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Abstract

Lexically-constrained NMT (LNMT) aims to
incorporate user-provided terminology into
translations. Despite its practical advantages,
existing work has not evaluated LNMT mod-
els under challenging real-world conditions. In
this paper, we focus on two important but under-
studied issues that lie in the current evaluation
process of LNMT studies. The model needs to
cope with challenging lexical constraints that
are “homographs” or “unseen” during training.
To this end, we first design a homograph dis-
ambiguation module to differentiate the mean-
ings of homographs. Moreover, we propose
PLUMCOT, which integrates contextually rich
information about unseen lexical constraints
from pre-trained language models and strength-
ens a copy mechanism of the pointer network
via direct supervision of a copying score. We
also release HOLLY, an evaluation benchmark
for assessing the ability of a model to cope
with “homographic” and “unseen” lexical con-
straints. Experiments on HOLLY and the pre-
vious test setup show the effectiveness of our
method. The effects of PLUMCOT are shown to
be remarkable in “unseen” constraints. Our
dataset is available at https://github.
com/papago-lab/HOLLY-benchmark.

1 Introduction

Lexically-constrained neural machine transla-
tion (LNMT) is a task that aims to incorpo-
rate pre-specified words or phrases into transla-
tions (Hokamp and Liu, 2017; Dinu et al., 2019;
Song et al., 2019; Susanto et al., 2020; Xu and
Carpuat, 2021a; Chen et al., 2021a,b; Wang et al.,
2022b, inter alia). It plays a crucial role in a vari-
ety of real-world applications where it is required
to translate pre-defined source terms into accurate
target terms, such as domain adaptation leveraging
domain-specific or user-provided terminology. For
example, as shown in Case A of Table 1, an LNMT

∗Equal Contribution

model successfully translates the source term (“코
로나”) into its corresponding target term (“Covid-
19”) by adhering to a given lexical constraint (“코
로나” → “Covid-19”).

Despite its practicality, previous studies on
LNMT have not evaluated their performances un-
der challenging real-world conditions. In this paper,
we focus on two important but understudied issues
that lie in the current evaluation process of the pre-
vious LNMT studies.

Semantics of lexical constraints must be con-
sidered. In previous work, at test time, lexical
constraints are automatically identified from the
source sentences by going through an automatic
string-matching process (Dinu et al., 2019; Ailem
et al., 2021; Chen et al., 2021b). For example,
in Case B of Table 1, a source term (“코로나”)
in the bilingual terminology is present as a sub-
string in the source sentence. Accordingly, its cor-
responding target term (“Covid-19”) is automati-
cally bound together as a lexical constraint (“코
로나”→ “Covid-19”) without considering the se-
mantics of the matched source term,1 which can
lead to a serious mistranslation. This automatic
string-matching cannot differentiate textually iden-
tical yet semantically different source terms. Thus,
the more accurately the LNMT reflects the lexi-
cal constraint, the more pronounced the severity
of the homographic issue is. To address this ho-
mograph issue, LNMT systems must be equipped
to understand the semantics of identified lexical
constraints and determine whether or not these con-
straints should be imposed.

Unseen lexical constraints need to be examined.
One desideratum of LNMT systems is their robust-
ness to handle “unseen” lexical constraints, thereby
responding to random, potentially neologistic, or
technical terms that users might bring up. However,

1Here,코로나 in Case B indicates Corona, a brand of beer
produced by a Mexican brewery.

4839

https://github.com/papago-lab/HOLLY-benchmark
https://github.com/papago-lab/HOLLY-benchmark


(Case A) Semantically Relevant Lexical Constraint

Source 코코코로로로나나나 이전수준으로경기가완전히회복하는날이올까요?

Lexical Constraint 코코코로로로나나나 → Covid-19"Automatically Retrieved from Bilingual TerminologyBilingual Terminology
Source Term Target Term Translation Will the economy ever fully recover to before Covid-19 levels? "
선별진료소 Testing Center

코코코로로로나나나 Covid-19 (Case B) Semantically Irrelevant Lexical Constraint

Source 코코코로로로나나나 엑스트라는 1998년이후미국에서가장많이팔린수입음료이다.⋮ ⋮
Lexical constraint 코코코로로로나나나 → Covid-19%Automatically Retrieved from Bilingual Terminology

Translation Covid-19 Extra has been the top-selling imported drink in the U.S. since 1998.%
Corona

Table 1: Automatically retrieved lexical constraint.

in previous studies, a significant portion of the lex-
ical constraints is exposed during training. Wang
et al. (2022b) demonstrated the overlapped ratio of
lexical constraints between the training and evalu-
ation data (35.6% on average). Meanwhile, Zeng
et al. (2022) also raises the issue of the high fre-
quency of lexical constraints for test sets appearing
in the training data.

When lexical constraints are included in the train-
ing examples, we find that a well-optimized vanilla
Transformer (Vaswani et al., 2017) already sat-
isfies lexical constraints by merely learning the
alignment between the source and target terms co-
occurring in the parallel training sentences.2 This
presents difficulties in identifying whether the pres-
ence of target terms in the output is attributed to
the learned alignment, or the proposed components
in previous studies. Therefore, it is important to
control lexical constraints not exposed during train-
ing to examine the model’s ability to cope with
“unseen” lexical constraints.

As a response, we present a test benchmark for
evaluating the LNMT models under these two crit-
ical issues. Our benchmark is specifically crafted
not only to evaluate the performance of LNMT
models but also to assess its ability to discern
whether given lexical constraints are semantically
appropriate or not. To the best of our knowledge,
we are the first to release a hand-curated high-
quality test benchmark for LNMT. Concurrently,
we suggest a pipeline that allows researchers in
LNMT communities to simulate realistic test condi-
tions that consider the homograph issue and assign
“unseen” lexical constraints.

To this end, we propose a two-stage framework
to deal with these issues. We first develop a ho-
mograph disambiguation module that determines
whether LNMT models should apply a given lexi-

2We observe that the vanilla Transformer achieves a
66.67% copy success rate.

cal constraint by evaluating its semantic appropri-
ateness. Further, we propose an LNMT model that
integrates provided lexical constraints more effec-
tively by learning when and how to apply these
lexical constraints. Our contributions are summa-
rized as follows:

• We formulate the task of semantically appro-
priate application of lexical constraints and
release a high-quality test benchmark to en-
courage LNMT researchers to consider real-
world test conditions.

• We propose a novel homograph disambigua-
tion module to detect semantically inappropri-
ate lexical constraints.

• We present an LNMT model which shows the
best translation quality and copy success rate
in unseen lexical constraints.

2 HOLLY Benchmark

Here, we introduce HOLLY (homograph disam-
biguation evaluation for lexicallly constrained
NMT), a novel benchmark for evaluating LNMT
systems in two circumstances; either the assigned
lexical constraints are semantically appropriate or
not, as illustrated in Table 2. The entire test data in-
cludes 600 test examples on 150 Korean→ English
lexical constraints.

2.1 Test Examples

Each test example consists of three main elements,
as presented in Table 2: (1) a lexical constraint (양
수 → amniotic fluid), (2) a source sentence con-
taining the source term (양수 ) of the lexical con-
straint, and (3) its reference translation.3

3We outsourced the translation process to a professional
translation company, and each translation was manually re-
viewed.
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Source Term Test Example Lexical Constraint

양양양수수수

(a)
Src. 양양양수수수 파열로출산이임박한산모가공군의도움으로건강한아이를출산했다.

양수 → amniotic fluid"
Ref.

A pregnant woman on the verge of labor due to amniotic fluid breaking gave birth to a
healthy child thanks to the help of the airforce.

(b)
Src. 평소다니던산부인과의사선생님이 양양양수수수 검사를권해서하고왔습니다.

양수 → amniotic fluid"
Ref. As my regular gynecologist recommended an amniotic fluid test, I took the test and came back.

(c)
Src. 수학에서는 양양양수수수를나타낼때는 ‘＋’기호를생략해도되지만음수를나타낼때에는반드시

‘－’기호를숫자앞에붙여야한다.
양수 → amniotic fluid%

Ref.
In mathematics, while you can omit the ‘+’ symbol when indicating positive, you must mark
the ‘-’ one before numbers when meaning negative.

(d)
Src. 상장법인대주주들의주식양도 양양양수수수가최근들어활발한것으로나타났다.

양수 → amniotic fluid%
Ref.

It turns out that recently, major shareholders of the listed corporates have active handovers
and takeovers.

Table 2: Test examples are bound together with a lexical constraint. (a) and (b) are positive examples. (c) and (d)
are negative examples. The source term can be pronounced as “yang-soo”. Four examples are assigned to each
lexical constraint.

Lexical Constraint Positive Reference

양양양수수수 → amniotic fluid"

Src. 출산예정일보다일찍 양양양수수수가터지는경우가있다.
Ref. (There are cases where the amniotic fluid bursts sooner than the expected date of birth.)
Src. 태아의염색체이상여부를알아보기위해 양양양수수수를검사했다.
Ref. (The amniotic fluid was tested to find if there were any abnormalities with the fetal chromosomes.)

Table 3: Positive References. Homograph (양양양수수수 ) in positive references means the amniotic fluid.

While the source term is a homograph with mul-
tiple meanings, one of them is chosen to serve as
its lexical constraint.4 Then, based on the meaning
of the source term in the source sentence, each test
example is classified into one of two groups:

• Positive Example where the source term in
its source sentence is semantically aligned to
the lexical constraint (See test examples (a)
and (b) in Table 2). For positive test examples,
we expect lexical constraints should always
be applied.

• Negative Example where the given lexical
constraint is semantically improper to impose
(See test examples (c) and (d) in Table 2). Neg-
ative test examples allow us to evaluate how
LNMT models respond to inappropriate lexi-
cal constraints.

2.2 Positive References

As seen in Table 3, we provide two auxiliary source-
side example sentences demonstrating the specific
use of the source term of its lexical constraint, as-
suming that the meaning can be differentiated by
the context used in the sentences rather than the ter-
minology itself. Hereafter, we name these example
sentences as positive references.

4Out of multiple different meanings of a homograph, we
select the least frequent one as its lexical constraint. We
describe the data construction details in Appendix A.

3 Methodology

Our methodology for semantically appropriate ap-
plication of lexical constraints consists of two
stages. Initially, we propose a homograph disam-
biguation module that can differentiate the seman-
tics of lexical constraints. This module determines
whether LNMT models should incorporate a lexi-
cal constraint or not. Subsequently, LNMT models,
PLUMCOT in our case, perform the translation, ei-
ther with or without the given lexical constraints.

3.1 Homograph Disambiguation

Given a few example sentences demonstrating how
to specifically use a word, humans can infer the
proper meaning. Likewise, our conjecture is that
we can fulfill the homograph disambiguation task
by leveraging these inter-sentential relationships.

3.1.1 Task Specification
Given n example sentences illustrating one specific
meaning of a homograph, our homograph disam-
biguation module aims to determine whether the
same word in a newly given sentence, denoted as
‘New Sentence’ in Fig. 1, carries the same meaning
(label: 1) or not (label: 0). We conducted exper-
iments with two example sentences (i.e., n = 2),5

and the corresponding model architecture is de-
scribed in Section 3.1.2.

5We experiment with n = 1,2, and 3. The effect of varying
the number of example sentences is analyzed in Appendix C.2.
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Example Sentence 1

Frozen PLM

u

Pooling

Example Sentence 2

Frozen PLM

v

Pooling

New Sentence

Frozen PLM

w

Pooling

z

Binary
Classifier

Prediction

Figure 1: Structure of the homograph disambiguation
module.

3.1.2 Model Architecture
Input Representations As illustrated in Fig. 1,
sentence embeddings of example sentences and
the new sentence are individually obtained from
the PLM and fed into the classifier. Embedding
vectors for all the sentences are extracted from
the averaged hidden representations of the last K
layers of frozen PLM.6 Here, the embedding vector
is obtained by the average of hidden representations
for the tokens that make up a homograph within
the sentence. We denote this averaging operation
as Pooling in Fig. 1.

Binary Classifier Similar to Sentence-BERT
(Reimers and Gurevych, 2019), we use the con-
catenation (z ∈ R6m+3) of the following as an input
to the classifier:

• Contextualized representation of a homograph
(u, v,w ∈ Rm),

• element-wise difference for each pair
(∣u − v∣ ,∣v −w∣ ,∣u −w∣ ∈ Rm,)

• pair-wise cosine similarity scores
(sim(u, v), sim(v,w), sim(u,w) ∈ R),

where m is the dimension of the embeddings
and sim(⋅, ⋅) denotes the cosine similarity function.
Our prediction o ∈ [0,1] for a "New Sentence" is
calculated as

o = σ(max(0, zWr + br)W + b), (1)

where Wr ∈ R(6m+3)×m and br are the weight ma-
trix and bias vector of an intermediate layer, respec-
tively. W ∈ Rm×1 and b are the weight matrix and
bias vector for the final prediction layer followed
by σ(⋅), which represents the sigmoid function.

6We utilize the last 16 layers of klue/roberta-large, a
RoBERTa-based PLM trained on Korean corpus. See https:
//huggingface.co/klue/roberta-large for de-
tails.

3.2 PLUMCOT

In this subsection, we introduce our LNMT model,
PLUMCOT, which stands for leveraging pre-trained
language model with direct supervision on a
copying score for LNMT, and its detailed imple-
mentation. To better incorporate target terms into
the translations, PLUMCOT combines LeCA (Chen
et al., 2021b) with PLM and strengthens a pointer
network with supervised learning of the copying
score.

3.2.1 Problem Statement
Lexically-constrained NMT Suppose X =(x1, x2,⋯, x∣X ∣) as a source sentence and Y =(y1, y2,⋯, y∣Y ∣) as a target sentence. Given the
constraints C = (C1,C2,⋯,Cn) where each con-
straint Ci = (Ci,S ,Ci,T ) consists of the source term
Ci,S and corresponding target term Ci,T , LNMT
aims to incorporate C1∶n,T into its generation. The
conditional probability of LNMT can be defined as

p(Y ∣X,C; θ) = ∣Y ∣∏
t=1 p(yt∣y<t,X,C; θ). (2)

Input Data As in Chen et al. (2021b), we mod-
ify X as X̂ = (X,<sep>,C1,T ,⋯,<sep>,Cn,T ) by
appending <sep> tokens followed by target terms,
as illustrated in Table 4.7 If there are no lexical
constraints, a source sentence remains the same,
i.e., X̂ = X .8 Combining a source sentence with
target terms leads to the modification of Eq. (2) as
the following:

p(Y ∣X,C; θ) = ∣Y ∣∏
t=1 p(yt∣y<t, X̂; θ). (3)

3.2.2 Integration of PLM
As PLM such as BERT (Devlin et al., 2019) is
trained on large amounts of unlabeled data, lever-
aging PLM for LNMT can provide rich contextual-
ized information of X , even in controlled unseen
lexical constraint scenarios.

We first feed the source sentence X to a frozen
PLM to obtain a representation B of a source
sentence, where B is the output of the last layer
of the PLM. Conversely, our NMT model based
on Vaswani et al. (2017) receives a modified source
sentence X̂ as input.

7In our training, we randomly sample target terms from
the target sentence. Please refer to Appendix E for details.

8At test time, we append target terms only when lexical
constraints are determined to be used by the homograph dis-
ambiguation module (as indicated in Table 4).
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(Lexical Constraint) 코코코로로로나나나 → Covid-19"Approved by homograph disambiguation module

Source Sentence 코코코로로로나나나 이전수준으로경기가완전히회복하는날이올까요?
(Will the economy ever fully recover to before Covid-19 levels?)

Modified Source Sentence 코코코로로로나나나 이전수준으로경기가완전히회복하는날이올까요? <sep> Covid-19

(Lexical Constraint) 코코코로로로나나나 → Covid-19%NOT approved by homograph disambiguation module

Source Sentence 코코코로로로나나나 엑스트라는 1998년이후미국에서가장많이팔린수입음료이다.
(Corona Extra has been the top-selling imported drink in the U.S. since 1998.)

Modified Source Sentence 코코코로로로나나나 엑스트라는 1998년이후미국에서가장많이팔린수입음료이다.

Table 4: Input modification. Expected target terms are appended to the end of the source sentence. The source term
can be pronounced as “co-ro-na”.

Let L denote the number of encoder and decoder
layers of NMT, H l be the output of the encoder
of NMT at the l-th layer, and hlt denote the t-th
element of H l. For each layer l ∈ [1, L], we employ
multi-head attention with the output of PLM as
in Zhu et al. (2019), denoted as MHAB. This maps
the output of the NMT encoder at l − 1th layer
into queries and output of PLM, B, into keys and
values.9 The output of the t-th element of the
NMT encoder at the l-th layer is given by

h̃lt = 1

2
(MHA(hl−1t ,H l−1,H l−1)

+MHAB(hl−1t ,B,B)) + hl−1t ,

hlt = LN(FFN(LN(h̃lt)) + h̃lt),
(4)

where LN(⋅) denotes Layer normalization in Ba
et al. (2016) and MHA and FFN(⋅) are the multi-
head attention and feed-forward network, respec-
tively.

Similar to the encoder, multi-head attention with
PLM is introduced for each decoder layer.10 Com-
bined with Section 3.2.3, a highly contextualized
representation is given to the pointer network.

3.2.3 Supervision on a Copying Score
Pointer Network To copy target terms from X̂ ,
we introduce a pointer network (Gu et al., 2016)
as in Song et al. (2019); Chen et al. (2021b). For
each time step, a pointer network takes in the out-
put of the encoder and outputs a copying score
g

copy
t ∈ [0,1], which controls how much to copy.

The output probability of the target word yt can be
calculated as

p(yt∣y<t, X̂; θ) = (1−gcopy
t )×pword

t +gcopy
t ×pcopy

t ,
(5)

9Please refer to Appendix D for more details.
10Please refer to Appendix F for more details.

where p
copy
t is a probability of copying, and pword

t

is a probability of the target word yt in the vocabu-
lary.11

Copying Score As implied by Eq. (5), inaccu-
rately predicted g

copy
t results in the failure of copy-

ing target terms. However, in previous research
on LNMT, the importance of a copying score was
relatively understated. Despite the high probabil-
ity of copying p

copy
t , an incorrect copying score

can even lower the output probability of the target
terms. Therefore, we propose a novel supervised
learning of the copying score gcopy

t to obtain a more
accurate value.

Our supervision of the copying score strength-
ens the copy mechanism of the pointer network by
allowing the model to learn exactly when to copy.
Since target terms are in the source sentence, we
can determine which words should be copied from
the source sentence. For example, when translating
a source sentence in Table 4, the appended target
term, Covid-19, must be copied. Thus, the copying
score g

copy
t of the target term Covid-19 should be

higher, and g
copy
t should be lower for the remaining

words in the target sentence. Our training objective
can be defined as

L(θ) = − ∣Y ∣∑
t=1 log p(yt∣y<t, X̂; θ) − λJ(θ),

J(θ) = α ∑
t∉C1∶n,T

(1 − gt) × log (1 − gcopy
t )

+ β ∑
t∈C1∶n,T

gt × log g
copy
t ,

(6)

where a gold copying score gt is set to zero for
t ∈ {t∣yt ∉ C1∶n,T }; otherwise, gt is set to one
for t ∈ {t∣yt ∈ C1∶n,T }. To mitigate the length
imbalance between the target terms and remaining
words in the target sentence, we set α and β to the

11Please refer to Appendix G for more details.
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value obtained by dividing their respective lengths
from the total length.

4 Experiments on the HOLLY benchmark

In this section, we report the performance of our
methodology when tested on the HOLLY bench-
mark. In Section 4.1, we evaluate the performance
of our homograph disambiguation module in deter-
mining the semantic appropriateness of a lexical
constraint. In Section 4.2, we assess the perfor-
mance of LNMT models using positive examples
from the HOLLY benchmark under conventional
settings. Subsequently, we investigate the poten-
tial advantages that the homograph disambiguation
module might bring when applied to the negative
examples from the HOLLY benchmark.

4.1 Homograph Disambiguation
4.1.1 Data
Here, we present our dataset for training the homo-
graph disambiguation module. Our training data
was collected from the Korean dictionary12 and we
manually inspected the quality of each sentence. In
line with Fig. 1, each example consists of a triplet
of example sentences containing a common homo-
graph. Depending on the inter-sentential relation-
ships between each input sentence, the homograph
disambiguation module outputs a binary label: “1”
is assigned if the homograph carries the same mean-
ing in all sentences, and “0” if used differently in
one example sentence. The brief data statistics of
the training data are reported in Table 5. Note that
any homographs are not allowed to be overlapped
across train, validation, and test datasets.

# of words
(homograph)

# of examples
Class 1 Class 0 Total

Train 434 13,128 35,708 48,836
Validation 39 1,500 1,500 3,000

Table 5: Data statistics for the homograph disambigua-
tion task.

At test time, we evaluated our model on the
HOLLY benchmark. Specifically, for each lexical
constraint, two positive references (refer to Table 3)
and one of the four test example sentences ((a), (b),
(c), or (d) in Table 2) is given as a triplet.

4.1.2 Results
We conducted experiments with two well-known
variants of PLM trained on Korean corpora:

12To release data, we collected the examples that are con-
trolled by the appropriate license. CC BY-SA 2.0 KR.

klue/roberta-base, and klue/roberta-large. Our
homograph disambiguation module achieved a
test accuracy of 88.7%, and 92.3% when using
klue/roberta-base, and klue/roberta-large, respec-
tively. In spite of the imbalanced data distribution
shown in Table 5, the values of precision and recall
are balanced in both classes, as shown in Table 6.

Class Precision Recall F1
1 0.924 0.933 0.929
0 0.933 0.923 0.928

Table 6: Test accuracy of homograph disambiguation
module leveraging klue/roberta-large on the HOLLY
benchmark. The accuracy is reported in terms of preci-
sion, recall, and F1 on each class.

4.2 Lexically-constrained NMT

4.2.1 Training Data
We used 1.83M sentence pairs from two publicly
available Korean-English datasets as training cor-
pora: IWSLT 17 training data and AI Hub parallel
data.13 We pre-tokenized the Korean corpora with
Mecab and built a joint vocabulary for both lan-
guages by learning a Byte Pair Encoding (Sennrich
et al., 2016) model in sentencepiece (Kudo and
Richardson, 2018) with 32K merge operations.

To simulate the unseen lexical constraints, we
filtered out about 160K training sentence pairs with
test lexical constraints on both sides when experi-
menting with the HOLLY benchmark. This filtering
process is crucial for examining how the models
cope with any lexical constraints that users might
introduce.

4.2.2 Evaluation
Metrics We evaluated the performance of our
model in terms of BLEU14 and copy success rate
(CSR). CSR is a metric for investigating the ra-
tio of imposed lexical constraints met in transla-
tions. For a statistical significance test, we use
compare-mt (Neubig et al., 2019) with p = 0.05
and 1,000 bootstraps.

Test Scenarios There were two important test
cases, as shown in Table 7. Given a source sen-
tence, we can consider the Soft Matching test case,

13The AI HUB data can be found here: https:
//www.aihub.or.kr/aihubdata/data/view.
do?currMenu=115&topMenu=100&aihubDataSe=
realm&dataSetSn=126.

14We measure the BLEU scores using
sacreBLEU (Post, 2018) with the signature
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.
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Test Case Lexical Constraint Test Example Expected Target Term(s)

Soft Matching 소소소화화화 → digest Src. 사람의이는음식물을잘게부숴삼키기좋게하여 소소소화화화를돕는역할을한다.
Ref. The human teeth function to break down food items into comfortably swallowable
pieces, helping digestion.

digest | digestion | digestive

Hard Matching 소소소화화화 → digestion digestion

Table 7: Two test scenarios are described with one of test example in the HOLLY benchmark. The source term can
be pronounced as “so-hwa”.

which allows some morphological variations, as
introduced in Dinu et al. (2019). As illustrated in
Table 7, since the Korean word 소소소화화화 can be used
in multiple different forms via inflection, any one
of the expected candidates (digest, digestion, and
digestive) presented in the translation is considered
to be correct in terms of CSR.

We also have the Hard Matching15 test case
where the exact target term (e.g., digestion) pre-
sented in its reference has to be incorporated in
the translation. Note that, this cannot be tested on
negative examples since the target terms in lexical
constraints do not appear in their references.

Baselines

• Code-Switching (CS) (Song et al., 2019) re-
places source terms with aligned target terms
and learns to copy them via pointer network.

• LeCA (Chen et al., 2021b) modifies the source
sentence as described in Table 4, and utilizes
pointer network during training.

• Cdalign (Chen et al., 2021a) proposes con-
strained decoding based on alignment.16

4.2.3 Main Results
Simulating Unseen Lexical Constraints Table 8
shows the importance of simulating unseen lexical
constraints. When lexical constraints are exposed
during training, the vanilla Transformer already
achieves 66.67% of CSR by mere memorization.
We observe that eliminating around 160K over-
lapping training examples results in a significant
reduction of CSR (66.67% → 11.97%), indicating
that we manage to simulate the conditions where
lexical constraints are nothing short of unseen.

Results on Positive Examples The perfor-
mances of LNMT models on positive examples17

15This test case is suggested by previous work (Chen et al.,
2021b; Song et al., 2019; Chen et al., 2021a).

16We compare our model to the ATT-INPUT approach,
which suffers from high time complexity but guarantees a
high CSR.

17Recall that positive examples are bound together with
semantically appropriate lexical constraints. Refer to (a) and
(b) in Table 2 for details.

Method
Soft Matching Hard Matching

BLEU CSR (%) BLEU CSR (%)
Trained w/ filtered data 18.44 11.97 18.44 9.06

Trained w/ full data 21.65 66.67 21.65 58.90

Table 8: Performance of the vanilla Transformer on
positive examples. Without filtering, lexical constraints
can be memorized by the network during training.

are compared in Table 9. It is shown that PLUMCOT
outperforms all the baselines in both metrics by a
large margin. Since we simulate the unseen lexical
constraints, the external information from the PLM
contributes to the increase in BLEU. Combined
with the supervision on a copying score, PLUMCOT
achieves the highest CSR.18 The overall BLEU
scores of Hard Matching are shown to be greater
than Soft Matching as the expected target terms
drawn from reference translations are given to the
models.

Method
Soft Matching Hard Matching

BLEU CSR (%) BLEU CSR (%)
CS 18.52 93.20 20.21 92.56

LeCA 19.33 94.17 20.53 93.85
Cdalign 17.02 95.47 17.52 94.82

PLUMCOT (Ours) 20.91⋆ 98.06 22.07⋆ 98.71

Table 9: LNMT performances on positive examples. All
the models are trained with the filtered data as stated
in Section 4.2.1. “⋆” demonstrates that our method
achieves statistically significant performance over base-
lines on positive examples.

Benefits of Homograph Disambiguation Here,
we analyze beneficial effects of homograph dis-
ambiguation on LNMT. Since lexical constraints
in negative examples19 are semantically improper,
the homograph disambiguation module determines
whether they should be imposed or not. Corrections
are made with its decisions; the corresponding lex-
ical constraints are removed. The effects of the
correction are shown in Fig. 2.

We observed significant drops in CSR across
all of the models, which is desirable since the lex-

18Instead of using the HOLLY benchmark, we also tested
the performance of PLUMCOT in a test benchmark used in
previous studies (Chen et al., 2021a,b) to compare its effec-
tiveness, as shown in Appendix C.3.

19Refer to examples (c) and (d) in Table 2.
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20

9.4 7.5 7.5 7.1

Figure 2: Effect of homograph disambiguation tested on negative examples. “w/ correction” refers to the removal
of semantically inappropriate lexical constraints determined by the homograph disambiguation module. CSR was
evaluated on Soft Matching.

ical constraints are irrelevant to the context. By
removing inappropriate constraints, all the models
achieve a consistent and statistically significant im-
provement in translation quality by a large margin.

4.2.4 Ablation Study

We study the effect of each component of
PLUMCOT, and the results are provided in Table 10.
Compared to the PLUMCOT without supervision,
the supervision on a copying score significantly
improves CSR (93.85% vs. 98.06%). We find that
leveraging rich contextual representation of PLM
can further improve the translation quality (18.51→ 20.91). The BLEU score of a model that com-
bines only PLM without supervision on a copying
score is lower than that of the PLUMCOT model.
This may simply be due to a higher BLEU score
from better reflecting the target terms in the posi-
tive examples (an increase in CSR from 93.85% to
98.06%). Combining the two components yields
the best performance in both metrics. More abla-
tions can be found in Appendix C.

Method
Soft Matching Hard Matching

BLEU CSR (%) BLEU CSR (%)
PLUMCOT 20.91 98.06 22.07 98.71(−) PLM 18.51 98.06 19.58 98.38(−) Supervision 19.22 93.85 20.54 93.20

Table 10: Ablation studies performed on positive ex-
amples w/o correction. “PLM”: integration of PLM.
“Supervision": supervised learning of a copying score.

4.3 Qualitative Analysis

Table 11 provides translated examples. Given a lex-
ical constraint, PLUMCOT incorporates the target
term correctly. In a negative example, the mean-
ing of 세세세제제제 is properly translated into detergent

by PLUMCOT with correction.20 We provide more
examples in Table 15.

5 Related Work

5.1 Lexically-constrained NMT

Recent work on LNMT broadly falls into two cat-
egories: decoding algorithms and inline annota-
tion. During beam search, decoding algorithms en-
force target terms to appear in the output (Hokamp
and Liu, 2017; Anderson et al., 2017; Chatterjee
et al., 2017; Hasler et al., 2018). This approach
ensures a high CSR, but the decoding speed is sig-
nificantly degraded. To alleviate this issue, Post
and Vilar (2018) suggests a decoding algorithm
with a complexity of O(1) in the number of con-
straints. Another variation on decoding algorithms
utilizes word alignments between source and target
terms (Song et al., 2020; Chen et al., 2021a).

In inline annotation studies, the model is trained
to copy target terms via modification of training
data. Either a source term is replaced with the
corresponding target term, or the target term is ap-
pended to the source sentence (Song et al., 2019;
Dinu et al., 2019; Chen et al., 2021b). Con-
currently, Bergmanis and Pinnis (2021); Niehues
(2021); Xu and Carpuat (2021b) consider the mor-
phological inflection of lexical constraints during
the integration of target terms. While these meth-
ods incur a slight computational cost and provide
better translation quality, target terms are not guar-
anteed to appear (Chen et al., 2021a; Wang et al.,
2022a). To better copy target terms in a source
sentence, a pointer network (Vinyals et al., 2015;
Gulçehre et al., 2016) that uses attention weights
to copy elements from a source sentence is intro-

20Note that the correction is made by homograph disam-
biguation.
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Positive Example (Lexical Constraint: 세세세제제제 → tax system)

Source 거래세를줄이고보유세를강화하는게부동산 세세세제제제의대원칙이지만이를적용하기도어렵다.

Reference Reducing transaction taxes and raising possession taxes are the core principles of the real estate tax system, but it is challenging to get them applied.

Vanilla Reducing transaction taxes and strengthening holding taxes are the grand principles of real estate
:::::
taxes, but it is also difficult to apply them.%

LeCA Reducing transaction taxes and strengthening holding taxes are the main principles of real estate
:::
tax, but it is difficult to apply them.%

PLUMCOT The main principle of the real estate tax system is to reduce transaction taxes and strengthen holding taxes, but it is difficult to apply them."

Negative Example (Lexical Constraint: 세세세제제제 → tax system)

Source 이번행사기간동안 5만원이상구입하시는고객에게는주방 세세세제제제를경품으로드립니다.

Reference For those who spend more than 50 thousand won for purchasing items during this event, kitchen detergents will be given as a gift.

PLUMCOT w/o correction The kitchen tax system will be given as a prize to customers who purchase more than 50,000 won during this event.

PLUMCOT w/ correction Customers who purchase more than 50,000 won during this event will receive a gift of kitchen detergent .

Table 11: Example translations for positive and negative examples. The source term can be pronounced as “se-je”.

duced (Gū et al., 2019; Song et al., 2019; Chen
et al., 2021b). In this work, we further enhance the
copying mechanism of a pointer network via su-
pervised learning of a copying score that achieves
better performance in terms of BLEU and CSR.

5.2 Homograph Issue in LNMT

Michon et al. (2020) points out the homograph is-
sue in LNMT in an in-depth error analysis of their
model. To the best of our knowledge, the homo-
graph issue was explicitly addressed first in Öz and
Sukhareva (2021). In their work, given a source
homographic term, the most frequent alignment
is selected as its correct lexical constraint, while
the other alignments are treated as negative terms
that should be avoided in the translation. However,
low-frequency meanings are important for LNMT
since it is not guaranteed that users always bring
up generic terminology.

Different from their method, our homograph dis-
ambiguation module infers the meaning of lexical
constraints and makes decisions to impose them
or not. Furthermore, we confirm that our method
works equally well on “unseen” homographs.

5.3 Integration of PLM with NMT

Followed by the success of PLM, researchers at-
tempted to distill the knowledge of PLM into
NMT (Zhu et al., 2019; Weng et al., 2020; Xu
et al., 2021). BERT-fused (Zhu et al., 2019) is
one such method; it plugs the output of BERT into
the encoder and decoder via multi-head attention.
We borrowed the idea from BERT-fused, and for
the first time, combined LNMT and PLM, which
works well even in “unseen” lexical constraints by
leveraging the rich contextual information of PLM.

6 Conclusions

In this paper, we investigate two unexplored issues
in LNMT and propose a new benchmark named
HOLLY. To address the homograph issue of the
source terms, we built a homograph disambigua-
tion module to infer the exact meaning of the source
terms. We confirm that our homograph disambigua-
tion module alleviates mistranslation led by seman-
tically inappropriate lexical constraints. PLUMCOT
is also proposed to improve LNMT by using the
rich information of PLM and ameliorating its copy
mechanism via direct supervision of a copying
score. Experiments on our HOLLY benchmark
show that PLUMCOT significantly outperforms ex-
isting baselines in terms of BLEU and CSR.

7 Limitations

Our study includes some limitations that must be
addressed. Some test examples might have wrong
predictions made by the homograph disambigua-
tion module. Specifically, in positive examples
where lexical constraints should be imposed, its
errors result in wrong corrections (i.e., the elimi-
nation of necessary lexical constraints). Table 12
shows how these erroneous corrections affect the
results.

Method
w/o correction w/ correction

BLEU CSR (%) BLEU CSR (%)
CS 18.52 93.20 18.88 85.44

LeCA 19.33 94.17 19.24 88.03
Cdalign 17.02 95.47 17.03 89.97

PLUMCOT (Ours) 20.91 98.06 20.80 91.59

Table 12: Effect of homograph disambiguation tested
on positive examples on Soft Matching.

We can observe an overall decline in CSR; how-
ever, it does not hurt the translation quality. We
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verify that the differences in BLEU resulting from
wrong corrections are not statistically significant
for all the methods. Considering the gain achieved
in negative examples, as seen in Fig. 2, our pro-
posed homograph disambiguation might serve as
a useful starting point to address homographs in
LNMT; however, there is still room for improve-
ment. Our current homograph disambiguation mod-
ule is designed as a stand-alone system outside the
LNMT. However, building an end-to-end system
can be beneficial, which can be addressed in future
work.
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A HOLLY benchmark

We collected monolingual example sentences that
contain one of the pre-specified homographs from
the Korean dictionary. For each homograph, re-
trieved example sentences are classified into multi-
ple groups according to their meanings. We chose
one group with the least frequent meaning and used
its examples as positive references to determine a
lexical constraint for the homograph. Examples
from the other groups are considered as negative
references. Eventually, six reference sentences
were collected for each homograph; more specif-
ically, four positive references and two negative
references.

Setting aside two positive references for homo-
graph disambiguation, as stated in Table 3, we out-
sourced the translation of two positive and negative
examples, as introduced in Table 2. For positive
examples, professional translators were requested
to translate source terms of lexical constraints into
pre-defined target terms. We guide the translators
to carefully translate negative examples by focus-
ing on the exact meaning of lexical constraints.

B Implementation details

B.1 Configuration of PLUMCOT
We implemented PLUMCOT and all the models
based on fairseq (Ott et al., 2019). We matched

the embedding dimensions, the number of layers,
and the number of attention heads of all models for
a fair comparisons. PLUMCOT was trained from
scratch and klue/roberta-large (Park et al., 2021)
was used for our PLM.21

B.2 Computational Cost
All the experiments were conducted on a sin-
gle A100 GPU. It takes about 84 hours to train
PLUMCOT and 5 hours to train the homograph dis-
ambiguation module. The number of training / total
parameters for PLUMCOT is 156M and 493M. The
number of training / total parameters for the homo-
graph disambiguation module is 6M and 343M.

C Ablation Studies

C.1 Weights of the supervised learning of a
copying score

The results in Table 13 were reported according to
the different weights λ of the supervised learning
of the copying score in Eq. (6). Based on experi-
mental results, we were able to find a compromise
where λ is 0.2.

Method
Soft Matching Hard Matching

BLEU CSR (%) BLEU CSR (%)
PLUMCOT (λ = 1) 19.00 99.68 20.49 99.35

PLUMCOT (λ = 0.2) 20.91 98.06 22.07 98.71

Table 13: Results of BLEU and CSR according to dif-
ferent λ.

C.2 Number of example sentences
We experimented with a varying number of exam-
ple sentences. As we use more example sentences,
the information from the inter-sentential relation-
ships becomes richer, eventually improving homo-
graph disambiguation performance. Experiments
with n = 1,2, and 3 show an accuracy of 91.33%,
92.33%, and 92.67%, respectively. Although an
experiment with n = 3 provides the best accuracy,
collecting positive references can sometimes be
burdensome to users. Therefore, we conclude that
n should be decided by considering its trade-off.

C.3 Randomly Sampled Test Constraints
Different from our HOLLY benchmark, at test time,
lexical constraints were randomly sampled from
the alignments in each sentence pair in previous
studies (Dinu et al., 2019; Song et al., 2019; Chen
et al., 2021b,a; Wang et al., 2022b). Ten different

21Please refer to 16 for more details.
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test sets were built based on ten randomly sampled
sets of lexical constraints, as described in Chen et al.
(2021a,b). Test statistics are reported in Table 14.
It is shown that PLUMCOT achieves the highest
BLEU. The CSR is slightly lower than Cdalign,
indicating that the gain for “seen” constraints is
insignificant.22

Method
BLEU CSR (%)

Average STDEV Average STDEV
Vanilla 19.14 0.00 81.67 0.00

CS 20.95 0.13 94.66 0.00
LeCA 22.10 0.05 96.33 0.00

Cdalign 21.45 0.07 98.03 0.00
PLUMCOT (λ = 0.2) 22.50 0.07 97.84 0.00

Table 14: Results on randomly sampled test lexical
constraints. Statistics are drawn from five randomly
constructed test datasets.

D Equation Details

Let Q, K, and V be the query, key, and value
in (Vaswani et al., 2017), respectively. Then MHA
in Eq. (4) and Eq. (8) can be calculated as

MHA(Q,K,V ) = CatHh=1[head1,⋯,headn]Wo,

headi = Attn(QWQ
i ,KWK

i , V W V
i ),

Attn(q, k, v) = softmax( qkT√
dk
)v,

(7)
where the projection matrices are parameters WO ∈
RHdv× dmodel , WQ

i , WK
i , W V

i ∈ Rdmodel×dk for
MHA. In this paper, we employ dmodel = 768,
H = 12, dk = dv = dmodel/H = 64. Note that all
baselines and our model PLUMCOT use the same
number of heads and the same projection matri-
ces size. We use additional multi-head attention,
MHAB , which only differs in projection matri-
ces size where WQ

i , WK
i , W V

i ∈ RdPLM×dk for
MHAB .23

E Input data augmentation

As illustrated in Table 4, we modify a source sen-
tence X as X̂ by appending <sep> tokens fol-
lowed by target terms. Since lexical constraints
are domain-specific or user-provided terminology,
we exclude the top 1,500 frequent words from a
32K joint dictionary. In our training, we randomly

22Note that the models are trained with full data as we
cannot remove training examples that overlap with random
test lexical constraints in advance.

23Here, we utilize klue/roberta-large, a RoBERTa-based
PLM trained on Korean corpus. The size of dPLM is 1024.

sample at most 3 target terms from the target sen-
tence. For each sentence, from 0 to 3 target terms
are sampled following the distribution [0.3, 0.2,
0.25, 0.25].

F Integration of PLM in Decoder

Here, we follow the same notations in Section 3.2.2.
Let Sl denote the decoder output at lth layer. slt is
the t-th element of Sl, and Sl

1∶t denotes t number
of elements from sl1 to slt, masking elements from
t + 1 to the end. The output of each layer of the
decoder can be calculated as

ŝlt = LN(MHA(sl−1t , Sl−1
1∶t , Sl−1

1∶t )) + sl−1t ,

s̃lt = 1

2
(MHA(ŝlt, HL, HL)

+MHAB(ŝlt, B, B)) + ŝlt,
slt = LN(FFN(LN(s̃lt)) + s̃lt).

(8)

G Pointer Network

We use the same notations in Section 3.2
and Appendix D and F. Let ∣X̂ ∣ denotes the
length of the modified source sentence X̂ , and(αt,1, αt,2,⋯, αt,∣X̂ ∣) denotes the averaged atten-
tion weight of MHA(ŝLt , HL, HL) over the multi-
heads in Eq. (8). Then our copying score g

copy
t can

be calculated as

g
copy
t = σ(Wg[ct; sLt ] + bg),
ct = ∣X̂ ∣∑

i=1αt,i × hLi , (9)

where ct and sLt are concatenated, Wg and bg are
the weight matrix and bias vector, and σ(⋅) is the
sigmoid function.
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Positive Example (Lexical Constraint: 내내내성성성 (“nae-sung”) → resistance)

Source 항생제에 내내내성성성이있는새로운종류의병원균이등장해서국민의건강을위협하고있다.

Reference New types of pathogens with resistance to antibiotics have emerged, threatening public health.

Vanilla A new type of pathogens that are
:::::::
tolerant of antibiotics have emerged, threatening the health of the people.%

LeCA A new type of pathogen that is
:::::::
tolerant of antibiotics has emerged, threatening the health of the people.%

PLUMCOT A new type of pathogen that has resistance to antibiotics has emerged, threatening the health of the people."

Negative Example (Lexical Constraint: 내내내성성성 (“nae-sung”) → resistance)

Source 그가말수가적은것은 내내내성성성적인성격에서연유한다.

Reference His being quiet is because of his introverted personality.

PLUMCOT w/o correction His low words are based on his resistance to introverts.

PLUMCOT w/ correction His low-level words are related to his introverted personality.

Positive Example (Lexical Constraint: 사사사유유유 (“sa-yoo”) → reason)

Source 회사측은계약당사자간계약의절차성을 사사사유유유로계약무효를결정했다고설명했다.

Reference The company explained that the contract cancellation was decided because of the reason relevant to contract procedures between the contract parties.

Vanilla The company explained that it decided to nullify the contract because of the procedurality of the contract between the parties.%

LeCA The company explained that it decided to nullify the contract because of the procedurality of the contract between the parties.%

PLUMCOT The company explained that it decided to nullify the contract on the reason of the procedure of the contract between the parties."

Negative Example (Lexical Constraint: 사사사유유유 (“sa-yoo”) → reason)

Source 자본주의국가에서 사사사유유유 재산은소유자의의사에따라처분할수있다.

Reference In capitalist countries, private assets can be disposed of according to the will of their owners.

PLUMCOT w/o correction In capitalist countries, private property can be disposed of according to the reason of the owner.

PLUMCOT w/ correction In capitalist countries, private property can be disposed of according to the owner’s will.

Table 15: More translations for positive and negative examples.
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Table 16: Hyperparameters and model configuration of PLUMCOT.

NMT Transformer
encoder layers 6
encoder embed dim 768
encoder feed-forward dim 3072
encoder attention heads 12
decoder layers 6
decoder embed dim 768
decoder feed-forward dim 3072
decoder attention heads 12
positional encodings Sinusoidal
max source positions 1024
max target positions 1024
segment embeddings True
dropout 0.3

PLM klue/roberta-large
encoder layers 24
encoder embed dim 1024
encoder feed-forward dim 4096
encoder attention heads 16
positional encodings learned positional encodings
max source positions 514
max target positions 514
segment embeddings True

Hyperparameter Value
optimizer Adamw

β1, β2 (0.9, 0.98)
weight decay 0.0

max updates 130k
learning rate 0.0005
learning rate warmup 4000 steps
warmup init learning rate 1e-7
lr scheduler inverse sqrt
max tokens 4000
update frequency 8
clip grad norm 1.0

4853



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 7

�3 A2. Did you discuss any potential risks of your work?
Section 7

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
We summarized the paper’s main claims both in the abstract and introduction.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
We created a test benchmark. Refer to Section 2 for more details.

� B1. Did you cite the creators of artifacts you used?
Not applicable. Left blank.

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Section 2

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Section 2

�3 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Section 2, Appendix

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 2

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 2, Section 4

C �3 Did you run computational experiments?
Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

4854

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4, Appendix

�7 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
We reported the results of just a single run.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4, Appendix

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Section 2

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Appendix A

�7 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
As we outsourced the translation process to a professional company, only qualified professional
translators were participated. We guarantee that our institution paid sufficient amount of cost by
signing a contract.

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Appendix A

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

�7 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
We manually review the data. Our data has nothing to do with demographic or geographic issues.

4855


