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Abstract

Self-rationalizing models that also generate a
free-text explanation for their predicted labels
are an important tool to build trustworthy AI
applications. Since generating explanations for
annotated labels is a laborious and costly pro-
cess, recent models rely on large pretrained lan-
guage models (PLMs) as their backbone and
few-shot learning. In this work we explore a
self-training approach leveraging both labeled
and unlabeled data to further improve few-shot
models, under the assumption that neither hu-
man written rationales nor annotated task labels
are available at scale. We introduce a novel
dual-teacher learning framework, which learns
two specialized teacher models for task predic-
tion and rationalization using self-training and
distills their knowledge into a multi-tasking stu-
dent model that can jointly generate the task
label and rationale. Furthermore, we formulate
a new loss function, Masked Label Regulariza-
tion (MLR) which promotes explanations to be
strongly conditioned on predicted labels. Eval-
uation on three public datasets demonstrate that
the proposed methods are effective in modeling
task labels and generating faithful rationales.

1 Introduction

Interpretable NLP has emerged to learn models
which explain their predictions through either ex-
tractive (DeYoung et al., 2020) or natural language
explanations (Camburu et al., 2018; Narang et al.,
2020; Wiegreffe et al., 2020). Due to higher ex-
pressivity of free text, generative self-rationalizing
models have gained much research interest. How-
ever, the early works assume a fully supervised
setup and require a large annotated dataset (Narang
et al., 2020). Collecting large scale, manual anno-
tations for task labels and corresponding explana-
tions is challenging and expensive. On the other
hand, a much larger unlabeled corpora is often
available, making semi-supervised approaches like
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few-shot learning (Brown et al., 2020) and self-
training (He et al., 2019) attractive solutions. In the
context of self-rationalizing models, (Marasovic
et al., 2022) explore few-shot learning, while (Ze-
likman et al., 2022) seek to improve a supervised
labeler by augmenting it with rationale generation.
In this work we start from a few-shot setup, assum-
ing only a handful of examples available with their
labels and hand-written rationale. We leverage a
large unlabeled dataset and self-training techniques
to improve over the simple few-shot model.

We hypothesize that using only a few exam-
ples, learning to generate meaningful explanations
jointly with predicting the labels themselves, is a
particularly challenging objective and self-training
can suffer from a weak initial model. To address
this, we propose a novel Dual Teacher learning ap-
proach to learn a self-rationalizing model from the
two teacher models in a cascading manner. At first,
a Predictor model is learned for predicting task
labels, and then a Rationalizer model is learned
to generate an explanation conditioned on an in-
put and the task labels predicted by the Predictor
model. We iteratively improve both models via
self-training. In contrast to learning the Joint model
directly, the Rationalizer model allows for much
richer representation learning by moving the la-
bel information from decoder to the encoder part,
and utilizing the encoder’s self-attention mecha-
nism to extract input-label correlations. A stronger
few-shot model for rationale generation provides
higher quality pseudo labels, consequently making
self-training more effective.

Although the two conditional models (Predic-
tor and Rationalizer) might be better perform-
ing, a single self-rationalizing model is still de-
sirable for practical applications, due to its ease-
of-maintenance and parameter efficiency for faster
inference. We apply principles from knowledge
distillation (Hinton et al., 2015; Kim and Rush,
2016) on the two conditional models to learn a
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joint model that generates task label and explana-
tion as a single sequence. The teacher models are
used for generating pseudo labels on the entire un-
labeled dataset. The initial few-shot labeled data
and the pseudo labeled dataset are finally combined
to train the joint model.

Faithfulness of explanations is an imperative
property for practical applications of interpretabil-
ity analysis. A model generated explanation is con-
sidered faithful if it accurately explains the decision
making of the model (Alvarez Melis and Jaakkola,
2018; Wiegreffe et al., 2020). Similar to prior study
(Jacovi and Goldberg, 2020), we also observe that
a free text explanation generated by models might
sound plausible, without satisfying the faithfulness
criteria of explaining the predicted task label. This
motivates us to design a masking based regulariza-
tion function, Masked Label Regularizer (MLR),
to encourage the model to condition on the task
label while generating an explanation. MLR is
an entropy based constraint that forces the Ratio-
nalizer model to be maximally uncertain in gen-
erating an explanation in absence of label tokens
and is used to ensure that the Rationalizer model
preserves faithfulness through the self-training iter-
ations. To summarize, our contributions are:

• Proposing to utilize self-training for learning self-
rationalizing models with free-text explanations,
demonstrating that it provides significant perfor-
mance boost compared to few-shot learning.

• Proposing a novel Dual Teacher framework,
where two teacher models are trained with self-
training in a cascading manner for learning two
tasks, and a multi-task joint student model is
learned through distillation from the teachers.

• Extensively studying the faithfulness property
of free-text explanations, and designing an en-
tropy based regularization to encourage label-
explanation conditioning.

• Experiments on three public benchmark datasets
and demonstrating the effectiveness of our pro-
posed model in improving both task accuracy and
explanation quality.

2 Related Work

Prior works on generating free text rationales have
explored joint models (Narang et al., 2020; Maraso-
vic et al., 2022) as well as several variants of
pipeline models (Wiegreffe et al., 2020; Jang and

Lukasiewicz, 2021). We also use sequence to se-
quence models (Raffel et al., 2019) as our backbone
models. While most of the self-rationalizing liter-
ature assumes fully supervised setups, STaR (Ze-
likman et al., 2022) explores an alternate bootstrap-
ping setup where limited rationales are available,
but the task labels are present for the whole dataset.
We consider the generic and more restrictive set-
ting where only limited annotations are available
for both task label and rationale.

For limited labeled data scenario, many NLP
applications have started reporting success with
self-training (Mehta et al., 2022; Yu et al., 2022;
He et al., 2019; Bhat et al., 2021). Inspired from
these works, we employ self-training to the self-
rationalization problem. We introduce a new train-
ing framework with two conditional models and
using them as teachers in a further distillation step
to train the joint model. Besides the popular use for
model compression, Knowledge Distillation has
also shown superior performance when using the
same model architecture and size for both the stu-
dent and teacher models (Furlanello et al., 2018),
and distilling from multiple teachers (Yuan et al.,
2021; Liu et al., 2020). Recently, a work (Ghiasi
et al., 2021) in computer vision domain has ex-
plored using pseudo-labels from multiple teachers
to train a joint student model. However, they have
multiple specialized teachers trained independently
through full supervision, in contrast to the cascad-
ing nature of our dual teacher self-training setup.

Evaluating the quality of free-text rationales is
significantly challenging and several works have
proposed metrics to evaluate the explanations
around fluency and their faithfulness properties
(Hase and Bansal, 2020; Hase et al., 2020; Maraso-
vic et al., 2022). A recent work (Wang et al., 2022)
also tries to imbue faithfulness through a regulariz-
ing coefficient. However, they apply the regularizer
to perturb the rationale while generating task label.
In contrast we use a label masking regularizer to
enforce the Rationalizer model to generate an ex-
planation which is faithful to the label.

3 Background

We first provide some necessary background on
Self-Rationalizing models and a theoretical outline
of Self Training based learning.
Self-Rationalization: A Self-Rationalization
model tries to learn the joint distribution of
output(O) and explanation(E), given an input(I),
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Figure 1: Input and output formats for Predictor, Ratio-
nalizer and Joint models.

i.e. P (O,E|I). A common approach is modeling it
as a sequence-to-sequence problem and generating
the task prediction and the rationale jointly (Narang
et al., 2020). Input-output format for a self ratio-
nalizing joint model is illustrated in Figure 1. The
input consists of a task prompt, (e.g. explain
nli), and in output sequence the task label is gen-
erated first (e.g. contradiction), followed by
a separator token (explanation:), and then the
free text explanation. During inference, greedy de-
coding is used to generate the sequence until an
EOS token is produced.
Self-Training is a type of Semi-Supervised Learn-
ing based method, which assumes access to a small
labeled dataset (Dl) and a large, unlabeled in-
domain dataset (Du). The algorithm progresses
iteratively in four steps. First, a teacher model
is trained on the labeled dataset (Dl), to ob-
tain θT . The trained teacher is then used to in-
fer pseudo-labels on Du, generating the pseudo-
labeled dataset Dpl. A student model is then
trained on Dpl to obtain the θS . In the next itera-
tion the teacher model is updated with the learned
parameters from the student and the process repeats
until a convergence criterion is met.

4 Dual Teacher for Self-Rationalization

We combine the strengths of self-training and
knowledge distillation to train a self-rationalizing
joint model from dual teachers. Following sections
describe the components, their losses and the learn-
ing procedures in more detail. Input-output formats
of the models are shown in Figure 1, and the overall
framework is illustrated in Figure 2.

4.1 Problem Setup

We tackle the self-rationalization problem with few-
shot labels. We consider access to a small labeled
set, Dl = {(ij , oj , ej)}Nj=1, where ij is the input,
oj is the task output, and ej is the natural language

explanation. We also leverage a much larger un-
labeled dataset denoted by Du = {ij}Mj=1, where
M ≫ N . In the unlabeled dataset only the input
text is available and no annotation is provided for
either task label or rationale.

To keep all models identical, we model all dis-
tributions in a sequence to sequence manner using
T5 (Raffel et al., 2019). The teacher model in
self-training is trained on few shot ground truth
output sequences and the trained teacher is then
used for generating output sequences for the un-
labeled dataset. These sequences are considered
as pseudo labels to train the student model. We
re-weight the loss of each example with confidence
of the teacher model. This limits error propagation
through self-training iterations due to the noisy na-
ture of pseudo labels. We use likelihood of the
generated sequence as confidence estimates. Fol-
lowing (Bhat et al., 2021) we normalize the weights
in a batch.

4.2 Splitting the Joint into Conditionals
In order to make the learning task easier, we break
down the joint probability of modeling task and
rationale, into its conditionals.

P (O,E|I)︸ ︷︷ ︸
Joint

= P (O|I)︸ ︷︷ ︸
Predictor

×P (E|I,O)︸ ︷︷ ︸
Rationalizer

(1)

This allows us to build two separate models in a cas-
cading manner: (1) Predictor Model for predicting
task label, i.e. P (O|I), and (2) Rationalizer Model
for rationalizing the task label for an input, i.e.
P (E|I,O). Prior works (Jang and Lukasiewicz,
2021) have shown that factorization of this distribu-
tion to predicting the output first (Prediction) and
generating an explanation for the prediction (Ra-
tionalization) has obtained better performance than
alternate factorizations.

We hypothesize that with limited labeled ex-
amples, learning a joint distribution for <task la-
bel+rationale> sequence would be much harder
than focusing on learning to predict only the task
label. More importantly, for rationale generation
we move the task label from output sequence (in
the joint model) to input sequence (in Rationalizer
model). This allows the encoder to capture much
richer interactions between task label and the in-
put through its self-attention network, compared to
only the decoder in joint model. The stronger ini-
tial few-shot models for predictor and rationalizer
would be further boosted through self-training in
generating higher quality pseudo labels.
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Figure 2: Dual Teacher Training Framework. Predictor and Rationale models are trained in their own Self-training
loop. Pseudo labels generated from the trained predictor and rationale model are used for training the Joint model.

4.3 Predictor Teacher

In the first step of our framework, we train a Pre-
dictor model with self-training. The Predictor is
trained to model the probability of the task out-
put given the input, i.e. P (O|I). The task output
is decomposed into subwords, and the model is
trained to minimize the negative log likelihood of
the output token sequence:

Lpred(θ) = E(i,o)∼D [− logPθ(o|i)] (2)

The predictor model is trained within its own self
training loop, utilizing the few shot ground truth
task labels and unlabeled inputs. After self-training
has converged, we store the predictor and use it for
generating pseudo task labels on all unlabeled data.

Dpl = {(i, pθpred(o|i))}i∈Du (3)

These pseudo labels are then used for training the
Rationalizer model and the Joint model.

4.4 Rationalizer Teacher

In the second stage we train a Rationalizer model
that can generate natural language explanations
given an input and the predicted task output, mod-
eling the conditional distribution P (E|I,O).

Lrat_gen(θ) = E(i,o,e)∼D [− logPθ(e|i, o)] (4)

For training the teacher model we use the few-shot
ground truth labeled dataset for task label and ra-
tionale. For generating rationale pseudo-labels on
the unlabeled set, we use the task pseudo labels
generated by the predictor model as input. The
generated rationale pseudo labels are then used to
train a student rationalizer model in self-training
loop until convergence.

Faithfulness of Explanations
For a Rationalizer model to generate a faithful ex-
planation, we want the explanation to be strongly
conditioned on the label. The rationalizer should
not be able to generate an explanation solely based
on the input, but must take into consideration the
label for which it is rationalizing. We introduce a
regularizing constraint in our rationalizer model to
explicitly encode this property.

Masked Label Regularization
We design an entropy based regularization which
tells the model to be maximally uncertain in gen-
erating the explanation in absence of a task label.
We achieve this by replacing the task output with
mask tokens and maximizing the per-token entropy
of the explanation sequence.

LMLR(θ) = E(i,e)∼D [−Hθ[e|i]] (5)

where Hθ[e|i] refers to the entropy of producing an
explanation from input directly.

There could be alternate ways of encoding the
constraint of label-explanation association. We ex-
perimented with one such variant where the ground
truth explanation would be generated with a high
entropy in case of a wrong label. We observed
similar empirical results in our experiments for this
alternative. However, it is strictly less general -
since it becomes limited to only categorical prob-
lems, and also is computationally more expensive
due the necessity of computing entropy for multi-
ple wrong labels. Therefore, we use the simpler
and generic form of masking the label tokens.

The overall loss of the Rationalizer is a weighted
summation of the sequence generation loss and the
regularization loss:

Lrat = Lrat_gen(θ) + λMLRLMLR(θ) (6)
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Algorithm 1 Dual Teacher Training Algorithm
Require: Dl = {(ii, oi, ei)}Ni=1

Require: Du = {ij}Mj=1

Require: Dval = {(ik, ok, ek)}Ki=1

Initialize θpred, θrat, θjoint randomly

/* Train Predictor model */
θ∗pred ← SelfTraining(Dl,Du, Dval, θpred)

Dpred ← {(ij , ôj)}Mj=1, ôj ∼ pθ∗
pred

(.|I)

/* Train Rationalizer model */
θ∗rat ← SelfTraining(Dl,Dpred, Dval, θrat)
Dpl ← {(ij , ôj , êj)}Mj=1,
ôj ∼ pθ∗

pred
(.|I), êj ∼ pθ∗rat

(.|I,O)

/* Train Joint model */
Dfinal ← Dpl ∪Dl

θ∗joint ← Train(Dfinal, Dval, θjoint)

λMLR is empirically set to 1e−4 in our experiments
for all datasets.

4.5 Learning from Multiple Teachers:
Distilling a Joint from the Conditionals

Knowledge Distillation is an effective learning
paradigm to train a lighter student model with rich
supervision signals from better performing teacher
model(s). To alleviate the limitations of limited
labeled data for learning a good self-rationalization
model, we leverage the unlabeled data and collect
task and rationale pseudo-labels sequentially from
trained Predictor and Rationalizer teacher models.
The final pseudo-labeled dataset is then combined
with the few-shot labeled data and a joint model
is trained on this set. This allows the knowledge
from both the Predictor and Rationalizer models
to be distilled into the student Joint model through
pseudo labels and the teachers’ confidence weights.

The joint model is trained to maximize the likeli-
hood of a concatenated sequence of task output and
explanation, as illustrated in Figure 1. The detailed
training algorithm is described in Algorithm 1.

Loss Re-weighting: Similar to most sequence-to-
sequence models, in WT5 (Narang et al., 2020),
all output tokens in the generated sequence have
uniform weights in the loss. However, in the joint
task setup, the number of tokens from task label is
substantially smaller than those in the explanation.
To balance this, we re-weight the token-level losses
between the output and the explanation. For a tuple

e-SNLI ComVE ECQA
# classes 3 2 5
total train size 549,367 10,000 7,598
few shot dataset size 300 200 500
validation size 9,842 1,000 1,090
test size 9,824 1,000 2,194
Avg. tokens in output 2.0 2.0 1.9
Avg. tokens in explanation 16.8 26.0 14.5

Table 1: Dataset Statistics. Token-level statistics were
generated using the T5-base tokenizer.

(ij , oj , ej), the loss is computed as:

L = λ
∑

ym∈oj
− log pθ(ym|ij , y1, · · · ym−1)

+ (1− λ)
∑

yn∈ej
− log pθ(yn|ij , y1, · · · yn−1)

where λ ∈ [0.5, 1) is a weight coefficient.

5 Results and Discussion

We evaluate on public datasets for three different
tasks. Table 1 shows statistics of the datasets.
e-SNLI (Camburu et al., 2018) extends the popular
SNLI dataset (Bowman et al., 2015) by adding
human-annotated explanations to the NLI labels.
The task requires generation of a task label which
describes the relationship between a premise and a
hypothesis as entailment/contradiction/neutral, and
a free text explanation for the prediction.
ComVE (Wang et al., 2020) aims to evaluate if a
model can distinguish between sensible and non-
sensical statements based on common knowledge.
We combine the data from SubTask A (Validation)
and SubTask C (Generation) for our experiments.
ECQA (Aggarwal et al., 2021) augments the Com-
monsense QA dataset (Talmor et al., 2019) with
free-text explanations that support the the correct
answer choice and refute the incorrect ones. We uti-
lize the explanations for the correct output (Positive
Property) as the explanation.

For few-shot settings we sample 100 examples
per class for each dataset. The self-training setup
leverages the few-shot labeled dataset(Dl) and the
rest of the training set as unlabeled dataset(Du).

5.1 Implementation Details
We use the base variant of T5 (Raffel et al., 2019)
as backbone model for the Predictor, Rationalizer
and Joint models. Following (Narang et al., 2020),
we also measure task performance using accuracy,
and rationalization using SacreBLEU (Post, 2018).
Label smoothing was set to 0.1 and early stopping
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Model e-SNLI ComVE ECQA Average
/Metric Acc BLEU Acc BLEU Acc BLEU Acc BLEU

Fully Supervised (Narang et al., 2020) 90.44 33.76 86.2 14.53 53.6 16.25 76.75 21.5
Few-Shot 82.57 24.21 73.77 12.74 34.29 9.77 63.54 15.57

Self-Training techniques
Vanilla 83.35 25.18 78.83 10.44 41.8 9.7 67.99 15.11
Confidence Weighted 83.41 24.54 79.23 11.04 41.75 9.85 68.13 15.14
Dual Teacher 83.95 30.17 79.61 14.83 44.26 17.12 69.27 20.71

Table 2: Results on different baselines and other self-training techniques on three datasets, measured using Accuracy
for label prediction, and BLEU for explanation

with a patience of 5 was used for model selection.
The few-shot examples were sampled randomly by
stratifying across classes. We trained on 4 NVIDIA
v100-16GB GPUs with a batch size of 8 and 16 for
Dl and Dpl, respectively. The token re-weighting
coefficient λ is set to 0.8 for eSNLI and ComVE,
and 0.9 for ECQA via grid search based on valida-
tion scores and average length of the explanations
in the dataset. All results are reported after averag-
ing 3 runs.

5.2 Main Results

In Table 2 we compare the various training
paradigms, namely, fully supervised, few-shot
training, and self-training on all three datasets. For
self-training we explore two setups - one without
pseudo label re-weighting on a Joint model, which
we call Vanilla Joint. Confidence-weighted Joint
performs self-training on a Joint model where the
pseudo labels are weighted by the confidence of
the teacher model. The Dual Teacher refers to the
proposed Joint model in Section 4.5 that is trained
with distillation from two teachers.
Few-shot vs Fully Supervised results: Metrics
from the fully-supervised setup provide an upper
bound on the scores achievable when trained on
complete dataset of labels and rationales. Aggre-
gated across datasets, the few-shot performance of
the model is around 13% behind the fully super-
vised model, and around 5 BLEU lower in rational-
ization performance.
Self-Training helps boosting few-shot results.
Our experiments show that self-training is a promis-
ing direction in bridging the performance gap, im-
proving accuracy and BLEU across all the tasks
over the few-shot counterparts. We observe that re-
weighting the pseudo-labels with the confidence of
the teacher models, provides small improvements
in the overall performance and is in alignment with
previous findings (Bhat et al., 2021).

Stronger Results with Dual Teacher Self-
Training Framework. Finally, we observe a fur-
ther improvement by our proposed method of per-
forming self-training on the Predictor and Rational-
izer models, and subsequently distilling the knowl-
edge to a joint student model through pseudo labels.
The improvement in aggregate scores shows that
the accuracy is within 8% of a fully supervised
model, and 5% higher than the few-shot baseline.
The improvements from the proposed model are
most prominent for the Rationale generation task
- the BLEU scores are improved by a large mar-
gin compared to learning both tasks jointly in a
self-training setup. Impressively, the dual-teacher
approach achieves an aggregated result of 20.71
BLEU which is close to the aggregate performance
of the Fully Supervised model (21.5 BLEU). We
even obtained higher performance (BLEU score)
than the supervised model on the two smaller
datasets, ComVE and ECQA.

5.3 Discussion
Next we conduct several deeper analysis of the
models and provide detailed insight to the overall
results presented in Section 5.2.

RQ1: Does breaking the joint into conditionals
improve performance for task label prediction
and explanation quality?
We first want to analyze the effectiveness of break-
ing the joint model into conditionals and learning
two separate models for task prediction and ratio-
nalization. From the results in Table 3, it is evident
that by breaking the joint distribution into condi-
tionals, we obtain significantly higher performance
across all datasets, especially for explanation gen-
eration. This validates our hypothesis that with
limited labels, it is much harder for the model to
learn the joint distribution of output and explana-
tion, compared to learning the conditionals sepa-
rately. With self-training, the gap in performance
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Model e-SNLI ComVE ECQA Avg
/Metric Acc BLEU Acc BLEU Acc BLEU Acc BLEU

Fully Supervised
Predictor 89.7 − 90.2 − 55.9 − 78.6 −
Rationalizer − 34.9 − 16.8 − 18.8 − 23.5
Joint 90.4 33.7 86.2 14.5 53.6 16.2 76.7 21.5

Few-Shot
Predictor 82.9 − 75.7 − 39.7 − 66.1 −
Rationalizer − 27.1 − 14.8 − 16.3 − 19.4
Joint 82.6 24.2 73.8 12.7 34.3 9.8 63.5 15.6

Self-Training
Predictor 83.8 − 78.8 − 44.4 − 69 −
Rationalizer − 31.2 − 17.0 − 19.2 − 22.5
Joint 83.4 24.5 79.2 11.0 41.8 9.8 68.1 15.1

Table 3: Performance of the Joint model compared to Predictor and Rationalizer models in Fully supervised,
Few-Shot and Self-Training setup.

Model/Dataset e-SNLI ComVE ECQA Avg

Joint 76.8 52.0 89.0 72.6
Dual Teacher − MLR 86.5 54.8 93.9 78.4
Dual Teacher 95.7 74.7 95.8 88.7

Rationalizer − MLR 97.8 69.9 95.3 87.7
Rationalizer 99.4 84.8 96.8 93.7

Table 4: Label-Explanation association measured as %
of inputs with distinct explanations for each task label.

between the joint and the conditionals decreases,
but the individual models still outperform the joint
model.

These results align with the improvement ob-
served from the Dual Teacher framework over Joint
model in Table 2. Training the Predictor and Ra-
tionalizer models in their own self-training loops
creates two strong teacher models and provides bet-
ter pseudo labels. This allows us to train a strong
self-rationalizing model through distillation than
training a joint model directly through self-training.

RQ2: Does the Masked Label Regularization
help to generate more faithful explanations?
While our method achieves better BLEU scores
compared to different baselines, it is also important
to evaluate whether the generated explanations are
faithful to the predictions, i.e. provide reasoning
that support the predicted label. During creation
of the datasets, the annotators were instructed to
assign a label and then explain the assignments
with a natural language explanation. Therefore, it is
desirable for the models to preserve the faithfulness
properties in generated explanations.

We perform two tests to analyze whether (1) the
explanations are dependent on the output and (2)
if they reflect the intended label. Through these
experiments we also conduct an ablation study to
estimate the effect of the proposed Masked Label
Regularization (MLR) constraint in improving the

faithfulness of explanations.

Label-Explanation Association. We first con-
duct a simple analysis to check if the explanations
are dependent on the model predictions. As a neces-
sary condition for generating faithful explanations,
different predicted labels have to produce differ-
ent explanations. We measure this association as
the number of test instances for which the model
generates a distinct explanation for all labels.

We vary the task label and ask the model to gen-
erate an explanation. For joint models, we replace
the generated label with other possible labels and
ask the decoder to continue generating an explana-
tion. For Rationalizer model, we simply generate
predictions with providing different labels in the
input. We study the effect of MLR by removing
the entropy regularization loss while training the
Rationalizer. We denote this variant as Rationalizer
− MLR. Dual teacher − MLR refers to the Joint
model trained using Rationalizer − MLR.

Results in Table 4 show that for the Joint model,
only 72% of the examples have unique explana-
tions per output on an average across datasets. This
implies that the label-explanation association is not
inherently captured in the decoder and for 28% of
instances the generated explanation is constant and
has no association with the labels. Adding the MLR
loss encourages the model to condition on labels,
and thereby provides a substantial improvement of
over 10% for the Dual Teacher model. This indi-
cates a strong association between the generated
label and explanation, where the explanations are
unique to the label in over 88% of cases. As can
be seen from the Table, the Rationalizer teacher
achieves significantly better label-explanation as-
sociation compared to the Joint counterparts. The
MLR constraint further improves the results, espe-
cially in the ComVE dataset where explanations
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Model/Dataset e-SNLI ECQA ComVE Avg

Fully-Supervised 8.64 30.45 2.4 13.83
Few-Shot 2.61 16.91 0.2 6.57

Joint 1.87 14.22 0.7 5.6
Dual Teacher - MLR 6.01 17.96 0.73 7.62
Dual Teacher 4.54 18.19 0.9 7.88

Table 5: Simulatability score of the explanations from
different methods. The higher the score the more
aligned the explanation is with the predicted label

(a) ECQA

(b) e-SNLI

Figure 3: Performance across self-training iterations on
ECQA and e-SNLI datasets of the Confidence Weighted
Joint, Predictor and Rationalizer models. Dashed lines
show the performance of the Few-Shot Joint model.

are much longer on average.
Simulatibility of Explanations. We utilize

the Simulatability metric as defined in prior work
(Chan et al., 2022; Hase and Bansal, 2020) to eval-
uate how well an external system, human or AI, is
able to simulate the prediction made by a black-
box, self-rationalizing model using the explana-
tion it generates. As simulators, two models are
trained to predict the task label - (1) a control model
P (O|I), which predicts the output given input and
(2) a treatment model, P (O|I, E) predicting out-
put given input and an explanation. The simulators
are used to measure how much the explanations
generated by the self-rationalizing model help in
‘guessing’ its predicted label. The simulatability
score is defined as

Φ = 1(yT = ŷ)− 1(yC = ŷ) (7)

where ŷ refers to predicted label from the self-
rationalizing model, yC and yT refers to predic-
tions from the control and treatment simulators, re-
spectively. The higher the faithfulness of a model,
the better aligned its explanations are with its pre-

dicted labels, relative to the control simulator which
does not consider explanations.

Table 5 shows the simulatibility scores of the
various self-rationalizing models under considera-
tion. We observe a similar trend as in Table 4 while
comparing the different models, with the excep-
tion of e-SNLI. For e-SNLI the control simulator
was notably stronger compared to treatment, poten-
tially due to the overlap with pre-training tasks of
T5. We note that overall there is significant gap
in the simulatability between our models and the
Fully-Supervised model, indicating a large room
for improvement in the faithfulness of explanation
for weakly supervised models.

RQ3: How does the performance change as
self-training progresses?
Figure 3 shows the performance of different mod-
els over self-training iterations. We observe that
the two teacher models consistently outperform
the joint model over iterations in both datasets. In
ECQA dataset there is a large jump in accuracy in
the first iteration and the algorithm converges soon.
A similar trend is observed for BLEU scores, with
a slight improvement in the Rationalizer in first iter-
ation and the score plateauing or even declining in
case of the Joint model. For e-SNLI dataset, accu-
racy continues to improve till five iterations for the
Predictor, and three for the Joint model. The ratio-
nalization performance also converges after nearly
five iterations for both the models. Convergence
of the algorithm could be explained by the poor
separability of the class labels in the datasets, caus-
ing more erroneous pseudolabels and plateauing of
performance as time progresses.

RQ4: How does the performance change with
increase in labelled dataset size?
We study the performance of our model by con-
ducting experiments with different dataset sizes.
We only vary the labeled dataset size and keep the
remaining training set as unlabeled data. For ex-
ample, for ECQA the total size (D) is 7.5K, and
we conduct experiments with labeled data (Dl) in
the range {50, 2.5K} and the remaining data size
(D − Dl) as unlabeled data. Table 6 reports the
accuracy and BLEU score of our proposed model
for dataset sizes ranging from 50 to 2500 samples.
We see that there is a improvement in the test ac-
curacy and BLEU score as the labeled data size
increases. With as few as 500 examples per label,
the model is able to achieve accuracy within 6% of
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ECQA ComVE eSNLI
Size of Dl Accuracy BLEU Accuracy BLEU Accuracy BLEU

10 30.63 16.36 49.6 15.55 81.97 24.62
100 44.26 17.12 79.61 14.83 83.95 30.17
200 47.81 17.01 80.1 14.45 83.61 29.59
500 51.28 19.03 82.4 15.88 84.43 29.3
5000 - - - - 85.85 29.37

Fully supervised 53.6 16.25 86.2 14.53 90.44 33.76

Table 6: Effect of size of the labeled set on the final performance.

the fully supervised model across all datasets. Inter-
estingly, we note that with limited supervision the
self-training setup is able to outperform the Fully
supervised model in the BLEU scores, demonstrat-
ing the data efficiency of the Rationalizer teacher
in achieving good performance.

6 Conclusion

We study the self-rationalization problem with few-
shot labels and demonstrate that self-training is an
effective learning paradigm and can significantly
reduce the gap between few shot and fully super-
vised model performance. We present a novel dual
teacher learning framework that learns two mod-
els for task label prediction and rationale gener-
ation through self-training and efficiently distill
the knowledge in a single self-rationalizing joint
model. With a masking based loss formulation we
enforce label-explanation association in the ratio-
nalizer, leading to generation of more faithful ex-
planations. We conduct experiments on three pub-
lic benchmark datasets for free text explanations,
and show that the proposed methods are effective
in improving task performance while generating
accurate and faithful explanations.

7 Limitations

Despite strong performance compared to few-shot
our self-training methods still contain significant
room for improvement compared to the fully su-
pervised benchmarks. It would be interesting to
try larger language models to see if it is possible
to close this gap with more knowledge embedded
into the pre-trained models. Our evaluation of free
text rationales are limited by the automatic metrics,
which are necessary but not sufficient to analyze
quality of an explanation for decision making of the
model. From example explanations (a few of which
are shown in Appendix), it is evident that we still
lack understanding on multiple dimensions such as,
when an explanation is factually wrong, is it due to

the model believing in the wrong knowledge or is
unable to retrieve the correct one. Works that probe
a language model with various prompts could be
useful for investigating in these directions.
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8 Appendix

We include some qualitative analysis of the differ-
ent design choices in our method.

8.1 Impact of moving the task label to the
input from the output sequence

We observed substantial improvement in rationale
performance with the Rationalizer teacher model
compared to the Joint model. This is can be at-
tributed to the the prediction being passed as an
input to encoder of the Seq2Seq model, generating
better representation of the predictions and yielding
better quality rationales. Table 7 shows a sample of
explanations generated from the Joint and Rational-
izer models, for cases when the label was predicted
correctly. We see that the Rationalizer generally
produces higher quality explanations, and in con-
trast, while the Joint model often generates nonsen-
sical explanations with frequently repeated words.
The better quality rationales obtained from the Ra-
tionalizer teacher helps generate better pseudo la-
bels and the final model is able to capture those
with distillation.

8.2 Effect of the Masked Label Regularization
on faithfulness

Table 8 shows a few examples of rationales gener-
ated by the Dual Teacher model with and without
the MLR loss. From the first example on e-SNLI
dataset, we see that without MLR constraint the
model generates same explanation for neutral and
contradiction labels, and the explanation for the
neutral label indicates a contradiction. In contrast
when trained with MLR, it outputs an explanation
which is in alignment with the assigned label. In the
second example from ComVE, the model without
MLR outputs the same explanation showing that it
ignores the label assigned. With MLR constraint
the model is able to generate explanations sensitive
to the assigned label. Although the reasoning for
the incorrect label is wrong, this behavior is still
desired for an interpretable system elucidating why
a prediction was made.

8.3 Error Analysis
Table 9 shows a snapshot of the qualitative analysis
of the errors from our model. From the explana-
tions generated for the predictions, we see that the
model is unaware of situations which require ad-
ditional background information, such as the exis-
tence of hair on eyes, or subtle differences between
words, such as paws and feet. We believe a bet-
ter pretrained Language Model can help alleviate
some of these issues.
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Input: premise: a woman plays guitar for tips. hypothesis: lessons are there to learn
Label: neutral
Gold: a woman playing a guitar does not imply she is giving lessons.
Joint: a woman can be a teacher and not be a teacher.
Rationalizer: just because a woman plays guitar does not mean they are there to learn.

Input: choice1: she turned in her homework before it was due and got full credit choice2: she turned in her homework five years after it was due and got full credit
Label: choice2
Gold: homework must typically be turned in before the due date in order to receive full credit
Joint: homework is not done when it is due.
Rationalizer: you cannot turn in your homework five years after it was due

Input: what will friends in elementary school likely do? choice: go somewhere choice: tell story choice: going out at night choice: jump rope choice: teach
Label: jump rope
Gold: kids in elementary school generally play games like hide and seek, tag, musical chairs and so on.
Joint: jump rope is a rope used to teach others to jump rope. friends in elementary school likely will do something like jumping rope.
Rationalizer: friends in elementary school will jump rope.

Table 7: Sample explanations generated from a few-shot Joint model as compared to a few shot Rationalizer model.

premise: two little boys wearing athletic jerseys are washing their hands in a public restroom.
hypothesis: they were playing soccer.
With MLR
entailment explanation: boys are washing their hands while playing soccer.
neutral explanation: just because boys are wearing athletic jerseys, it does not mean they are playing soccer.
contradiction explanation: boys cannot be wearing athletic jerseys and playing soccer at the same time.

Without MLR
entailment explanation: boys are boys.
neutral explanation: boys cannot be washing their hands while playing soccer.
contradiction explanation: boys cannot be washing their hands while playing soccer.

choice1: bats can fly perfectly. choice2: bats can ride bicycles.
With MLR
choice1 explanation: bats cannot fly.
choice2 explanation: bats cannot ride bicycles.

Without MLR
choice1 explanation: bats cannot ride bicycles.
choice2 explanation: bats cannot ride bicycles.

Table 8: Case studies of generated explanations for varied task labels with and without the MLR loss constraint

Input: choice1: she shaved her eyes. choice2: she shaved her legs.
Label: choice1
Gold Explanation: there is no hairs to shave on the eyes.
Predicted Label choice2
Generated explanation: legs are not razors.

Input: cats have how many appendages? choice: tail choice: whiskers choice: two eyes choice: four paws choice: four legs
Label four legs
Gold Explanation: appendage refers to something that is attached four legs are attached to cats four legs are used to walk
Predicted Label four paws
Generated explanation: four paws are appendages. cats have two eyes.

Table 9: Qualitative analysis of the prediction errors of our model.
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