
Findings of the Association for Computational Linguistics: ACL 2023, pages 4766–4777
July 9-14, 2023 ©2023 Association for Computational Linguistics

A Set Prediction Network For Extractive Summarization

Xiaoxia Cheng, Yongliang Shen, Weiming Lu†

College of Computer Science and Technology, Zhejiang University
{zjucxx, syl, luwm}@zju.edu.cn

Abstract
Extractive summarization focuses on extract-
ing salient sentences from the source document
and incorporating them in the summary without
changing their wording or structure. The naive
approach for extractive summarization is sen-
tence classification, which makes independent
binary decisions for each sentence, resulting
in the model cannot detect the dependencies
between sentences in the summary. Recent ap-
proaches introduce an autoregressive decoder
to detect redundancy relationship between sen-
tences by step-by-step sentence selection, but
bring train-inference gap. To address these is-
sues, we formulate extractive summarization as
a salient sentence set recognition task. To solve
the sentence set recognition task, we propose a
set prediction network (SetSum), which sets up
a fixed set of learnable queries to extract the en-
tire sentence set of the summary, while captur-
ing the dependencies between them. Different
from previous methods with an auto-regressive
decoder, we employ a non-autoregressive de-
coder to predict the sentences within the sum-
mary in parallel during both the training and
inference process, which eliminates the train-
inference gap. Experimental results on both
single-document and multi-document extracted
summary datasets show that our approach out-
performs previous state-of-the-art models.

1 Introduction

Extractive summarization is the process of extract-
ing a brief set of sentences from the source docu-
ment to cover the salient information of it. Com-
pared with abstractive summarization (Liu and Liu,
2021; Wu et al., 2021), extractive summarization
is less likely to deviate from the source document,
as well as more efficient in execution. Due to these
advantages, it has become widely utilized for auto-
matic summarization tasks.

Recently, most of the approaches (Nallapati
et al., 2017; Liu and Lapata, 2019; Xu et al., 2020)

† Corresponding author.

Encoder

Encoder
Autoregressive

Decoder

Encoder
Non-Autoregressive

Decoder
(a)Sentence Classification

(c) Our Set Prediction

(b) Step-by-step Decoding

Decoder

Figure 1: The Encoder-Decoder Framework for Extrac-
tive Summarization. (a) For a document, the methods
based on sentence classification make decisions for each
sentence individually, resulting in the inability to detect
the dependencies between sentences in the summary.
(b) The methods with an autoregressive decoder, which
select sentences step by step, can capture some of the
dependencies but lead to inefficiency and a training-
inference gap. (c) In contrast, our set prediction method
can get the sentences within the summary in parallel
while capturing the dependencies between them and
eliminating the training-inference gap.

formulate extractive summarization as a sequence
labeling task, following the encoder-decoder frame-
work. Sentence classification (Cheng and Lapata,
2016) is a naive solution for the task, which makes
independent binary decisions for each sentence in
the source document, leading to high redundancy
of the summary, as shown in Figure 1 (a). To
tackle the redundancy problem, Zhou et al. (2018);
Narayan et al. (2020) introduce an autoregressive
decoder, which select sentences step by step to
construct the summary, until the length limit of
the summary is reached, as shown in Figure 1 (b).
Trigram Blocking (Paulus et al., 2018), as a plug-
and-play method during inference, has the same
motivation, which allows the model to consider
the sentences already selected when making binary
decisions for the current sentence. Besides, some
methods (Narayan et al., 2018b; Bae et al., 2019;
Gu et al., 2022) incorporate reinforcement learn-
ing to optimize the final evaluation metric with a

4766

step-by-step selection strategy. Zhong et al. (2020);
Chen et al. (2021) propose a method to construct
a summary with two steps, where step one is for
constructing candidates summary, step two is for
selecting a summary from the candidates. How-
ever, these methods not only decrease the efficiency
of training and inference but also suffer from the
training-inference gap.

To address the above issues, we formulate extrac-
tive summarization as a salient sentence set recog-
nition task, which treats summary as the salient set
of sentences, rather than a set of salient sentences.
To solve the sentence set recognition task, we pro-
pose a set prediction network based on the encoder-
decoder framework, which sets up a fixed set of
learnable queries to extract the entire sentence set
of the summary, while capturing the dependencies
between them. As shown in Figure 1 (c), differ-
ent from previous approaches, we employ a non-
autoregressive decoder to extract the sentence set
of the summary in parallel during both training and
inference. The non-autoregressive decoder receives
the sentence representation and a set of learnable
vectors called sentence queries to decode the fi-
nal sentence set in the summary. To measure the
difference between predictions and gold labels in
an end-to-end manner, we employ a loss function
based on bipartite matching, which can produce an
optimal matching between predictions and gold la-
bels with minimal assignment cost. Compared with
the autoregressive approach, our set prediction net-
work is efficient and can eliminate the gap between
training and inference. Furthermore, the decoder
is able to capture the dependencies between sen-
tences through a self-attention mechanism between
sentence queries and then make joint decisions on
the entire sentence set. Experimental results on
four single-document and one multi-document ex-
tracted summary datasets show that our approach
outperforms previous state-of-the-art models.

Our main contributions are as follows:

• We formulate extractive summarization as a
salient sentence set recognition task, which
treats summary as a salient set of sentences,
rather than a set of salient sentences.

• To solve the sentence set recognition task, we
propose a set prediction network, which not
only enables capturing the dependencies be-
tween sentences in the summary but also elim-
inates the training-inference gap.

• Experiments show that our proposed model
achieves state-of-the-art performance on sev-
eral single-document and multi-document
datasets.

2 Related Work

Traditional approaches (Nallapati et al., 2017; Liu
and Lapata, 2019; Xu et al., 2020) formulate ex-
tractive summarization as a sequence labeling task
following the encoder-decoder framework. To im-
prove the performance of extractive summariza-
tion, some methods introduce autoregressive de-
coder (Liu and Lapata, 2019; Narayan et al., 2020)
or reinforcement learning (Dong et al., 2018; Gu
et al., 2022). These methods construct summary
step-by-step until the length limit of the summary
is reached. In addition to the above paradigm of
sequence labeling, Zhong et al. (2020); An et al.
(2022) formulate the extractive summarization task
as a semantic text matching problem. Tang et al.
(2022) formulates extractive summarization as an
Optimal Transport (OT) problem from document
to summary. Jia et al. (2021) selects sentences si-
multaneously from the source document when the
predicted sentence probabilities exceed a threshold.
Although the above methods have made different
degrees of progress in extractive summarization,
they also encounter various challenges, such as in-
sufficient decoding efficiency, training, inference
gap, unstable results, etc.

Recently, the query-based approach is employed
in the summarization task. For example, (Xu and
Lapata, 2022) unifies that all summaries are a re-
sponse to a query. (Zhang et al., 2022) use learn-
able queries as a control signal to control summary
generation. These query-based methods focus on
generating a highly relevant summary for a given
query, in which queries can be observable or la-
tent. Besides, these methods restrict queries to a
single sample and semantic space. In this paper,
we propose a set prediction network for extrac-
tive summarization based on sample-independent
queries, which uses a non-autoregressive decoder
to improve the decoding efficiency and unify the
training and inference processes.

3 Method

In this section, we first introduce the task formu-
lation in §3.1 and then describe each component
of our method in detail. As shown in Figure 2,
Our method consists of three components, a doc-

4767

ument encoder §3.2, a non-autoregressive set de-
coder §3.3, and a bipartite matching loss §3.4.

3.1 Task Formulation
Given a training sample (D,G), where D =
(s1, s2, . . . , sn) denotes the original document with
n sentences, G denotes reference summary. Our
goal is to select S∗ = {s∗1, s∗2, . . . , s∗m} from D to
cover the sailent information of it, where m ≤ n.
A set of gold sentences Y = {< yli, y

r
i , y

t
i >}m−1

i=0

is derived by a greedy selection strategy, where
yli, y

r
i ∈ [0, n − 1], yti ∈ {0, 1} represents the left

boundary, right boundary, and label of the i-th sen-
tence, respectively.

3.2 Document Encoder
The encoder is designed to get a contextual repre-
sentation of the sentence in the document. Follow-
ing Liu and Lapata (2019), we first concatenate the
sentences together while inserting a [CLS] and a
[SEP] token at the start and the end of each sen-
tence, respectively, and then input them to BERT
(Devlin et al., 2019) to obtain a contextual repre-
sentation of each token. After BERT encoding, we
further encode the document with a bidirectional
LSTM layer. Then, we take the representation of
all the [CLS] tokens as the representation of the
sentences h = {h1, h2, · · · , hn}.

In order to improve the model’s ability to capture
the inter-sentence relationships, we use a 3-layer
Transformer (Vaswani et al., 2017) to encode it,
which can be formulated as:

hs = Transformer(h) (1)

Finally, we get contextual representation for sen-
tences hs = {hs1, hs2, · · · , hsn} in the source docu-
ment.

3.3 Set Decoder
The purpose of the set decoder is to generate the
entire sentence set of the summary in parallel based
on the output of the document encoder. To achieve
this purpose, we use a non-autoregressive decoder
as the backbone of the set decoder.

Input The input of the set decoder consists of M
learnable randomly initialized vectors eq ∈ RM×d

and the output hs ∈ Rn×d of the document encoder.
Each query corresponds to a prediction, and for M
queries the set decoder generates M predictions.
In order to decode all sentences in the summary,
we set M greater than the maximum number of
sentences contained in the summary.

Non-Autoregressive Decoder The set decoder
is based on a non-autoregressive decoder. We use
a N -stacked identical layer to construct the non-
autoregressive decoder. Each layer incorporates
a multi-headed self-attention mechanism to rep-
resent the relationship between queries eq, and a
multi-headed cross-attention mechanism to fuse
information of the sentence hs in the source docu-
ment, which can be formulated as follows:

Hq = Decoder(eq;hs) (2)

where eq, hs denote initialized query vectors and
sentence representation in the source document,
respectively.

Through the non-autoregressive decoder, M sen-
tence queries are transformed into M query em-
beddings, which are denoted as Hq ∈ RM×d. In
contrast to the autoregressive decoder that needs
to adopt the mask mechanism to prevent infor-
mation leakage, the non-autoregressive decoder
has no need to adopt the mask strategy to prevent
the earlier decoding steps from obtaining informa-
tion from the subsequent steps. Therefore, we do
not add any causal mask in the multi-head self-
attention mechanism.

Set Prediction Each query embedding hqi in Hq

predicts one sentence from document total M in
parallel. Set prediction is a joint decision of bound-
ary and label.

To get the boundary for each query hqi , we first
interact the query with each sentence of the docu-
ment by two linear layers. The fusion representa-
tion of the i-th query and j-th sentence is computed
as:

hf
r/l

i,j = Tanh(hqiwi + hsjwj) (3)

where wi, wj ∈ Rd×d are trainable projection pa-
rameters, r/l denotes left or right. Then we get fuse
representation of the i-th query with all sentence
hf

r/l

i = [hf
r/l

i0 , hf
r/l

i1 , · · · , hfr/l

in].
According to the fuse representation, we calcu-

late the distribution of the left or right boundary:

p
r/l
i = Softmax(hf

r/l

i) (4)

Furthermore, we can get the label probability of
the query by the i-th query belonging to label c:

pci =
exp(hqiw

c
i + bci)∑

c′∈C exp(hqiw
c′
i + bc

′
i)

(5)

where wc
′

i and bc
′

i are learnable parameter.

4768

BERT-Encoder

[CLS] this happened about 7

months ago . [SEP] [CLS] i was

playing my guitar at an acoustic

gig at the local cafe . [SEP]
[CLS] so while a lot of people

use guitar picks……
Queries

…

Preds: (2, 3) (10, 11) (0, 1)

Golds: (0, 1) (2, 3) (10, 11)Self-Attention

Cross-Attention

FFN

Document Encoder Sentence Set Decoder Bipartite Matching

Document

Figure 2: The architecture of our set prediction network. The document encoder get sentence representation from
the document, and the sentence set decoder predicts the final sentence set of the summary with a non-autoregressive
decoder. Then our method trains through a loss function based on bipartite matching, which can produce an optimal
matching between gold labels and predicted results with minimal assignment cost.

Finally, the i-th query predicts result is
(τ li , τ

r
i , τ

c
i). τ li = argmax(pli) and τ ri =

argmax(pri) are the left and right boundary, τ ci =
argmaxc(p

c
i) is the sentence label. Note that a spe-

cial predicate label ϕ is included to indicate no
sentence.

3.4 Bipartite Matching Loss

The main challenge of training is measuring the
difference between the M decoding results Ŷ and
gold sentence set Y in an end-to-end manner. We
introduce a bipartite matching loss to overcome
this challenge. The calculation of the loss can be
broken down into two stages: finding the optimal
matching and then calculating the loss based on the
optimal matching.

Finding the Optimal Matching. We find the op-
timal matching between gold set Y and the model
output Ŷ by minimizing the cost between them.
Notably, a query only can assign one instance in
gold set, and vice versa. Since the model predicts
results size M larger than the gold sentence set
size, we first pad Y to the size M with ϕ. Then the
cost of assigning Ŷi with Yj is defined as:

Cmatch(Ŷi, Yj) = −1{ci ̸=ϕ}[p
r
j(ri)

+plj(li) + pcj(ci)]
(6)

Finally, we get the optimal permutation element
of o∗ with the lowest cost, which is defined as:

o∗ = argmin
o∈OM

M∑

i

Cmatch(Ŷo(i), Y j
) (7)

where OM is the space of all M -length permuta-
tions and OM increases as M increases, resulting
in computational efficiency challenges. To obtain
the optimal assignment o∗ efficiently, we use the
Hungarian algorithm (Kuhn, 1955). With this al-
gorithm, the optimal matching o∗ can be easily
computed in polynomial time (O(M3)).

Calculating the Loss. After obtaining the opti-
mal matching o∗, we then calculate the loss for all
matched pairs in o∗. We define the loss as:

L(Ŷ , Y) =
M∑

i

{−logpco∗(i)(ci) + 1{ci ̸=ϕ}[

−logplo∗(i)(li)− logpro∗(i)(ri)]}
(8)

4 Experiment

4.1 Datasets and Evaluation Metrics

To demonstrate the effectiveness of our
model, we conduct experiments on five single-
document datasets and a multi-document dataset:
CNN/DailyMail (Hermann et al., 2015) is a widely
used single-document news summarization dataset

4769

Datasets Source Type #Pairs #Tokens (avg) #Ext
Train Valid Test Doc. Sum.

CNN/DM News SDS 287,084 13,367 11,489 766.1 58.2 3
XSum News SDS 203,028 11,273 11,332 430.2 23.3 2
Reddit Social Media SDS 41,675 645 645 482.2 28.0 2
WikiHow Knowledge Base SDS 168,126 6,000 6,000 580.8 62.6 4
PubMed Scientific Paper SDS 83,233 4,646 5,025 444.0 209.5 7
Multi-News News MDS 44,972 5,622 5,622 487.3 262.0 9

Table 1: Details statics information of datasets we used in the experiment. SDS and MDS represent single-document
and multi-document summarization respectively. #EXT denotes the number of sentences that should extract from
datasets.

containing article-highlight pairs. XSum (Narayan
et al., 2018a) concludes one-sentence summaries
of online articles from BBC. Reddit (Kim et al.,
2019) is collected from social media platforms
with weak lead bias and strong abstractive
features. WikiHow (Koupaee and Wang, 2018) is
a dataset extracted and constructed from an online
knowledge base covering a wide range of topics
and with high diversity styles. PubMed (Cohan
et al., 2018) is a long-form dataset of scientific
papers, and we use the truncated version like (Gu
et al., 2022). Multi-News (Fabbri et al., 2019) is
a multi-document news summarization dataset.
More statistical information about the datasets we
used in the experiment is shown in Table 1.

We evaluate the quality of generated summaries
using the popular automatic evaluation method
ROUGE (Lin, 2004). In ROUGE, unigram and
bigram overlap (ROUGE-1, 2) is used to measure
informativeness and the longest common subse-
quence (ROUGE-L) is used to measure fluency. For
simplicity, ROUGE-1, ROUGE-2, and ROUGE-L
are abbreviated as R-1, R-2, and R-L, respectively.
In addition, we also apply human evaluation, as a
complement to the automatic evaluation.

4.2 Baselines
Basic Extractive Methods: LEAD selects the
first several sentences as a summary from the
source document. ORACLE extracts sentences as
a summary from the source document according to
the gold labels. BERTEXT (Liu and Lapata, 2019)
utilizes pre-trained BERT (Devlin et al., 2019) to
get the sentence representation and assign a label
to a sentence to decide whether a sentence is in the
summary.

Auoregressive selection Methods: BERTEXT
+ RL (Bae et al., 2019) directly maximizes

summary-level ROUGE scores through reinforce-
ment learning based on BERTEXT. BERTEXT
+ Tri-Blocking (Liu and Lapata, 2019) intro-
duces trigram blocking during inference based on
BERTEXT. DiscoBERT (Xu et al., 2020) focuses
on capturing a more semantically rich represen-
tation of sentences based on the RST graph to
improve the quality of the summary. Stepwise
ETCSum (Narayan et al., 2020) enable stepwise
summarization by injecting the previously planned
summary content into the structured transformer.

Parallel Prediction Methods: MatchSum
(Zhong et al., 2020) is a summary-level approach,
which selects the best one from the candidate
summaries to form the final summary. OTExtSum
(Tang et al., 2022) is a non-learning-based
approach, which formulates text summarization
as an Optimal Transport (OT) problem from
document to summary. ThresSumlarge (Jia
et al., 2021) picks up sentences simultaneously
by a non-autoregressive decoder when predicted
sentence probabilities exceed a threshold.

4.3 Implementation Details

We use pre-trained BERT (Devlin et al., 2019)
in the encoder. In order to make a fair compar-
ison with other methods, we use the BERT-base
version on all datasets in the experiments. The
number of stacked transformer blocks in the en-
coder is set to 2-4, and the batch size is set to
12. The number of stacked transformer blocks in
the non-autoregressive decoder is set to 6. We
initialize all queries using the normal distribution
N (0.0, 0.02). We apply a linear warmup-decay
learning rate scheduler. All experiments are con-
ducted on an NVIDIA GeForce RTX 3090.

4770

Models R-1 R-2 R-L

LEAD 40.43 17.62 36.67
ORACLE 52.59 31.23 48.87
BERTEXT 42.57 19.96 39.04

Auoregressive Selection Methods

BERTEXT + RL 42.76 19.87 39.11
BERTEXT + TriBlk 43.23 20.22 39.60
DiscoBERT 43.77 20.85 40.67
ETCSum 43.80 20.80 39.77

Parallel Prediction Methods

MatchSum 44.22 20.62 40.38
OTExtSum 34.50 12.80 27.80
ThresSum∗

large 44.59 21.15 40.76

SetSum 44.62 20.81 40.76

Table 2: Results on CNN/DailyMail dataset. TriBlk is
an abbreviation for Trigram Blocking. ThresSum∗

large

builds on BERT large architectures (24 layers), whereas
ours build on BERT base architectures (12 layers).

5 Results and Analysis

5.1 Overall Performances

Results on CNN/DailyMail Table 2 shows the
evaluation results of proposed methods and base-
lines on the CNN/DailyMail dataset. Compared
with the best auto-regressive methods ETCSum,
our method achieves +0.82, +0.01, and +1.01 im-
provements on R-1, R-2, and R-L, respectively.
Compared with the best summary-level method
MatchSum, our method has +0.40, +0.19, and
+0.38 improvements on R-1, R-2, and R-L, respec-
tively.

Besides, we can see that the introduction of RL-
based autoregressive decoding slightly improves
the quality of the summary, but is less effective than
a simple method like Trigram Blocking. Further-
more, the summary-level methods are still remark-
ably effective extractive summarization methods
at present, which consider the entire summary and
can be seen as a special non-autoregressive method.

Results on Datasets with Short Summaries We
conduct experiments on XSum and Reddit to prove
the effectiveness of our method on short datasets.
As shown in Table 3, we can see there is a pretty
apparent improvement achieved on the XSum and
Reddit datasets than baseline methods. In partic-
ular, on the Reddit dataset, our method achieves
+0.59, +0.48, and +0.3 improvements on R-1, R-2,

Models XSum

R-1 R-2 R-L

LEAD 19.58 2.38 14.74
ORACLE 32.33 9.33 23.86

BERTEXT 22.86 4.48 17.16
MatchSum 24.48 4.58 18.31

SetSum 24.80 4.59 18.52

Models Reddit

R-1 R-2 R-L

LEAD 17.01 2.72 13.76
ORACLE 35.76 13.44 28.45

BERTEXT 23.86 5.85 19.11
MatchSum 24.90 5.91 20.03

SetSum 25.49 6.39 20.33

Table 3: Results on XSum and Reddit datasets.
BERTEXT here has been added to Trigram Blocking
strategy.

and R-L, respectively. We think this is due to the
fact that the token length of the source documents
in the two dataset are shorter than other datasets,
which enable the model is easy to get contextual
sentence representation.

Results on Datasets with Long Summaries Ta-
ble 4 shows the results on WikiHow, Pubmed,
and Multi-News, where Multi-News is a multi-
document dataset. According to our intuition, the
summary of these datasets has a larger set of sen-
tences compared with other datasets, which re-
quires more challenges to the model to find the
correct set of sentences to construct the summary.
From the results, we can see that our method has
slight improvements on PubMed and Multi-News
datasets, which is consistent with our intuition. For
example, on the Multi-News dataset, compared
with the summary-level method MatchSum our ap-
proach achieves +0.13, +0.29, and +0.11 on R-
1, R-2, and R-L, respectively. On the WikiHow
dataset, we achieve comparable results to Match-
Sum. We think there are two reasons for the re-
sult. First, WikiHow has longer summaries com-
pared to Reddit dataset, even though they are both
datasets with abstract characteristics. Second, un-
like CNN/DailyMail where the main information
is more concentrated, that in WikiHow is more
scattered.

4771

Methods WikiHow PubMed Multi-News

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

LEAD 24.97 5.83 23.24 37.58 12.22 33.44 43.08 14.27 38.97
ORACLE 35.59 12.98 32.68 45.12 20.33 40.19 49.06 21.54 44.27
BERTEXT 30.31 8.71 28.24 41.05 14.88 36.57 45.80 16.42 41.53

BERTEXT+TriBlk 30.37 8.45 28.28 38.81 14.62 34.52 44.94 15.47 40.63
MatchSum 31.85 8.98 29.58 41.21 14.91 36.75 46.20 16.51 41.89

SetSum 31.66 8.72 29.36 41.53 15.11 36.88 46.33 16.80 42.00

Table 4: Results on WikiHow, PubMed, and Multi-News datasets.

5.2 Ablation Studies & Analysis

To demonstrate the effectiveness of the components
in the model, we performed a series of ablation
experiments on the Reddit dataset.

Effects of Model Architecture To verify the ef-
fectiveness of the model architecture of SetSum,
we remove the parallel decoder and find a signifi-
cant drop of model results. Specifically, the results
shown in Table 5 dropped by 1.38, 0.64, and 1.01 at
R-1, R-2, and R-L, respectively, which means that
the encoder-based sentence level classifier is prone
to select the incorrect sentences. After applying
Triam Blocking on an encoder-based sentence-level
classifier, the results have improved slightly, which
indicates that there is redundant in the results. This
occurs because when the parallel decoder is re-
moved, the sentences selected by the method are
independent without any dependency. This demon-
strates that the parallel decoder plays an extremely
important role in the SetSum model.

Effects of Bipartite Matching Loss In our ex-
periments, we introduce bipartite matching loss to
address the challenge of measuring the difference
between the decoding results and the gold sentence
set in an end-to-end manner. We investigate its
effect in detail. Specifically, we compare bipartite
matching loss with widely used cross-entropy loss.
However, there is an issue that the number of de-
coder prediction M is larger than the gold label N ,
which makes it impossible to use the cross-entropy
loss directly. To address the problem, we adopt two
strategies to sort gold sentence labels: Fix Order
and Random Order. Fix Order means we keep the
original order of sentences in the source document
and keep unchanged during training then pad to
query size M . Random Order means we randomly
sort gold sentence labels for each document before

training then pad to query size M . From the results
in Table 5, we find: (1) Compared with the Fix
Order strategy, simply shuffling (Random Order)
will not improve the performance. (2) Compared
with Fix Order and Random Order, introducing bi-
partite matching loss gains 1.44, 0.67, and 1.22 in
R-1, R-2, and R-L, respectively, which verifies the
effectiveness of bipartite matching loss.

Settings R-1 R-2 R-L

Full model 25.49 6.39 20.33

w/o Decoder 24.11 5.75 19.32
w/o Decoder + TriBlk 24.20 5.78 19.43
CELoss+Fix 24.52 5.92 19.77
CELoss+Randm 24.50 5.91 19.76
query freeze 24.21 5.51 19.31

Table 5: Ablation studies for the learnable sentence
queries and bipartite matching loss.

Effects of Sentence Query The sentence query
is the most important part of the SetSum, and we
conduct a series of experiments to demonstrate its
effectiveness. To explore the learning ability of
entity queries, we freeze the parameter of sentence
queries during training. The results are shown in
Table 5 dropped by 1.31, 0.60, and 1.06 at R-1,
R-2, and R-L, respectively, which indicates that the
sentence queries do learn the patterns of summary.
To verify the effect of query size M on the model,
we conduct comparison experiments in Table 6. We
can see that the effect of the model does not always
increase as M is added, but first increases and then
decreases. This occurs most likely because when
M is small, the query cannot fully learn the pattern
of summary, but as M becomes larger and larger,
the query learns the noise instead. Eventually, the
query number M in our experiments is set to 60.

4772

Query Size (M) R-1 R-2 R-L

40 24.75 6.05 19.75
60 25.49 6.39 20.33
80 24.82 5.99 19.93
100 24.90 5.96 19.90
200 24.70 6.13 19.76

Table 6: The performances with different numbers of
sentence queries.

Effect of Different Decoder Layers To investi-
gate the importance of the decoder, we explore the
effect of decoder layers on the results, as shown in
Table 7. We can see that the model performs better
as the number of decoder layers increases. In gen-
eral, the model is more capable of learning as the
number of decoder layers is stacked. Furthermore,
the results with the sentence level interaction are
always better than the interaction at the token level,
regardless of the number of layers, and the effect
is more obvious as the number of layers increases.
For example, when we change the interaction from
Q-S to Q-T at layer 6, R-1 drops by 0.75, but at
layer 4, R-1 only drops by 0.22.

Layer Interaction Reddit

R-1 R-2 R-L

2 Q-S 25.14 6.37 20.12
2 Q-T 25.03 6.24 20.23
4 Q-S 24.95 6.18 20.13
4 Q-T 24.73 5.86 19.72
6 Q-S 25.49 6.39 20.33
6 Q-T 24.71 6.03 19.72

Table 7: The performance of the decoder with differ-
ent layers and interaction types. Q-S and Q-T denote
cross-attention interaction between queries and sentence
representation, token representation, respectively.

5.3 Human Evaluation

We also conduct human evaluation following (Chen
et al., 2021) on CNN/DailyMail dataset. We in-
vite 2 volunteers who are major in journalism to
review the output summaries of several represen-
tative models independently. Specifically, we se-
lect 100 samples from the CNN/DailyMail dataset,
volunteers are asked to rank summaries produced
by BERTEXT (Liu and Lapata, 2019), MatchSum
(Zhong et al., 2020) and our SetSum according to
the following criteria: (1) Informativeness: The
summary should preserve the main meaning of the

original document (2) Coherence: The sentences
in the summary should be coherent with each other.
All of the systems were ranked by 1, 2, and 3 with
3, 2, and 1 scores, respectively. Finally, we get a
weighted average score for each system to measure
the overall quality of the summary. Results are
shown in Table 8. From the results, we can see
that the summary obtained by our SetSum outper-
forms other methods in terms of informativeness
and coherence. In addition, the 4.95% improve-
ment in coherence is more obvious than the 4.39%
improvement in informativeness, which indicates
that our system can learn more dependencies be-
tween summary sentences in addition to improving
the informativeness of summaries. The results of
human evaluation further validate the effectiveness
of our method.

Models Informativeness
1st 2nd 3rd Avg R.

BERTEXT 0.23 0.35 0.42 1.81
MatchSum 0.35 0.35 0.30 2.05
SetSum 0.42 0.30 0.28 2.14

Models Coherence
1st 2nd 3rd Avg R.

BERTEXT 0.26 0.34 0.40 1.86
MatchSum 0.34 0.34 0.32 2.02
SetSum 0.40 0.32 0.28 2.12

Table 8: Human evaluation results on CNN/DaiyMail
dataset. Avg R denotes the weighted average ranking
score. The larger ranking score denotes better summary
quality.

6 Conclusion

In this paper, we propose a set prediction network
for extractive summarization task. Compared with
previous sequence labeling methods, our approach
formulates extractive summarization as a sentence
set prediction problem. In our approach, a set of
sentence queries are fed into a non-autoregressive
decoder, which then predicts all sentences within
the summary in parallel. To measure the differ-
ence between the parallel prediction results and
the gold labels, we apply a bipartite matching loss
to train the model. To demonstrate the effective-
ness of our approach, we conduct experiments on
single-document and multi-document datasets. The
experimental results demonstrate that our method
outperforms the previous state-of-the-art models.

4773

Limitations

We propose a set prediction network for the extrac-
tive summarization task, which has worked well on
some datasets but still has some limitations. Firstly,
due to the use of pre-train BERT in the document
encoder, our method is inadequate for long text
summarization tasks. In general, the text length
of a long document is much longer, so the model
needs to be more capable to capture the dependency.
Next, we will extend the method to long document
summarization tasks. Secondly, the queries in the
decoder are initialized with a normal distribution.
If we can initialize the queries with the prior knowl-
edge, our method may be able to find the set of sen-
tences of the summary more accurately, which is
another direction we need to focus on in the future.

Acknowledgements

This work is supported by the Key Research and
Development Program of Zhejiang Province, China
(No. 2023C01152), the Fundamental Research
Funds for the Central Universities (No. 226-2022-
00143), and MOE Engineering Research Center of
Digital Library.

References
Chenxin An, Ming Zhong, Zhiyong Wu, Qin Zhu, Xu-

anjing Huang, and Xipeng Qiu. 2022. CoLo: A
contrastive learning based re-ranking framework for
one-stage summarization. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, pages 5783–5793, Gyeongju, Republic of Korea.
International Committee on Computational Linguis-
tics.

Sanghwan Bae, Taeuk Kim, Jihoon Kim, and Sang-
goo Lee. 2019. Summary level training of sentence
rewriting for abstractive summarization. In Proceed-
ings of the 2nd Workshop on New Frontiers in Sum-
marization, pages 10–20, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Moye Chen, Wei Li, Jiachen Liu, Xinyan Xiao, Hua
Wu, and Haifeng Wang. 2021. SgSum:transforming
multi-document summarization into sub-graph se-
lection. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 4063–4074, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Jianpeng Cheng and Mirella Lapata. 2016. Neural sum-
marization by extracting sentences and words. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:

Long Papers), pages 484–494, Berlin, Germany. As-
sociation for Computational Linguistics.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 615–621, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yue Dong, Yikang Shen, Eric Crawford, Herke van
Hoof, and Jackie Chi Kit Cheung. 2018. Bandit-
Sum: Extractive summarization as a contextual ban-
dit. In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, pages
3739–3748, Brussels, Belgium. Association for Com-
putational Linguistics.

Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and
Dragomir Radev. 2019. Multi-news: A large-scale
multi-document summarization dataset and abstrac-
tive hierarchical model. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 1074–1084, Florence, Italy. Asso-
ciation for Computational Linguistics.

Nianlong Gu, Elliott Ash, and Richard Hahnloser. 2022.
MemSum: Extractive summarization of long doc-
uments using multi-step episodic Markov decision
processes. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 6507–6522, Dublin,
Ireland. Association for Computational Linguistics.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In NIPS.

Ruipeng Jia, Yanan Cao, Haichao Shi, Fang Fang,
Pengfei Yin, and Shi Wang. 2021. Flexible non-
autoregressive extractive summarization with thresh-
old: How to extract a non-fixed number of summary
sentences. In AAAI Conference on Artificial Intelli-
gence.

Byeongchang Kim, Hyunwoo Kim, and Gunhee Kim.
2019. Abstractive summarization of Reddit posts
with multi-level memory networks. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:

4774

https://aclanthology.org/2022.coling-1.508
https://aclanthology.org/2022.coling-1.508
https://aclanthology.org/2022.coling-1.508
https://doi.org/10.18653/v1/D19-5402
https://doi.org/10.18653/v1/D19-5402
https://doi.org/10.18653/v1/2021.emnlp-main.333
https://doi.org/10.18653/v1/2021.emnlp-main.333
https://doi.org/10.18653/v1/2021.emnlp-main.333
https://doi.org/10.18653/v1/P16-1046
https://doi.org/10.18653/v1/P16-1046
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D18-1409
https://doi.org/10.18653/v1/D18-1409
https://doi.org/10.18653/v1/D18-1409
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/2022.acl-long.450
https://doi.org/10.18653/v1/2022.acl-long.450
https://doi.org/10.18653/v1/2022.acl-long.450
https://doi.org/10.18653/v1/N19-1260
https://doi.org/10.18653/v1/N19-1260

Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2519–2531, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Mahnaz Koupaee and William Yang Wang. 2018. Wiki-
how: A large scale text summarization dataset. ArXiv,
abs/1810.09305.

Harold W. Kuhn. 1955. The hungarian method for
the assignment problem. Naval Research Logistics
(NRL), 52.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In ACL 2004.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3730–3740, Hong Kong,
China. Association for Computational Linguistics.

Yixin Liu and Pengfei Liu. 2021. SimCLS: A sim-
ple framework for contrastive learning of abstractive
summarization. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers), pages 1065–1072, Online. Association for
Computational Linguistics.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based
sequence model for extractive summarization of doc-
uments. ArXiv, abs/1611.04230.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018a. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018b. Ranking sentences for extractive summariza-
tion with reinforcement learning. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1747–1759, New Orleans, Louisiana.
Association for Computational Linguistics.

Shashi Narayan, Joshua Maynez, Jakub Adamek,
Daniele Pighin, Blaz Bratanic, and Ryan McDon-
ald. 2020. Stepwise extractive summarization and
planning with structured transformers. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4143–4159, Online. Association for Computational
Linguistics.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. ArXiv, abs/1705.04304.

Peggy Tang, Kun Hu, Rui Yan, Lei Zhang, Junbin Gao,
and Zhiyong Wang. 2022. OTExtSum: Extractive
Text Summarisation with Optimal Transport. In Find-
ings of the Association for Computational Linguis-
tics: NAACL 2022, pages 1128–1141, Seattle, United
States. Association for Computational Linguistics.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. ArXiv, abs/1706.03762.

Wenhao Wu, Wei Li, Xinyan Xiao, Jiachen Liu, Ziqiang
Cao, Sujian Li, Hua Wu, and Haifeng Wang. 2021.
BASS: Boosting abstractive summarization with uni-
fied semantic graph. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 6052–6067, Online. Association
for Computational Linguistics.

Jiacheng Xu, Zhe Gan, Yu Cheng, and Jingjing Liu.
2020. Discourse-aware neural extractive text sum-
marization. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5021–5031, Online. Association for Computa-
tional Linguistics.

Yumo Xu and Mirella Lapata. 2022. Document sum-
marization with latent queries. Transactions of the
Association for Computational Linguistics, 10:623–
638.

Yubo Zhang, Xingxing Zhang, Xun Wang, Si-Qing
Chen, and Furu Wei. 2022. Latent prompt tuning
for text summarization. ArXiv, abs/2211.01837.

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang,
Xipeng Qiu, and Xuanjing Huang. 2020. Extractive
summarization as text matching. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 6197–6208, Online.
Association for Computational Linguistics.

Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang,
M. Zhou, and Tiejun Zhao. 2018. Neural document
summarization by jointly learning to score and select
sentences. In Annual Meeting of the Association for
Computational Linguistics.

4775

https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/2021.acl-short.135
https://doi.org/10.18653/v1/2021.acl-short.135
https://doi.org/10.18653/v1/2021.acl-short.135
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/N18-1158
https://doi.org/10.18653/v1/N18-1158
https://doi.org/10.18653/v1/2020.emnlp-main.339
https://doi.org/10.18653/v1/2020.emnlp-main.339
https://doi.org/10.18653/v1/2022.findings-naacl.85
https://doi.org/10.18653/v1/2022.findings-naacl.85
https://doi.org/10.18653/v1/2021.acl-long.472
https://doi.org/10.18653/v1/2021.acl-long.472
https://doi.org/10.18653/v1/2020.acl-main.451
https://doi.org/10.18653/v1/2020.acl-main.451
https://doi.org/10.1162/tacl_a_00480
https://doi.org/10.1162/tacl_a_00480
https://doi.org/10.18653/v1/2020.acl-main.552
https://doi.org/10.18653/v1/2020.acl-main.552

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Datasets and Evaluation Metrics

�3 B1. Did you cite the creators of artifacts you used?
Datasets and Evaluation Metrics

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Datasets and Evaluation Metrics

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Table 1

C �3 Did you run computational experiments?
Implementation Details

�7 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Our method is not a parametric sensitive method.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

4776

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Implementation Details

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Results and Analysis

�7 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
The package is open source

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Human Evaluation

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Human Evaluation

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Human Evaluation

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Human Evaluation

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

4777

