extracts sentences as
a summary from the source document according to
the gold labels. BERTEXT (Liu and Lapata, 2019)
utilizes pre-trained BERT (Devlin et al., 2019) to
get the sentence representation and assign a label
to a sentence to decide whether a sentence is in the
summary.

Auoregressive selection Methods: BERTEXT
+ RL (Bae et al., 2019) directly maximizes

summary-level ROUGE scores through reinforce-
ment learning based on BERTEXT. BERTEXT
+ Tri-Blocking (Liu and Lapata, 2019) intro-
duces trigram blocking during inference based on
BERTEXT. DiscoBERT (Xu et al., 2020) focuses
on capturing a more semantically rich represen-
tation of sentences based on the RST graph to
improve the quality of the summary. Stepwise
ETCSum (Narayan et al., 2020) enable stepwise
summarization by injecting the previously planned
summary content into the structured transformer.

Parallel Prediction Methods: MatchSum
(Zhong et al., 2020) is a summary-level approach,
which selects the best one from the candidate
summaries to form the final summary. OTExtSum
(Tang et al., 2022) is a non-learning-based
approach, which formulates text summarization
as an Optimal Transport (OT) problem from
document to summary. ThresSumlarge (Jia
et al., 2021) picks up sentences simultaneously
by a non-autoregressive decoder when predicted
sentence probabilities exceed a threshold.

4.3 Implementation Details

We use pre-trained BERT (Devlin et al., 2019)
in the encoder. In order to make a fair compar-
ison with other methods, we use the BERT-base
version on all datasets in the experiments. The
number of stacked transformer blocks in the en-
coder is set to 2-4, and the batch size is set to
12. The number of stacked transformer blocks in
the non-autoregressive decoder is set to 6. We
initialize all queries using the normal distribution
N (0.0, 0.02). We apply a linear warmup-decay
learning rate scheduler. All experiments are con-
ducted on an NVIDIA GeForce RTX 3090.
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Models R-1 R-2 R-L

LEAD 40.43 17.62 36.67
ORACLE 52.59 31.23 48.87
BERTEXT 42.57 19.96 39.04

Auoregressive Selection Methods

BERTEXT + RL 42.76 19.87 39.11
BERTEXT + TriBlk 43.23 20.22 39.60
DiscoBERT 43.77 20.85 40.67
ETCSum 43.80 20.80 39.77

Parallel Prediction Methods

MatchSum 44.22 20.62 40.38
OTExtSum 34.50 12.80 27.80
ThresSum∗

large 44.59 21.15 40.76

SetSum 44.62 20.81 40.76

Table 2: Results on CNN/DailyMail dataset. TriBlk is
an abbreviation for Trigram Blocking. ThresSum∗

large

builds on BERT large architectures (24 layers), whereas
ours build on BERT base architectures (12 layers).

5 Results and Analysis

5.1 Overall Performances

Results on CNN/DailyMail Table 2 shows the
evaluation results of proposed methods and base-
lines on the CNN/DailyMail dataset. Compared
with the best auto-regressive methods ETCSum,
our method achieves +0.82, +0.01, and +1.01 im-
provements on R-1, R-2, and R-L, respectively.
Compared with the best summary-level method
MatchSum, our method has +0.40, +0.19, and
+0.38 improvements on R-1, R-2, and R-L, respec-
tively.

Besides, we can see that the introduction of RL-
based autoregressive decoding slightly improves
the quality of the summary, but is less effective than
a simple method like Trigram Blocking. Further-
more, the summary-level methods are still remark-
ably effective extractive summarization methods
at present, which consider the entire summary and
can be seen as a special non-autoregressive method.

Results on Datasets with Short Summaries We
conduct experiments on XSum and Reddit to prove
the effectiveness of our method on short datasets.
As shown in Table 3, we can see there is a pretty
apparent improvement achieved on the XSum and
Reddit datasets than baseline methods. In partic-
ular, on the Reddit dataset, our method achieves
+0.59, +0.48, and +0.3 improvements on R-1, R-2,

Models XSum

R-1 R-2 R-L

LEAD 19.58 2.38 14.74
ORACLE 32.33 9.33 23.86

BERTEXT 22.86 4.48 17.16
MatchSum 24.48 4.58 18.31

SetSum 24.80 4.59 18.52

Models Reddit

R-1 R-2 R-L

LEAD 17.01 2.72 13.76
ORACLE 35.76 13.44 28.45

BERTEXT 23.86 5.85 19.11
MatchSum 24.90 5.91 20.03

SetSum 25.49 6.39 20.33

Table 3: Results on XSum and Reddit datasets.
BERTEXT here has been added to Trigram Blocking
strategy.

and R-L, respectively. We think this is due to the
fact that the token length of the source documents
in the two dataset are shorter than other datasets,
which enable the model is easy to get contextual
sentence representation.

Results on Datasets with Long Summaries Ta-
ble 4 shows the results on WikiHow, Pubmed,
and Multi-News, where Multi-News is a multi-
document dataset. According to our intuition, the
summary of these datasets has a larger set of sen-
tences compared with other datasets, which re-
quires more challenges to the model to find the
correct set of sentences to construct the summary.
From the results, we can see that our method has
slight improvements on PubMed and Multi-News
datasets, which is consistent with our intuition. For
example, on the Multi-News dataset, compared
with the summary-level method MatchSum our ap-
proach achieves +0.13, +0.29, and +0.11 on R-
1, R-2, and R-L, respectively. On the WikiHow
dataset, we achieve comparable results to Match-
Sum. We think there are two reasons for the re-
sult. First, WikiHow has longer summaries com-
pared to Reddit dataset, even though they are both
datasets with abstract characteristics. Second, un-
like CNN/DailyMail where the main information
is more concentrated, that in WikiHow is more
scattered.

4771



Methods WikiHow PubMed Multi-News

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

LEAD 24.97 5.83 23.24 37.58 12.22 33.44 43.08 14.27 38.97
ORACLE 35.59 12.98 32.68 45.12 20.33 40.19 49.06 21.54 44.27
BERTEXT 30.31 8.71 28.24 41.05 14.88 36.57 45.80 16.42 41.53

BERTEXT+TriBlk 30.37 8.45 28.28 38.81 14.62 34.52 44.94 15.47 40.63
MatchSum 31.85 8.98 29.58 41.21 14.91 36.75 46.20 16.51 41.89

SetSum 31.66 8.72 29.36 41.53 15.11 36.88 46.33 16.80 42.00

Table 4: Results on WikiHow, PubMed, and Multi-News datasets.

5.2 Ablation Studies & Analysis

To demonstrate the effectiveness of the components
in the model, we performed a series of ablation
experiments on the Reddit dataset.

Effects of Model Architecture To verify the ef-
fectiveness of the model architecture of SetSum,
we remove the parallel decoder and find a signifi-
cant drop of model results. Specifically, the results
shown in Table 5 dropped by 1.38, 0.64, and 1.01 at
R-1, R-2, and R-L, respectively, which means that
the encoder-based sentence level classifier is prone
to select the incorrect sentences. After applying
Triam Blocking on an encoder-based sentence-level
classifier, the results have improved slightly, which
indicates that there is redundant in the results. This
occurs because when the parallel decoder is re-
moved, the sentences selected by the method are
independent without any dependency. This demon-
strates that the parallel decoder plays an extremely
important role in the SetSum model.

Effects of Bipartite Matching Loss In our ex-
periments, we introduce bipartite matching loss to
address the challenge of measuring the difference
between the decoding results and the gold sentence
set in an end-to-end manner. We investigate its
effect in detail. Specifically, we compare bipartite
matching loss with widely used cross-entropy loss.
However, there is an issue that the number of de-
coder prediction M is larger than the gold label N ,
which makes it impossible to use the cross-entropy
loss directly. To address the problem, we adopt two
strategies to sort gold sentence labels: Fix Order
and Random Order. Fix Order means we keep the
original order of sentences in the source document
and keep unchanged during training then pad to
query size M . Random Order means we randomly
sort gold sentence labels for each document before

training then pad to query size M . From the results
in Table 5, we find: (1) Compared with the Fix
Order strategy, simply shuffling (Random Order)
will not improve the performance. (2) Compared
with Fix Order and Random Order, introducing bi-
partite matching loss gains 1.44, 0.67, and 1.22 in
R-1, R-2, and R-L, respectively, which verifies the
effectiveness of bipartite matching loss.

Settings R-1 R-2 R-L

Full model 25.49 6.39 20.33

w/o Decoder 24.11 5.75 19.32
w/o Decoder + TriBlk 24.20 5.78 19.43
CELoss+Fix 24.52 5.92 19.77
CELoss+Randm 24.50 5.91 19.76
query freeze 24.21 5.51 19.31

Table 5: Ablation studies for the learnable sentence
queries and bipartite matching loss.

Effects of Sentence Query The sentence query
is the most important part of the SetSum, and we
conduct a series of experiments to demonstrate its
effectiveness. To explore the learning ability of
entity queries, we freeze the parameter of sentence
queries during training. The results are shown in
Table 5 dropped by 1.31, 0.60, and 1.06 at R-1,
R-2, and R-L, respectively, which indicates that the
sentence queries do learn the patterns of summary.
To verify the effect of query size M on the model,
we conduct comparison experiments in Table 6. We
can see that the effect of the model does not always
increase as M is added, but first increases and then
decreases. This occurs most likely because when
M is small, the query cannot fully learn the pattern
of summary, but as M becomes larger and larger,
the query learns the noise instead. Eventually, the
query number M in our experiments is set to 60.
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Query Size (M) R-1 R-2 R-L

40 24.75 6.05 19.75
60 25.49 6.39 20.33
80 24.82 5.99 19.93
100 24.90 5.96 19.90
200 24.70 6.13 19.76

Table 6: The performances with different numbers of
sentence queries.

Effect of Different Decoder Layers To investi-
gate the importance of the decoder, we explore the
effect of decoder layers on the results, as shown in
Table 7. We can see that the model performs better
as the number of decoder layers increases. In gen-
eral, the model is more capable of learning as the
number of decoder layers is stacked. Furthermore,
the results with the sentence level interaction are
always better than the interaction at the token level,
regardless of the number of layers, and the effect
is more obvious as the number of layers increases.
For example, when we change the interaction from
Q-S to Q-T at layer 6, R-1 drops by 0.75, but at
layer 4, R-1 only drops by 0.22.

Layer Interaction Reddit

R-1 R-2 R-L

2 Q-S 25.14 6.37 20.12
2 Q-T 25.03 6.24 20.23
4 Q-S 24.95 6.18 20.13
4 Q-T 24.73 5.86 19.72
6 Q-S 25.49 6.39 20.33
6 Q-T 24.71 6.03 19.72

Table 7: The performance of the decoder with differ-
ent layers and interaction types. Q-S and Q-T denote
cross-attention interaction between queries and sentence
representation, token representation, respectively.

5.3 Human Evaluation

We also conduct human evaluation following (Chen
et al., 2021) on CNN/DailyMail dataset. We in-
vite 2 volunteers who are major in journalism to
review the output summaries of several represen-
tative models independently. Specifically, we se-
lect 100 samples from the CNN/DailyMail dataset,
volunteers are asked to rank summaries produced
by BERTEXT (Liu and Lapata, 2019), MatchSum
(Zhong et al., 2020) and our SetSum according to
the following criteria: (1) Informativeness: The
summary should preserve the main meaning of the

original document (2) Coherence: The sentences
in the summary should be coherent with each other.
All of the systems were ranked by 1, 2, and 3 with
3, 2, and 1 scores, respectively. Finally, we get a
weighted average score for each system to measure
the overall quality of the summary. Results are
shown in Table 8. From the results, we can see
that the summary obtained by our SetSum outper-
forms other methods in terms of informativeness
and coherence. In addition, the 4.95% improve-
ment in coherence is more obvious than the 4.39%
improvement in informativeness, which indicates
that our system can learn more dependencies be-
tween summary sentences in addition to improving
the informativeness of summaries. The results of
human evaluation further validate the effectiveness
of our method.

Models Informativeness
1st 2nd 3rd Avg R.

BERTEXT 0.23 0.35 0.42 1.81
MatchSum 0.35 0.35 0.30 2.05
SetSum 0.42 0.30 0.28 2.14

Models Coherence
1st 2nd 3rd Avg R.

BERTEXT 0.26 0.34 0.40 1.86
MatchSum 0.34 0.34 0.32 2.02
SetSum 0.40 0.32 0.28 2.12

Table 8: Human evaluation results on CNN/DaiyMail
dataset. Avg R denotes the weighted average ranking
score. The larger ranking score denotes better summary
quality.

6 Conclusion

In this paper, we propose a set prediction network
for extractive summarization task. Compared with
previous sequence labeling methods, our approach
formulates extractive summarization as a sentence
set prediction problem. In our approach, a set of
sentence queries are fed into a non-autoregressive
decoder, which then predicts all sentences within
the summary in parallel. To measure the differ-
ence between the parallel prediction results and
the gold labels, we apply a bipartite matching loss
to train the model. To demonstrate the effective-
ness of our approach, we conduct experiments on
single-document and multi-document datasets. The
experimental results demonstrate that our method
outperforms the previous state-of-the-art models.
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Limitations

We propose a set prediction network for the extrac-
tive summarization task, which has worked well on
some datasets but still has some limitations. Firstly,
due to the use of pre-train BERT in the document
encoder, our method is inadequate for long text
summarization tasks. In general, the text length
of a long document is much longer, so the model
needs to be more capable to capture the dependency.
Next, we will extend the method to long document
summarization tasks. Secondly, the queries in the
decoder are initialized with a normal distribution.
If we can initialize the queries with the prior knowl-
edge, our method may be able to find the set of sen-
tences of the summary more accurately, which is
another direction we need to focus on in the future.
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