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Abstract

Commonsense about quantitative properties is
essential for a deep understanding of texts con-
taining numerals. However, naive language
models (LMs) treat numerals as string tokens;
therefore, they lack an understanding of the
magnitudes of numerals, resulting in a diffi-
culty in acquiring the commonsense. In this
study, we apply the k-nearest neighbor LM
(kNN-LM) to the masked numeral prediction
(MNP) task, which measures the quantitative
commonsense of LMs. kNN-LM extends pre-
trained neural LMs with the k-nearest neigh-
bor (kNN) search. Since it can utilize pat-
terns that appear in the datastore for predic-
tion, we expect an improvement in numeral
prediction accuracy, which is associated with
a high rate of occurrence of out-of-vocabulary
(OOV) words. Through experiments, we veri-
fied that the retrieval-based method is effective
for fine-grained predictions of numerals from
context, especially for the OOV numerals. We
also compared two different context spans for
context representations to improve the accu-
racy of kNN search by using only the words
that are closely related to the masked numeral:
the mask and its surrounding words, and the
mask and its subsequent words. Our results
reveal that using only the embeddings of mask
tokens for numerals in kNN search is the most
effective approach for realizing MNP tasks.

1 Introduction

Real-world objects and events have various quan-
titative properties, such as size, weight, length,
and price. Commonsense about these quantitative
properties is essential for a deep understanding
of texts containing numerals and for reasoning on
a similar or better level than humans. Figure 1
shows examples of a masked numeral prediction
(MNP) task requiring quantitative commonsense.
The first example requires deriving a numeral refer-
ring to height that is considered tall based on com-
monsense about the distribution of human heights.

Figure 1: Examples of the masked numeral prediction
task requiring quantitative commonsense.

Figure 2: Overview of kNN-LM for the MNP task.

The second example requires deriving the value
of a typical movie length using commonsense and
subtracting it from 12 p.m. Humans can easily
choose numerals that approximately correspond to
the ground-truth answers to these questions with
considerable confidence. However, for models that
lack such commonsense and computational skills,
such inferences pose a challenge.

In recent years, large-scale neural language mod-
els (LMs), such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), GPT-3 (Brown et al.,
2020), and GPT-4 (OpenAI, 2023), have achieved
comparable or better performance than humans on
various natural language processing (NLP) tasks.
However, previous studies have reported that these
models still perform poorly on tasks that require
quantitative commonsense (Elazar et al., 2019),
such as MNP (Spithourakis and Riedel, 2018; Lin
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et al., 2020), numerical error detection or correc-
tion (Chen et al., 2019), and numerical question
answering (Dua et al., 2019; Zhou et al., 2022).

One of the main reasons why LMs fail to per-
form well on tasks that require quantitative com-
monsense is that they do not learn the mapping
between strings of numerals and their magnitudes
accurately. Naive LMs treat numerals in text only
as string tokens, that is, other words. While humans
can associate the magnitude of a numeral with the
string of the numeral, LMs that treat numerals only
as strings are unable to accurately make such as-
sociations for arbitrary numerals (Wallace et al.,
2019). This makes it difficult for naive LMs to
understand the magnitude of numerals, resulting in
difficulty in acquiring quantitative commonsense.

To address this problem, previous studies have
attempted to employ methods such as using word
embeddings of numerals that reflect the magnitudes
of the numerals (Wallace et al., 2019; Thawani
et al., 2021), adding texts of arithmetic formu-
las to the training data (Geva et al., 2020), train-
ing LMs with a loss function that depends on the
magnitudes of numerals (Sakamoto and Aizawa,
2021), and tokenizing numerals in a text into single
digits to allow LMs to understand the concept of
digits (Spithourakis and Riedel, 2018). However,
these methods require fine-tuning or additional pre-
training specific to the understanding of numerals.
Therefore, in this study, we aim to improve the
performance of LMs in a task that requires quan-
titative commonsense (specifically, the MNP task
(Spithourakis and Riedel, 2018; Lin et al., 2020;
Sundararaman et al., 2022)) without such addi-
tional training that is specific to numerals by using
the k-nearest neighbor LM (kNN-LM) (Khandel-
wal et al., 2020b), which is an LM extended by a
retrieval-based method.

In addition, numerals have a higher rate of oc-
currence of out-of-vocabulary (OOV) words than
regular words (Spithourakis et al., 2016a), mak-
ing it difficult even for recent large neural LMs to
accurately predict numerals in sentences from the
context. In this study, based on the hypothesis that
numerals that appear in similar contexts tend to
be of the same type (e.g., date, amount of money,
and number of people) and similar sizes, we expect
that kNN-LM model will improve the accuracy of
the MNP task by reflecting numerals that appear
in similar contexts in the prediction results. We
also believe that an advantage of using kNN search

Figure 3: Two context ranges of a masked numeral for
kNN search.

is not only the improvement in top-k accuracy but
also the improvement in interpretability by pro-
viding contexts with similar use of the predicted
numeral.

In our experiments, we used the pre-trained
BERT of HuggingFace (Wolf et al., 2020) as the
base LM for kNN-LM. Two types of context ranges
were used to compute the representation of the con-
text of the masked numeral: the numeral mask and
its surrounding words (Figure 3 (a)), and the nu-
meral mask and its subsequent words (Figure 3
(b)). Contextual range Figure 3 (b) is expected to
improve search accuracy by focusing on words that
follow the numerals, such as units, which strongly
represent the type of the preceding numerals.

For both ranges, nearest neighbors were
searched based on context representation, which is
computed as the average vector of the embedding
vectors of all the words in the range. kNN-LM
outperformed the base LM in MNP on most of the
datasets we used. In addition, it was confirmed
that the range of only the mask token for a numeral
was the most effective context range for k-nearest
neighbor (kNN) search in MNP.

To summarize, our contributions are as follows:

• We apply kNN-LM to MNP and show that
the retrieval-based method can improve the
performance of pre-trained LMs without addi-
tional training specific to numerals.

• We experiment with several different types of
context ranges and find the optimal range for
kNN search for the MNP task.

• We analyze the prediction accuracy for numer-
als included in the model vocabulary and those
not included and confirm that kNN search sig-
nificantly improves the performance for OOV
numerals, which are difficult to predict with
naive LMs.

4796



2 Related Work

2.1 Masked Numeral Prediction
The MNP task can be used as a probing task to
evaluate the quantitative commonsense acquired by
LMs.

Spithourakis and Riedel (2018) evaluated the
numeracy of a long short-term memory model by
using the MNP task and concluded that current
LMs have a problem with learning the mappings
between strings of numerals and their magnitudes.
Therefore, to help the models understand the mag-
nitude of numerals, they proposed a method to pre-
dict numerals as continuous Gaussian distributions
and a method using character-level recurrent neural
networks (Graves, 2013; Sutskever et al., 2011) for
prediction, which led to an improvement in their
prediction accuracy.

Lin et al. (2020) used the MNP task with
uniquely determinable masked numerals, such
as “A bird usually has [MASK] legs” or “A
car usually has [MASK] wheels,” and evaluated
quantitative commonsense acquired by BERT and
RoBERTa. They showed that even pre-trained LMs
that achieve comparable performance to humans
on many NLP tasks perform significantly worse
than humans on this task. In addition, although
the pre-trained LMs seemed to make correct pre-
dictions, they often failed to maintain these predic-
tions even for small sentence changes that did not
change the answer, such as when the target sen-
tence was changed to “A car usually has [MASK]
round wheels.” This finding implies that achieving
suitable robustness of model predictions is also a
challenge.

In this study, considering these problems of the
current LMs, we do not revise the base model
itself but reinforce the model predictions by us-
ing a retrieval-based approach, specifically, a kNN
search computed on the similarity of the contexts.

2.2 Retrieval Augmented Methods in NLP
Retrieval-based approaches, which refer to the data-
stores as external knowledge, have been successful
in many NLP tasks (Meng et al., 2021), such as
named entity recognition (Wang et al., 2022), ma-
chine translation (Khandelwal et al., 2020a), and
question answering (Guu et al., 2020).
kNN-LM is an LM whose predictions are aug-

mented with the results of a kNN search for similar
texts (Khandelwal et al., 2020b). The detailed de-
sign of the model is described in Section 4. When

predicting a masked word in a sentence, kNN-LM
searches the dataset for sentences similar to the con-
text around the masked word. It aims to improve
prediction accuracy by reflecting the searched near-
est neighbors in the prediction score of the base
LM. Since kNN search is based on the distance
in the embedding space of the base LM, it has the
advantages of not requiring additional training for
the search and of being able to use any dataset as
the datastore for the search. Improvements in per-
plexity from 18.65 to 15.79 on the WikiText-103
dataset (Merity et al., 2016) are reported. Khan-
delwal et al. (2020b) also found that kNN-LM is
particularly useful for predicting rare patterns due
to the augmentation provided by the retrieval-based
approach. Based on the hypothesis that it may also
be effective in predicting numerals, where rare pat-
terns occur frequently (Spithourakis et al., 2016b),
we applied kNN-LM to MNP in this study.

3 Task

3.1 Task Description

In this study, we used the MNP task to evaluate the
numeracy of LMs. This task is defined as follows:

Input: A passage containing exactly one target nu-
meral masked with a special token “[MASK]”

Output: A ranking of predicted numerals

There is exactly one masked numeral per passage,
and the prediction model can see the other numer-
als in the same passage when making predictions
for passages with more than one numeral. We ini-
tially considered masking multiple numerals in a
passage; however, we decided to limit the number
of masked numerals to one because masking mul-
tiple numerals would make the prediction difficult
even for humans (e.g., “Restaurant reservations are
preferred after [MASK] p.m. because the movie
starts at [MASK] p.m.”) and a single mask is more
suitable for investigating whether LMs can capture
the semantic relationship between the numerals.

3.2 Evaluation

The LMs (including kNN-LM) generate a prob-
ability distribution over numeral tokens in their
vocabulary using a softmax function. The top-k
accuracy is a metric that evaluates the predicted
ranking of the numeral tokens created from the
generated probability distribution (Lin et al., 2020).
It calculates the percentage of predictions such that
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Dataset Numeracy-600K ACLsent FinNum DROP

#passages 420,000 1,753 3,992 4,329
Ave. passage length [token] 13.0 53.2 37.1 285.2

#numerals 523,425 8,521 8,043 65,063
#numerals per passage 1.2 4.9 2.0 15.0
% of integers 98 % 82 % 83 % 96 %
% of OOV numerals 4 % 25 % 22 % 12 %

Table 1: Statistics across four different datasets (training set).

Dataset Numeracy-600K ACLsent FinNum DROP

#decimals 8,680 (33%) 1,503 (69%) 1,301 (72%) 2,416 (30%)
#numerals with commas 3,888 (14%) 299 (13%) 186 (10%) 2,436 (31%)
#large numerals 5345 (20%) 217 (9%) 225 (12%) 1,796 (22%)

#OOV numerals 26,045 (100%) 2,178 (100%) 1,790 (100%) 7,852 (100%)

Table 2: Statistics on OOV numerals across four different datasets (training set).

the ground-truth numeral token is within the top k
predicted tokens in the ranking.

The top-k accuracy simply evaluates whether
the ground-truth numerals are included in the top k
predictions. It does not consider how close the pre-
dicted numerals are to the corresponding ground
truth. However, in the MNP task, a model that
predicts numerals closer to the ground truth is gen-
erally considered to be a better model, even if the
predictions are incorrect. Therefore, in this study,
we used the top-k accuracy with a fixed numeri-
cal error percentage allowed in each calculation to
evaluate the LMs in terms of the magnitude of the
difference between the ground-truth numeral and
the predicted numeral. In our experiments, we used
k = 1, 3, 5, and 10 for evaluation.

4 Nearest Neighbor Language Model

kNN-LM (Figure 2) predicts masked tokens in in-
put sentences y using two different approaches,
namely an LM and a kNN search (Khandelwal
et al., 2020b). It then adds these prediction scores
together with a mixture ratio λ to obtain a final
prediction score p(y):

p(y) = λpkNN(y) + (1− λ)pLM(y) (1)

where λ is a fixed parameter, pkNN(y) is the pre-
diction score of kNN search calculated using the
softmax function on the negative distance between
the test context and the top k similar contexts in
the datastore, and pLM(y) is the prediction score
reported by the LM.

In kNN search, two types of context ranges are
used: the numeral mask and its surrounding n

words (see Figure 3 (a)) and the numeral mask
and its subsequent n words (see Figure 3 (b)). For
both ranges, the average of the embedding vectors
of all the words in the range is defined as the con-
text representation of the masked numeral. While
Khandelwal et al. (2020b) used only the words be-
fore the mask to calculate context representations,
we used the aforementioned two types of context
ranges for the following two reasons. First, in our
experiments, we used BERT as the base LM, which
is a bidirectional LM. Second, we hypothesized
that words that are more closely related to the mag-
nitudes of numerals, such as units, tend to appear
around the numerals, especially after them.

5 Experiments

5.1 Dataset
In this study, we used the following four datasets
with different domains and passage lengths:

• Numeracy-600K (article titles) (Chen et al.,
2019),

• ACLsent (scientific papers) (Abekawa and
Aizawa, 2016),

• FinNum (financial tweets) (Chen et al., 2018),
• DROP (Wikipedia) (Dua et al., 2019).

From each dataset, 70% of the total passages were
used as training data, 10% as validation data, and
the remaining 20% as evaluation data. The main re-
sults on the FinNum and DROP datasets are shown
in Appendix C, considering that their trends were
generally the same as those of the other datasets.

The statistics of the passages and numerals con-
tained in the aforementioned datasets are shown in
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before and after the mask only after the mask
% of NE Window size (n) Top1↑ Top3↑ Top10↑ Top1↑ Top3↑ Top10↑

= 0%

0 (only [MASK]) 40.0% 60.7% 77.1% 40.0% 60.7% 77.1%
1 38.1% 58.7% 76.0% 38.5% 58.9% 75.9%
2 37.8% 58.6% 76.0% 37.4% 57.9% 75.4%
5 35.8% 55.1% 73.5% 35.3% 55.5% 73.9%
max length 33.7% 50.8% 70.0% 33.9% 53.5% 72.1%

≤ 10%

0 (only [MASK]) 56.0% 71.8% 87.4% 56.0% 71.8% 87.4%
1 54.0% 70.4% 86.9% 54.4% 70.5% 86.6%
2 53.8% 70.4% 86.9% 52.9% 69.6% 86.2%
5 50.6% 67.3% 85.1% 50.5% 67.3% 84.9%
max length 46.5% 63.3% 82.6% 48.5% 65.3% 83.3%

Table 3: Top-k accuracy of kNN search on the Numeracy-600K dataset when two different context ranges are used
to compute the contextual representation: one with the mask and the n words before and after it (Figure 3 (a)), and
one with the mask and its subsequent n words (Figure 3 (b)). “% of NE” indicates the percentage of numerical error
allowed in each top-k accuracy calculation.

Table 1. Numeracy-600K, ACLsent, and FinNum
have only a few sentences per passage compared to
DROP, which has longer passages. ACLsent and
DROP contain 5–15 numerals per passage, while
Numeracy-600K and FinNum contain less than 5
numerals per passage. The types of numerals ap-
pearing in the passages also differ depending on the
dataset domain. Numeracy-600K and DROP con-
tain more four-digit numerals, such as year num-
bers, compared with the other datasets. Partly be-
cause of this reason, they also have a relatively
lower percentage of decimals and OOV numerals,
which are not included in the BERT vocabulary.
ACLsent and FinNum contain many decimals and
infrequent numerals, such as numerals from exper-
imental results and statistics and monetary values
and percentage changes in stock prices, as reported
by the statistics in Table 1.

Table 2 shows the statistics on OOV numerals
across the four datasets. In particular, the percent-
ages of the three main categories of numerals that
are not included in the BERT vocabulary are pre-
sented, namely decimals, numerals with commas,
and large numerals. The category “#large numer-
als” includes numerals larger than 6,000, which is
the largest numeral in the BERT vocabulary. The
aforementioned categories have intersections with
each other. The trend of OOV numerals appear-
ing in the dataset varies significantly depending
on the domain and writing style. It can also be
observed that decimals account for the majority of
OOV numerals in all datasets.

5.2 Experimental Setup
In the experiments, we used the BERT model “bert-
base-uncased” from HuggingFace Transformers

(Wolf et al., 2020) as the base LM for kNN-LM.
This base LM was used to make predictions from
the context of masked numerals. The word em-
beddings for kNN search were the output of the
second-to-last layer of this model. In this paper, the
kNN-LM using a BERT model fine-tuned by the
MNP task as the base LM is called the kNN-LM
fine-tuned by the MNP task.

BERT-DExp (Berg-Kirkpatrick and Spokoyny,
2020) and NumGPT (Jin et al., 2021) are powerful
baselines that deal with the prediction of numerals
from context. These methods reflect the numeral’s
magnitudes in the numeral embeddings and have
improved the ability to roughly predict numerals
(i.e., the rate of agreement for the number of dig-
its). However, we did not adopt these models as
the base LM for kNN-LM in this study because
we believe that methods that reflect the numeral’s
magnitudes in the numeral embeddings can have a
negative impact on the accurate prediction of nu-
merals, thereby losing the advantages of retrieval-
based approaches, which are beneficial in terms of
accuracy.

Infrequent numerals, decimals, and numerals
with commas are not included in the naive BERT
vocabulary; thus, such numerals in the datasets are
split into multiple numeral tokens by the BERT to-
kenizer in the preprocessing stage. Tables 1 and 2
show the percentages and statistics of OOV nu-
merals; such numerals in the datasets are split into
multiple numeral tokens by the BERT tokenizer in
the preprocessing stage. However, in the test set, to
prevent partial masking, the numerals are masked
with a single token (i.e., without splitting them
first). Consequently, it may be impossible for naive
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pre-trained fine-tuned
Method % of NE Top1↑ Top3↑ Top5↑ Top10↑ Top1↑ Top3↑ Top5↑ Top10↑

kNN

= 0% 32.9% 52.7% 62.0% 72.2% 40.0% 60.7% 69.2% 77.1%
≤ 10% 48.6% 65.5% 73.9% 84.4% 56.0% 71.8% 78.9% 87.4%
≤ 30% 57.8% 78.0% 85.9% 93.2% 64.9% 82.5% 89.0% 94.5%
≤ 50% 69.0% 86.7% 92.1% 96.5% 75.1% 89.7% 93.8% 97.0%

LM

= 0% 12.6% 28.6% 38.7% 55.3% 37.4% 58.2% 65.8% 73.4%
≤ 10% 24.2% 41.2% 51.6% 67.8% 53.8% 68.3% 74.5% 81.9%
≤ 30% 28.7% 50.2% 61.8% 77.1% 63.2% 77.6% 82.5% 87.5%
≤ 50% 40.4% 60.5% 70.4% 82.9% 73.2% 83.6% 87.1% 90.7%

kNN+LM

= 0% 32.7% 47.1% 54.6% 66.1% 39.4% 61.6% 69.6% 77.6%
≤ 10% 48.0% 62.0% 68.9% 79.3% 55.4% 71.9% 78.0% 85.6%
≤ 30% 56.6% 73.3% 80.6% 88.8% 64.2% 81.5% 86.3% 91.2%
≤ 50% 67.9% 83.5% 88.4% 93.4% 74.2% 87.9% 90.8% 93.9%

Table 4: Top-k accuracy of kNN-LM on the Numeracy-600K dataset. “kNN,” “LM,” and “kNN+LM” indicate the
accuracy of kNN search alone, the accuracy of the base LM, and the accuracy of the entire kNN-LM, respectively.
“% of NE” indicates the percentage of numerical error allowed in each top-k accuracy calculation.

pre-trained fine-tuned
Method % of NE Top1↑ Top3↑ Top5↑ Top10↑ Top1↑ Top3↑ Top5↑ Top10↑

kNN

= 0% 22.3% 37.7% 45.3% 54.3% 27.8% 43.3% 49.5% 56.5%
≤ 10% 32.1% 47.8% 56.2% 68.1% 37.9% 54.1% 61.5% 70.4%
≤ 30% 39.9% 59.4% 68.9% 81.2% 45.3% 63.6% 73.0% 83.2%
≤ 50% 50.0% 70.7% 79.1% 88.8% 54.2% 73.7% 81.4% 90.0%

LM

= 0% 20.2% 37.3% 45.8% 56.0% 30.1% 46.0% 52.3% 58.4%
≤ 10% 29.4% 47.2% 56.0% 68.1% 38.4% 53.7% 60.6% 67.9%
≤ 30% 36.1% 56.4% 66.5% 76.0% 45.6% 61.2% 68.0% 74.6%
≤ 50% 47.5% 65.8% 73.1% 80.4% 53.8% 68.8% 73.9% 79.4%

kNN+LM

= 0% 25.3% 43.1% 50.9% 59.9% 31.4% 47.9% 54.5% 61.3%
≤ 10% 34.8% 52.7% 61.2% 71.9% 40.6% 57.4% 64.2% 72.6%
≤ 30% 41.8% 63.0% 72.3% 80.3% 47.6% 65.3% 72.6% 79.7%
≤ 50% 51.8% 73.4% 79.8% 84.4% 56.5% 73.6% 78.8% 84.7%

Table 5: Top-k accuracy of kNN-LM on the ACLsent dataset.

LMs to predict the masks of OOV numerals with
zero-error rate. However, the frequency of numeral
tokens in the BERT vocabulary ensures predictions
with an error of less than 10% (except for large nu-
merals; see Table 2). Since OOV numerals rarely
appear in the datastore for kNN search, a zero-error
rate would be hardly possible regardless of the sin-
gle token masking. Therefore, we believe that our
methods can be fairly compared to the others even
with this masking strategy.

For kNN search, we set k = 50 and used the
L2 norm for calculating the distance of the context
vectors. The mixing ratio of kNN search results
and LM prediction scores was set to λ = 0.2 based
on the results of our preliminary experiments. The
experimental results are given in terms of average
scores of two or more runs. Other experimental
settings are shown in Appendix A.

6 Results and Discussion

6.1 Methods for Representing the Context for
kNN Search

The results of kNN search using different context
ranges are shown in Table 3. kNN search with only
the embedding vector of mask tokens for masked
numerals achieved the highest accuracy in the MNP
task, in both context ranges. We suggest that this
may be because the embedded representations of
the mask tokens of numerals contain sufficient in-
formation to predict the masked numerals near the
last layer of the fine-tuned LM. The results of the
experiment comparing two context ranges on the
ACLsent dataset are shown in Appendix B. Ini-
tially, we expected that the context range after the
mask would be more efficient than the range before
and after the mask because it can effectively utilize
units that often follow numerals. However, we did
not observe a significant difference between them.
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Known numerals OOV numerals
Method % of NE Top1↑ Top3↑ Top5↑ Top10↑ Top1↑ Top3↑ Top5↑ Top10↑

kNN

= 0% 41.3% 62.7% 71.5% 79.5% 14.0% 20.4% 24.3% 30.6%
≤ 10% 57.3% 73.3% 80.4% 88.8% 30.2% 42.9% 49.5% 60.8%
≤ 30% 66.2% 83.8% 90.2% 95.4% 39.6% 56.4% 65.0% 77.3%
≤ 50% 76.5% 90.8% 94.7% 97.7% 49.0% 67.6% 75.9% 85.6%

LM

= 0% 39.1% 60.8% 68.7% 76.6% 4.5% 7.8% 9.9% 12.7%
≤ 10% 56.1% 70.9% 77.1% 84.6% 11.1% 19.4% 24.2% 31.2%
≤ 30% 65.7% 80.3% 85.1% 90.0% 16.6% 28.4% 33.7% 41.4%
≤ 50% 75.9% 86.2% 89.6% 93.0% 24.0% 36.1% 41.4% 48.6%

kNN+LM

= 0% 41.1% 63.8% 72.1% 80.4% 7.3% 18.0% 21.1% 25.2%
≤ 10% 57.5% 73.6% 79.8% 87.5% 15.4% 37.7% 43.2% 51.3%
≤ 30% 66.5% 83.2% 88.0% 92.7% 21.9% 49.6% 55.5% 63.4%
≤ 50% 76.5% 89.4% 92.3% 95.2% 30.0% 59.7% 64.5% 71.4%

Table 6: Top-k accuracy of the fine-tuned kNN-LM for numerals included in and out of the vocabulary numerals in
the Numeracy-600K dataset.

Test [MASK]-magnitude earthquake hits Taiwan, no injuries or tsunami reported ANS: 6.5

7.2-magnitude earthquake hits near Guam and Mariana Islands; Tsunami warning not expected PRED: 7.2
5.7-magnitude earthquake hits near Mindoro, Philippines PRED: 5.7

kNN 7.4-magnitude earthquake hits Indonesia’s Sumatra island, Aceh province [PHOTOS] PRED: 7.4
5.0-magnitude earthquake hits Canada and Northern US and leaves residents shaken (video) PRED: 5.0
7.2-magnitude earthquake strikes Vanuatu Islands; tsunami warning issued PRED: 7.2

Test A theory that ’Guardians of the Galaxy’ could take place in the year [MASK] ANS: 2045

What is God saying about the Year 2012 ? PRED: 2012
Google May Venture Into Retail Store Business In Year 2013 PRED: 2013

kNN Pew Research Center Survey: 41% of Americans believe Jesus (pbuh) will return by the year 2050 PRED: 2050
577,190 Americans will die of cancer in year 2012 PRED: 2012
Prayers for the year 2010 PRED: 2010

Test Lowest mass extrasolar planet discovered, HD 10180 b has [MASK] times Earth’s mass ANS: 1.4

Astronomers discover record massive star, 320 times the mass of Sun in R136 cluster PRED: 320
New biofuel process creates 20 times more energy than existing methods PRED: 20

kNN Russia’s meteor pieces worth 40 times more than the price of gold today PRED: 40
Japanese Damaged nuclear power plant 1,000 times higher than normal PRED: 1,000
UFC 108 fighter salaries: Rashad Evans makes 75 times more than least paid fighter PRED: 75

Table 7: Top-5 output examples of kNN search for masks of OOV numerals in the Numeracy-600K dataset.

In the following experiments, the results of kNN
search were obtained when using only the embed-
dings of mask tokens, which exhibited the best
accuracy in the experiment presented in this sec-
tion.

6.2 Masked Numeral Prediction

Tables 4 and 5 show the top-k accuracy of kNN-
LM on the Numeracy-600K and ACLsent datasets
for the MNP task (without and with fine-tuning on
the task). The results for the FinNum and DROP
datasets are shown in Appendix C.

By comparing the prediction accuracy before
and after, we observed that fine-tuning the base LM
on the MNP task improved the prediction accuracy

of kNN search and kNN-LM on both datasets. This
confirms the effectiveness of fine-tuning the base
LM in kNN search and kNN-LM. In both cases,
before fine-tuning, kNN search outperformed the
LM in terms of accuracy. In particular, on the
Numeracy-600K dataset, the largest dataset used in
our experiments, kNN search significantly outper-
formed the LM both before and after fine-tuning.
However, on the ACLsent dataset, the smallest
dataset used in our experiment, the performance
difference was not as pronounced, indicating that
dataset size can influence the extent of improve-
ment through fine-tuning. These findings demon-
strate that with a sufficiently large datastore, kNN
search can achieve moderate prediction accuracy
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Test Dataset Datastore for kNN Search Top1↑ Top3↑ Top5↑ Top10↑
Numeracy-600K 40.0% 60.7% 69.2% 77.1%

Numeracy-600K ACLsent 7.9% 18.1% 26.7% 39.6%
DROP 10.9% 22.0% 28.1% 37.8%

ACLsent 27.8% 43.3% 49.5% 56.5%
ACLsent Numeracy-600K 5.9% 12.1% 16.3% 23.7%

DROP 5.4% 14.2% 20.4% 31.6%

Table 8: Top-k accuracy with 0% error of kNN search in cross-domain settings.

without additional fine-tuning, unlike LM.
When comparing the prediction accuracy of each

method after fine-tuning, we found that on both
datasets, the prediction accuracy of kNN search
alone or kNN-LM exceeded that of the base LM
alone by approximately 2% to 5% in all settings.
This confirms the effectiveness of kNN search in
the MNP task. In particular, kNN search demon-
strated superior accuracy after Top3 and achieved
a margin of error of 10% or more, suggesting that
it can retrieve a more diverse set of numerals as
predictions compared to LM.

Table 6 lists the top-k accuracy of the fine-tuned
kNN-LM for numerals in and out of the BERT
vocabulary in the Numeracy-600K dataset. The
results for the numerals included in the vocabulary
show almost the same trend as the overall results
(Table 4). By contrast, kNN search significantly
outperformed the LM in predicting the OOV numer-
als. Although it is challenging to accurately com-
pare their performance owing to the vocabulary and
datastore limitations affecting LM and kNN search,
respectively, we believe that in settings allowing
for a small margin of numerical error, their perfor-
mance can be considered fairly comparable. The
results for OOV numerals in the ACLsent dataset
are shown in Appendix D.

6.3 Output Examples of kNN Search for OOV
Numerals

Table 7 shows the top-5 output examples of
kNN search for masks of OOV numerals in the
Numeracy-600K dataset. An LM fine-tuned on
this dataset with the MNP task was used for kNN
search. In each sentence, one numeral is shown in
bold, indicating that kNN search was performed
with the bold numeral masked.

The OOV numerals are masked, and their low
frequency of occurrence makes it difficult to find
contexts in the datastore wherein the same numer-
als appear. However, this result shows that kNN
search could find contexts that are remarkably close

to that of the test context, although the exact match
accuracy of numerals was not high. In the first
example, kNN search found a context for an earth-
quake of similar magnitude, and the test “no in-
juries or tsunami reported” and the first-predicted
context “Tsunami warning not expected” are ex-
tremely close. The second example is considered
one of the most difficult for kNN search because
the answer “2065” does not appear in the datastore.
However, despite the short context, it correctly es-
timated that the masked numeral is a future year
and succeeded in finding a considerably close nu-
meral in the datastore, although it was the third
prediction.

However, the results also reveal a limitation of
kNN search. In the third test sentence, the numeral
with “times” as the unit is masked. Although kNN
search outputted contexts that contain numerals
with “times,” as the unit in all of the top 5 cases,
it failed to find contexts that contain numerals that
are close to the answer. This may be because a
deeper understanding of the contexts is required
for masked numerals with units such as “times”
which allow for a wider range of preceding nu-
merals. Similarly, there were cases where kNN
search was not extremely effective in predicting
the amount of money that followed the “$”, which
was considered to allow for a wider range of nu-
merals.

While kNN search achieved successful predic-
tions in some cases and faced challenges in oth-
ers, as shown in the table, humans can easily un-
derstand the rationale behind the predictions (e.g.,
same units or similar contexts). This improved in-
terpretability stands as a significant advantage of
kNN search over LMs.

6.4 kNN Search in Cross-Domain Setting

Table 8 shows the results of kNN search with a
datastore from different domains. We performed
kNN search with Numeracy-600K, ACLsent, and
DROP as datastores for the Numeracy-600K and
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ACLsent datasets. The results show that the ac-
curacy of kNN search in the cross-domain setting
was significantly lower than that achieved using
the same-domain datasets as the datastore. This
indicates that the types and properties of the nu-
merals in these three datasets differ greatly, and in
many cases, similar contexts and numerals were
not found by kNN search. These results suggest
that kNN search can achieve the best performance
only with a datastore that contains a larger num-
ber of diverse sentences compared to those used in
this study. Future developments should focus on
experiments and analysis of kNN search using a
large-scale datastore.

7 Conclusion

In this study, we applied kNN-LM to the MNP
task and quantitatively evaluated its prediction ac-
curacy. The results show that the numerical abso-
lute errors were reduced by utilizing kNN search
for numeral prediction compared to existing meth-
ods. In particular, the prediction accuracy greatly
improved for numerals not included in the model
vocabulary, which are difficult to predict with naive
LMs. We also experimented with two different con-
text ranges and confirmed that the most effective
method for kNN search is the one using only the
word embedding of the mask token for the masked
numeral as a representation of the context.

Limitations

One of the limitations of our study is that the per-
formance of kNN search is highly dependent on
the domain of the datastore used. As shown in
Section 6.4, kNN search, like standard LM, does
not work well for contexts and numerals for out-of-
domain data. This dependence can be reduced by
increasing the size of the datastore and introducing
passages from various domains; however, this strat-
egy may bolster another limitation, as discussed
hereafter.

The second limitation is that kNN-LM requires
more memory usage for the datastore and higher
latency for search during inference compared with
standard LMs. Although the search process itself
can be executed swiftly by leveraging efficient sim-
ilarity search libraries like Faiss (Johnson et al.,
2017), as the size of the datastore expands, the time
required to obtain their representation vectors is
expected to increase.

The third limitation pertains to the lack of lan-
guage variety in the utilized datasets. While we
deliberately selected datasets from different do-
mains for our experiments, they shared a common
language, namely English. Consequently, it is ex-
pected that kNN-LM will exhibit similar effective-
ness in languages with linguistic structures simi-
lar to English. However, conducting experiments
on non-English datasets is necessary to provide
evidence for the language-independent impact of
kNN-LM. This aspect will be addressed in future
research endeavors.
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A Experimental Setup

We used the Adam optimizer with learning rate and
max-grad-norm set to 5 × 10−5 and 1.0, respec-
tively. All the words in the passages were tokenized
with the BERT tokenizer; passages were then trun-
cated to sequences of 512 tokens or less. In this
study, only numerals expressed in arithmetic digits,
such as “1” and “2022,” were treated as target nu-
merals to be predicted, and numerals expressed in
English words, such as “one” and “ten,” were not
included.

B Results of Context Range Comparison
on ACLsent

The result of using different context ranges for
kNN search on the ACLsent dataset is shown in Ta-

ble 9. The same trends observed in the Numeracy-
600K dataset were confirmed (Table 3).

C Results of MNP Task on Other Datasets

Prediction results for kNN-LM on the FinNum and
DROP datasets are shown in Tables 10 and 11.
On the FinNum dataset, kNN search exhibited a
better accuracy than LM without fine-tuning, and
kNN search only or kNN-LM had the best accu-
racy in most settings with fine-tuning. This is the
same trend observed in the Numeracy-600K and
ACLsent datasets (Tables 4 and 5). By contrast,
the results show a different trend for the DROP
dataset. With fine-tuning, kNN search alone or
kNN-LM almost always had the best accuracy in
most settings, but without fine-tuning, the LM sig-
nificantly outperformed kNN search. This may be
because the DROP dataset differs from the other
datasets in that each passage is longer (Table 1).
When the passage is long, it is possible to check
numerals other than the masked one in the same
passage, and if there are answers or near-answer
numerals among them, it can be solved as a simple
reading comprehension task, which LMs perform
well, without kNN search.

D Results of MNP Task for OOV
Numerals in ACLsent

Table 12 shows the top-k accuracy of fine-tuned
kNN-LM for numerals in and out of the BERT vo-
cabulary in the ACLsent dataset. The same trends
observed in the Numeracy-600K dataset were con-
firmed (Table 6).
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before and after the mask only after the mask
% of NE Window size (n) Top1↑ Top3↑ Top10↑ Top1↑ Top3↑ Top10↑

= 0%

0 (only [MASK]) 27.8% 43.3% 56.5% 27.8% 43.3% 56.5%
1 22.3% 36.4% 52.2% 24.7% 38.7% 53.0%
2 23.0% 36.5% 52.6% 22.4% 36.5% 51.4%
5 18.2% 32.3% 49.6% 18.5% 33.1% 48.3%
max length 14.7% 28.2% 46.5% 13.8% 26.3% 44.3%

≤ 10%

0 (only [MASK]) 37.9% 54.1% 70.4% 37.9% 54.1% 70.4%
1 31.3% 46.1% 66.6% 34.1% 48.6% 66.4%
2 32.9% 47.5% 66.3% 32.7% 46.6% 66.2%
5 28.3% 43.3% 64.6% 28.1% 43.8% 63.0%
max length 22.9% 36.7% 59.6% 22.5% 35.1% 57.3%

Table 9: Top-k accuracy of kNN search on the ACLsent dataset when two different context ranges are used to
compute the contextual representation: one with the mask and the n words before and after it (Figure 3 (a)), and one
with the mask and its subsequent n words (Figure 3 (b)). “% of NE” indicates the percentage of numerical error
allowed in each top-k accuracy calculation.

pre-trained fine-tuned
Method % of NE Top1↑ Top3↑ Top5↑ Top10↑ Top1↑ Top3↑ Top5↑ Top10↑

kNN

= 0% 14.3% 23.1% 28.3% 37.1% 17.2% 27.5% 33.0% 39.6%
≤ 10% 19.6% 32.9% 41.5% 54.9% 23.5% 38.3% 46.5% 57.8%
≤ 30% 27.3% 46.6% 59.3% 76.0% 31.9% 53.1% 64.0% 77.0%
≤ 50% 37.0% 61.1% 74.0% 87.7% 41.8% 66.1% 76.8% 87.6%

LM

= 0% 10.4% 21.6% 27.4% 37.8% 18.1% 30.4% 36.4% 44.7%
≤ 10% 15.7% 29.1% 37.8% 52.3% 25.1% 40.1% 47.7% 58.0%
≤ 30% 23.4% 40.9% 52.1% 67.7% 35.1% 52.3% 60.8% 71.4%
≤ 50% 33.9% 53.3% 64.1% 76.0% 46.3% 62.8% 69.6% 78.6%

kNN+LM

= 0% 15.1% 26.9% 33.7% 42.8% 19.8% 30.8% 37.4% 46.2%
≤ 10% 20.5% 35.2% 43.4% 56.9% 27.0% 41.3% 49.7% 60.7%
≤ 30% 28.2% 49.0% 58.6% 72.3% 36.5% 54.3% 62.2% 74.1%
≤ 50% 37.8% 62.5% 70.7% 80.8% 47.3% 65.7% 72.4% 81.5%

Table 10: Top-k accuracy of kNN-LM on the FinNum dataset.

pre-trained fine-tuned
Method % of NE Top1↑ Top3↑ Top5↑ Top10↑ Top1↑ Top3↑ Top5↑ Top10↑

kNN

= 0% 8.0% 14.7% 19.1% 27.7% 13.8% 22.5% 27.8% 36.7%
≤ 10% 32.9% 45.6% 53.1% 64.8% 37.7% 50.4% 57.8% 68.8%
≤ 30% 44.9% 61.7% 70.4% 81.7% 49.4% 66.0% 74.1% 83.7%
≤ 50% 53.7% 72.0% 80.2% 89.1% 58.4% 75.6% 82.6% 90.1%

LM

= 0% 17.1% 28.7% 35.2% 45.2% 20.6% 31.7% 37.5% 45.6%
≤ 10% 38.3% 49.3% 56.1% 66.8% 42.3% 53.0% 58.4% 66.0%
≤ 30% 48.0% 61.9% 68.8% 77.2% 53.7% 64.3% 69.0% 74.9%
≤ 50% 57.5% 70.6% 76.1% 81.9% 62.1% 71.5% 75.1% 79.5%

kNN+LM

= 0% 16.5% 28.4% 35.7% 46.2% 21.4% 32.0% 38.5% 47.8%
≤ 10% 37.2% 51.3% 58.4% 68.9% 42.2% 54.6% 60.6% 68.7%
≤ 30% 48.1% 66.1% 73.1% 80.2% 53.6% 68.1% 72.9% 78.7%
≤ 50% 56.9% 75.7% 80.8% 85.3% 62.2% 76.0% 79.5% 83.6%

Table 11: Top-k accuracy of kNN-LM on the DROP dataset.
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Known numeral OOV numeral
Method % of NE Top1↑ Top3↑ Top5↑ Top10↑ Top1↑ Top3↑ Top5↑ Top10↑

kNN

= 0% 36.0% 56.2% 64.6% 74.0% 6.2% 9.3% 9.7% 10.5%
≤ 10% 45.8% 63.6% 71.9% 80.8% 16.9% 29.1% 34.0% 43.1%
≤ 30% 53.3% 71.6% 80.6% 89.5% 24.0% 42.7% 52.7% 66.5%
≤ 50% 62.7% 81.0% 87.7% 94.2% 31.8% 54.5% 64.7% 78.9%

LM

= 0% 40.8% 62.4% 70.7% 78.8% 1.9% 2.9% 4.0% 5.0%
≤ 10% 50.0% 68.6% 76.2% 84.2% 8.0% 14.7% 19.5% 25.1%
≤ 30% 57.8% 74.9% 82.3% 88.8% 13.6% 25.1% 30.4% 37.1%
≤ 50% 66.7% 82.4% 87.1% 92.6% 19.8% 32.9% 39.1% 44.7%

kNN+LM

= 0% 42.1% 63.2% 72.1% 80.9% 3.4% 7.7% 8.3% 9.9%
≤ 10% 51.5% 69.9% 77.7% 86.1% 11.8% 24.6% 28.6% 36.9%
≤ 30% 58.6% 76.6% 84.0% 90.8% 18.5% 35.8% 42.7% 50.5%
≤ 50% 67.7% 84.0% 88.5% 94.0% 26.8% 46.3% 53.4% 60.2%

Table 12: Top-k accuracy of the fine-tuned kNN-LM for numerals included in and out of the vocabulary numerals
in the ACLsent dataset.

4807



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations section

�7 A2. Did you discuss any potential risks of your work?
This paper is a foundational research. Our method uses a retrieval-based approach to improve the
accuracy of the masked numeral prediction task. We do not think there is any potential risk in our
work.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Sections 4 and 5.1

�3 B1. Did you cite the creators of artifacts you used?
Sections 4 and 5.1

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
We have confirmed the license of the artifacts used in our experiments.

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
We have confirmed the intended use of the existing artifacts we used. We do not publish any new
artifacts.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
The datasets we used are often used in studies in the NLP field, and we think that they do not contain
such contents due to the way they were constructed.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 5.1 and Limitations section

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 5.1

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

4808

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


C �3 Did you run computational experiments?
Sections 5, 6, and Appendix

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Sections 5.2 and Appendix A

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 5.2

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 5.2

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Sections 5.2 and Appendix A

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

4809


