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Abstract

In this paper, we aim to adapt the idea of
retrieval-based neural approaches to the As-
pect Sentiment Triplet Extraction (ASTE) task.
Different from previous studies retrieving se-
mantic similar neighbors, the ASTE task has
its specialized challenges when adapting, i.e.,
the purpose includes predicting the sentiment
polarity and it is usually aspect-dependent. Se-
mantic similar neighbors with different polar-
ities will be infeasible even counterproduc-
tive. To tackle this issue, we propose a
retrieval-based neural ASTE approach, named
RLI (Retrieval-based Aspect Sentiment Triplet
Extraction via Label Interpolation), which
exploits the label information of neighbors.
Given an aspect-opinion term pair, we retrieve
semantic similar triplets from the training cor-
pus and interpolate their label information into
the augmented representation of the target pair.
The retriever is jointly trained with the whole
ASTE framework, and neighbors with both
similar semantics and sentiments can be re-
called with the aid of this distant supervision.
In addition, we design a simple yet effective
pre-train method for the retriever that implic-
itly encodes the label similarities. Extensive
experiments and analysis on two widely-used
benchmarks show that the proposed model es-
tablishes a new state-of-the-art on ASTE.

1 Introduction

As an emerging sub-task of Aspect-based Senti-
ment Analysis (ABSA), Aspect Sentiment Triplets
Extraction (ASTE) extracts all sentimental triplets
of a given sentence. Every triplet contains three
elements, namely aspect terms, opinion terms, and

*Work done while this author was an intern at Tencent.
†Corresponding authors.
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Figure 1: An example sentence (in gray block). RLI
retrieves triplets considering both label similarity and
semantic similarity (in green block). Existing Retrieval-
based Methods fetch similar sentences only according
to semantic similarities (in blue block).

their corresponding sentiment polarities. For exam-
ple, in the sentence “Great food but the service is
horrible.”, ASTE attempts to identify (food, great,
positive) and (service, horrible, negative).

Since the sentiment polarity of a triplet is aspect-
dependent and determined by the corresponding
opinion terms, establishing reciprocity among el-
ements within the triplets could yield easier sen-
timent predictions. Following this idea, existing
work devised advanced methods to explore the cor-
relation between the aspect and the opinion terms.
To name some, Xu et al. (2020b); Wu et al. (2020)
proposed new tagging schemes to build connec-
tions among three elements within a sentence. Li
et al. (2019); Zhang et al. (2020); Xu et al. (2021);
Zhao et al. (2022) designed various end-to-end
frameworks to explore relations among elements
by sub-task interaction mechanisms. Chen et al.
(2021a); Liu et al. (2022) matched the elements by
machine reading comprehension.

Despite their effectiveness, existing methods may
fail to clarify the intricate relationships among el-
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ements in some challenging cases, e.g., sentences
with uncommon aspect/opinion terms, or the aspect
and opinion terms are distant from each other. For
example, as shown in the first sentence in Fig. 1,
“scallop roll” may be difficult to be extracted because
“scallop” is an uncommon aspect word that rarely
appeared in the training set. And it is intractable to
connect “scallop roll” with “spicy” due to the long
distance between them. These make it challenging
to extract the triplet (scallop roll, spicy, positive).

To tackle the above issues, we attempt to ap-
ply retrieval-based models to ASTE, which have
shown strength in several NLP tasks (Cai et al.,
2022; Shang et al., 2021; Xu et al., 2020a) such
as language model, machine translation, etc. Their
basic idea is to retrieve semantic similar neigh-
bors from training corpus or external data to im-
prove the model’s robustness towards infrequent
data points (Meng et al., 2021; Li et al., 2022).

However, the ASTE task has its specialized chal-
lenges when adapting, i.e., its purpose includes
predicting the sentiment polarities and it is usually
aspect-dependent. For example, the two triplets
(battery, long, positive) and (boot-time, long, neg-
ative) have the same opinion word but opposite
aspect-level sentiment. Hence, it may derive a
drawback of the conventional retrieval-based model:
the semantic similar neighbors with different senti-
ments may be infeasible even counterproductive.

To remedy the challenges, we propose a
retrieval-based neural ASTE approach, named
RLI (Retrieval-based Aspect Sentiment Triplet Ex-
traction via Label Interpolation), which can exploit
the label information of neighbors. We first col-
lect all triplets from the training set to construct
a knowledge store and detect all candidate aspect-
opinion pairs. For each pair, we retrieve semantic
similar triplets from the constructed store. Then
we interpolate their label information into the aug-
mented representation of the candidate pair to pre-
dict the final sentiment. Unlike existing retrieval-
based methods which retrieve neighbors only ac-
cording to semantic similarities, we jointly train
the retriever and the triplets extraction model such
that the neighbors with both similar semantics and
sentiment could be fetched. In addition, we pro-
pose a simple yet effective method to pre-train the
proposed retriever, which could encode label in-
formation implicitly by using pseudo-labeled data
before the joint training.

Exhibiting our idea by an example in Fig. 1,

RLI could retrieve a relevant triplet (tuna roll,
spicy, positive) for the candidate pair (scallop roll,
spicy) (cf. the green block). By high relevance
between “tuna roll” and “scallop roll”, we can in-
fer that (scallop roll, spicy) could be a valid pair
and deduce its positive polarity. While, as shown
in the blue block, the conventional retrieval-based
methods may likely fetch a triplet (cocktail, spicy,
negative), which has an opposite sentiment and
may give false guidance.

Extensive experimental results and analysis on
two standard datasets for ASTE show that the pro-
posed model establishes a new state-of-the-art on
the ASTE task and performs well on challenging
examples.

2 Related Work

2.1 Aspect Sentiment Triplet Extraction

Recall that the key of resolving ASTE is to estab-
lish reciprocity among three elements within the
triplets. Early studies (Peng et al., 2020; Huang
et al., 2021) designed pipeline models to extract
these elements successively and group them into
triplets, which suffered from error propagation and
aggregation. To avoid such obstacles, Xu et al.
(2020b); Wu et al. (2020); Chen et al. (2020) pro-
posed novel tagging schemes to connect the ele-
ments and train the models in an end-to-end fashion.
Zhang et al. (2020); Zhao et al. (2022); Huan et al.
(2022) devised multi-task frameworks to exploit
the interactions among various sub-tasks. Chen
et al. (2021b, 2022) constructed the given text to
different graphs and fully utilized the relations be-
tween words.

Besides, some studies gradually put forward new
paradigms for ASTE. Yu et al. (2021) regarded
the aspect and opinion terms as arguments of the
expressed sentiment in a reinforcement learning
framework. Chen et al. (2021a); Liu et al. (2022)
converted ASTE to a machine reading comprehen-
sion problem. Xu et al. (2021) considered ASTE
as a span prediction problem.

Recently, a series of generative methods (Zhang
et al., 2021a; Yan et al., 2021; Zhang et al., 2021b;
Gao et al., 2022) come to the fore, which regarded
ASTE as a text generation problem achieved su-
perior performance. Nevertheless, all the above
methods may become fragile in sentences with mul-
tiplex triplets, where aspect terms or opinion terms
are uncommon, correlations are complicated or sen-
timents are unclear.
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2.2 Retrieval Augmented Methods

Prior studies have proved that retrieval-based meth-
ods could improve performance across a variety of
NLP tasks. They retrieved similar neighbors from
external knowledge to facilitate the model’s ro-
bustness towards infrequent data points, which has
been applied in question answering (Li et al., 2020;
Karpukhin et al., 2020), neural machine transla-
tion (Tu et al., 2018; Xu et al., 2020a; Shang et al.,
2021; Cai et al., 2022), language modeling (Guu
et al., 2017; Khandelwal et al., 2019), dialog gen-
eration (Fan et al., 2020; Thulke et al., 2021), and
etc. Due to the considerable computational cost
of retrieving from large-scale corpora, Wang et al.
(2022) proposed to fetch data most similar to the
input only from the training data. They simply
concatenated them with input to achieve signif-
icantly better performance on many natural lan-
guage processing tasks. Apart from their effective-
ness, these methods only consider semantic infor-
mation but ignore the label similarity, which may
retrieve triplets with similar semantic yet opposite
sentiments. Hence they might render ineffective
for solving ASTE.

3 Methodology Overview

3.1 Task Definition

Suppose X = {x1, x2, · · · , xn} is a sentence with
n words, and each span is represented by S =
(S1, S2) where S1 and S2 denote the start and end
positions of the span. Typically, ASTE is treated as
a span extraction task: given a sentence X, ASTE
aims to extract a triplet set T = {〈A,O, y〉}, where
A = (A1, A2) and O = (O1, O2) respectively de-
note the spans of an aspect term and an opinion
term, and y ∈ {positive, neutral, negative} is the
sentiment polarity of the triplet. It is worth noting
that each triplet 〈A,O, y〉 is dependent on a sen-
tence X, but we only mention 〈A,O, y〉 and skip
its corresponding sentence X for brevity.

3.2 Model Overview

The proposed approach consists of four distinct
modules namely: triplets store construction, candi-
date aspects and opinions detection, triplet-based
retrieval, and triplets extraction, which are shown
in Figure 2. The first module constructs a triplets
store for triplets-level retrieval (§4.1). The sec-
ond one extracts the candidate aspect-opinion span
pairs based on a span-level sequence labeling

method (§4.2). The third phase retrieves neigh-
bors for each candidate aspect-opinion pair from
the constructed store(§4.3). Moreover, we interpo-
late the representations and label information of
the retrieved triplets with candidate pairs and fur-
ther predict their final sentiment polarities(§4.4).
Finally, we present how to pre-train the retriever
to implicitly encode label information and jointly
train the retrieval model and ASTE model(§5).

4 RLI Model

4.1 Triplet Store Construction
ASTE pays more attention to the aspect terms and
opinion terms than other words in the given sen-
tence X. To this end, we construct a knowledge
storeM containing all the triplets in the training
set, instead of accommodating all the sentences.

To represent each triplet 〈A,O, y〉 in M, we
employ BERT to define its key and value as follows.
We first use BERT to get the representations H =
{h1, h2, · · · , hn} for each word in the sentence X.
Then we define the representations of aspect A and
opinion terms O by EA and EO:

EA = hA1 ⊕ hA2 ⊕ fspan(A2 −A1 + 1),

EO = hO1 ⊕ hO2 ⊕ fspan(O2 −O1 + 1),
(1)

where ⊕ is the concatenation of two vectors, fspan
works as a trainable feature extractor related to the
span width following Xu et al. (2021). Afterward,
we concatenate the above spans and a trainable
sentiment embedding together to represent each
triplet 〈A,O, y〉 as a key-value 〈K,V 〉 pairs:

K = EA ⊕ EO,

V = fsentiment(y),
(2)

where fsentiment is a learnable conversion function of
a sentiment polarity y. Note that K and V encode
representation information and label information
of 〈A,O, y〉, respectively.

Finally, the triplet storeM = {〈Ai, Oi, yi〉|i ∈
[1, |M|]} can be actually represented by a set of
key-value pairsM = {〈Ki, V i〉|i ∈ [1, |M|]}.

4.2 Candidate Aspects & Opinions Detection
Similar to Xu et al. (2021), during the inference
stage, given a sentence X, we firstly extract all pos-
sible candidate spans which may be either aspect
or opinion span, and then we employ a classifier to
predict whether a candidate span S is an aspect, an
opinion, or an invalid span. Specifically, we first
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Figure 2: Model Overview. We first pre-train the retriever by using external unlabeled data and initialize the
relevance scores. Then we jointly train all the modules on the standard ASTE datasets.

use BERT to obtain the representation ES for each
candidate span S as EA and EO in Eq. (1). Then a
detection model Pdet is used to detect the type of the
candidate span S: aspect, opinion, or invalid span.

ES = hS1 ⊕ hS2 ⊕ fspan(S2 − S1 + 1),

Pdet(c|S,X) = softmax(g(ES))[c],

c ∈ {aspect, opinion, invalid},
(3)

where g is a feed-forward neural network, and [c]
denotes taking the probability for the dimension
corresponding to the type c. Theoretically, there
are n(n+1)

2 spans in the sentence X, but it is too
slow to make predictions for all possible spans. In
practice, we limit the maximum length of spans
thus discarding some excessively long spans.

According to Eq. (3), we select the top K candi-
date aspect spans and opinion spans. Subsequently,
we pair candidate aspect spans and opinion spans
to create K2 candidate aspect-opinion pairs. Sup-
pose 〈A,O〉 denotes each candidate aspect-opinion
pair, and it can be represented by K = EA ⊕ EO

as defined in Eq. (2).

4.3 Triplet-based Retrieval
For each candidate aspect-opinion pair 〈A,O〉, we
retrieve the L most relevant triplets from the con-
structed store by a relevance function between
the pair 〈A,O〉 and each triplet 〈Ai, Oi, yi〉 from
triplet storeM. Formally, the relevance function d
between 〈A,O〉 and 〈Ai, Oi〉 is defined as:

d(A,O;Ai, Oi) = K>WKi, (4)

where W is trainable parameters, K is the repre-
sentation of the candidate pair 〈A,O〉 andKi is the

representation of each aspect-opinion pair 〈Ai, Oi〉
inM.

According to the relevance function d, we se-
lect the top-L triplets denoted by M(A,O) =
{〈Al, Ol, yl〉|l ∈ [1, L]} with the highest relevance
scores inM, which will be further used as memory
to extract the triplet in the next subsection.

4.4 Triplets Extraction
So far, we have acquired the representations of
K2 candidate aspect-opinion pairs and their sim-
ilar triplets by retrieval. For each aspect-opinion
pair 〈A,O〉, recallM(A,O) = {〈Al, Ol, yl〉|l ∈
[1, L]} denotes the retrieved triplets. We interpo-
late both the representation and label information
of the retrieved triplets to predict the polarity of
〈A,O〉. Specifically, we aggregate the dense repre-
sentations of each candidate pair and its retrieved
triplets by using an attention model defined by d.

h(A,O) = (K +

L∑

l=1

αlK
l)⊕

L∑

l=1

αlV
l,

αl =
exp

(
d(A,O;Al, Ol)

)
∑L

j=1 exp
(
d(A,O;Aj , Oj)

) ,
(5)

where K and K l are the representations of 〈A,O〉
and 〈Al, Ol〉 as defined in Eq. (2), respectively. V l

is the sentiment label embedding of the retrieval
triplets 〈Al, Ol, yl〉.

Next, we predict the final sentiment polarity of
K2 pairs by a neural model. For each candidate
aspect-opinion 〈A,O〉 pair,

Pext(y|A,O,X) = softmax(F (h(A,O)))[y],

y ∈ {positive, negative, neutral, none},
(6)
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where F is a feed-forward neural network, and
“none” denotes the aspect-opinion pair is not a
meaningful pair with definite sentiment polarity. In
this way, we can not only achieve aspect-opinion
pair extraction by judging whether the label is
“none”, but also extract triplets by identifying valid
pairs with definite sentiments.

5 Training

5.1 Pre-training for Retrieval
To make the retriever memorize the sentiment simi-
larity information in advance, we propose a simple
yet effective method to pre-train the retriever by
using external unlabeled data, which prompts the
retrieved triplets to have similar sentiments.

Specifically, over the external unlabeled data, we
first use the candidate aspect & opinion detection
module to extract aspect-opinion pairs. Then a
feed-forward neural network is used to predict if
they are valid and further determine their sentiment
polarities. In this way, we obtain a set of triplets
{〈A,O, y〉} from the external data, where y is the
pseudo polarity predicted by the neural network.
We call them pseudo-labeled data. Furthermore,
for each triplet 〈A,O, y〉, we randomly select two
triplets 〈A′, O′, y〉 and 〈A′′, O′′, y′〉 which suffice
to the following constraints: the former is with the
same polarity and the other is with a different senti-
ment polarity, i.e., y′ 6= y. Inspired by contrastive
learning, we optimize a ranking loss Lpre to maxi-
mize the relevance score between triplets with the
same sentiments meanwhile minimize that between
triplets with opposite sentiments.

Lpre = d(A,O;A′, O′)2−
(
1− d(A,O;A′′, O′′)

)2
,

d(·) is the relevance function defined in Eq. (4)
which measures the similarity between two triplets.
After pre-training and initializing the relevance
scores, we jointly train all the proposed modules.
Due to the pre-training, the retriever encodes sen-
timent similarities and RLI can retrieve helpful
triplets to assist the sentiment prediction of the can-
didate aspect-opinion pair from a warm start.

5.2 Joint Training
For a sentence X, suppose S(X) denotes a span
pool including K candidate spans for X. The
standard practice to train ASTE models relies
on manually annotated data. That is, for each

span S ∈ S(X), there is a golden label c ∈
{aspect, opinion, invalid}; and for each aspect-
opinion pair 〈A,O〉 ∈ S × S, there is a golden
label y ∈ {positive, negative, neutral, none}. We
employ the standard cross entropy to train the can-
didate aspect terms and opinion terms detection
model Pdet, triplets extraction model Pext as well as
the retrieval similarity in a joint manner as follows:

Ldet =−
∑

X

∑

S∈S(X)

logPdet(c|S,X),

Lext =−
∑

X

∑

A,O∈S(X)

logPext(y|A,O,X),
(7)

where X is over a training set with manually anno-
tated golden triplets. The overall loss is calculated
as a weighted sum of the above two loss functions.

L = Ldet + α · Lext, (8)

where α > 0 is a hyperparameter to trade off both
loss terms. In each iteration, we first perform the
triplets retrieval based on the last-time iteration.
Next, we extract the triplets with the help of re-
trieved triplets and update the parameters in the
current iteration. Note that the relevance scores are
used to define the representation h(A,O) through
the attention in Eq. (5), on which the classifier Pext
is based. Therefore, minimizing L actually opti-
mizes the three models, i.e., the detection model in
Eq. (3), the triplets extraction model in Eq. (6) and
the retrieval similarity in Eq. (4).

It is notable that we don’t use the external
pseudo-labeled data to train the joint model but
only pre-train the retriever in §5.1: the triplet store
for retrieval consists of all those triplets created
from the original training data for ASTE and the
loss function in Eq. (8) is minimized over the origi-
nal training data as well.

6 Experiment

6.1 Settings
Datasets.1 To evaluate our method as compre-
hensively as possible, we conduct experiments on
Da (Peng et al., 2020) and Db (Xu et al., 2020b).
Both of them contain 3 datasets in the restaurants
domain and 1 dataset in the electronics domain. For
pre-training, we use two external datasets from He
et al. (2018), one is from the Yelp domain, and the
other is from the Amazon electronics domain.

1See Appendix A for more details of datasets.
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Model
Res14 Lap14 Res15 Res16

Pair Triplet Pair Triplet Pair Triplet Pair Triplet

WhatHowWhy♦ 56.10 51.89 53.85 43.50 56.23 46.79 60.04 53.62
CMLA+♦ 48.95 43.12 44.10 32.90 44.60 35.90 50.00 41.60
RINANTE+♦ 46.29 34.03 29.70 20.00 35.40 28.00 30.70 23.30
Unified+♦ 55.34 51.68 52.56 42.47 56.85 46.69 53.75 44.51
Dual-MRC♦ 74.93 70.32 63.37 55.58 64.97 57.21 75.71 67.40
Generative∇ 77.68 72.46 66.11 57.59 67.98 60.11 77.38 69.98
GAS] – 70.20 – 54.50 – 59.10 – 65.00
LEGO] – 72.60 – 59.50 – 63.20 – 71.50
JETt

M=6
∇ – 60.41 – 46.65 – 53.68 – 63.41

JET o
M=6

∇ – 63.92 – 50.00 – 54.67 – 62.98
SPAN* 78.62 73.96 69.48 60.59 71.56 64.50 78.85 70.48

RLI(Ours) 79.92 74.98 70.27 61.97 72.66 65.71 81.29 73.33

Table 1: F1 score for Pair and Triplet extraction on Da. Results with ♦, ], and ∇ are taken from Mao et al. (2021),
Gao et al. (2022) and their original papers. Results with * are reproduced by ourselves with the same experiment
settings. All the models are based on BERT-base or BART-base (for generative methods). The best values are in
bold numbers. Dashed lines separate baselines according to types.

Baselines. We compared our method 2 with vari-
ous baselines, which are evaluated on Da and Db.

• Pipeline models: WhatHowWhy (Peng et al.,
2020), CMLA+ (Wang et al., 2017), RI-
NANTE+ (Dai and Song, 2019), Unified+ (Li
et al., 2019), and TOP (Huang et al., 2021).

• MRC based methods: Dual-MRC (Mao et al.,
2021), BMRC (Chen et al., 2021a).

• Reinforce learning based methods: RL (Yu et al.,
2021).

• Generative models: Generative (Yan et al., 2021),
GAS (Zhang et al., 2021b), LEGO (Gao et al., 2022).

• End-to-end models: JET (Xu et al., 2020b),
OTE-MTL (Zhang et al., 2020), GTS (Wu et al.,
2020), SPAN (Xu et al., 2021), and EMC-
GCN (Chen et al., 2022).

Evaluation Metrics. We implement five metrics
to evaluate our proposed model: F1 score for pair
extraction, Precision, Recall, F1 score for triplet ex-
traction, and Retrieval Accuracy. Particularly, Re-
trieval Accuracy is the proportion of correct triplets
retrieved, of which sentiment polarities are consis-
tent with the gold label of the candidate aspect-
opinion pair. We select the best model based on the
F1 score for triplet extraction on the development
set. The reported scores are the average of 5 runs
with distinct random seeds.

2See appendix B for experimental details and parameters.
We will release our code after the double-blind review.

6.2 Main Results

We compare our method with various baselines on
Da and Db comprehensively. The results are re-
ported in Table 1 and Table 2, respectively. Firstly,
in Table 1, our model outperforms all the compared
models on the F1 score for pair extraction. We
speculate that our model could judge if a candidate
aspect-opinion pair is valid or not by observing the
relevance scores between a pair and its retrieved
triplets. Secondly, as the two tables show, our
model considerably improves precision, recall, and
F1 score for triplet extraction compared to pipeline
and end-to-end models over most datasets. This
indicates that relevant triplets conduce to exploit
the interactions between aspect terms and opinion
terms. Thirdly, we observe that our model even
achieves more competitive results than emerging
generative methods, of which backbones may be
stronger (T5 (Raffel et al., 2020) or BART (Lewis
et al., 2019)). Such results suggest the superiority
of retrieval-based methods.

6.3 Ablation Test

In Table 3, we perform an ablation study and report
the results on the development and test set of Db to
investigate the effects of key modules.

On the one hand, we compute the relevance
scores according to semantic similarity. Then we
execute the model to retrieve triplets based on the
fixed semantic similarity to get the results “w/o
joint”. It follows that the F1 scores for triplets ex-
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Model
Res14 Lap14 Res15 Res16

P R F1 P R F1 P R F1 P R F1

WhatHowWhy♦ 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21
TOP] 63.59 73.44 68.16 57.84 59.33 58.58 54.53 63.30 58.59 63.57 71.98 67.52
BMRC] 72.17 65.43 68.64 65.91 52.15 58.18 62.48 55.55 58.79 69.87 65.68 67.35
RL] 70.60 68.65 69.61 64.80 54.99 59.50 65.45 60.29 62.72 67.21 69.69 68.41
GAS[ – – 72.16 – – 60.78 – – 62.10 – – 70.10
OTE-MTL] 63.07 58.25 60.56 54.26 41.07 46.75 60.88 42.68 50.18 65.65 54.28 59.42
GTS♦ 67.76 67.29 67.50 57.82 51.32 54.36 62.59 57.94 60.15 66.08 69.91 67.93
JETt

M=6
♦ 63.44 54.12 59.41 53.53 43.28 47.86 68.20 42.89 52.66 65.28 51.95 63.83

JETo
M=6

♦ 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83
SPAN ♦ 72.89 70.89 71.85 63.44 55.84 59.38 62.18 64.45 63.27 69.45 71.17 70.26
EMC-GCN ∇ 71.21 72.39 71.78 61.70 56.26 58.81 61.54 62.47 61.93 65.62 71.30 68.33

RLI (Ours) 77.46 71.97 74.34 63.32 57.43 60.96 60.08 70.66 65.41 70.50 74.28 72.34

Table 2: Results on Db. P, R, F1 represent precision, recall, F1 scores for triplets extraction. Results with ♦, ], [,
∇ are from Xu et al. (2020b), Yu et al. (2021), Zhang et al. (2021b), and their original paper, respectively. All the
results are based on BERT-base except that WhatHowWhy and OTE-MTL are based on Glove. GAS is based on
T5 (Raffel et al., 2020). The best results are in bold numbers. Dashed lines separate baselines according to types.

Dataset Model Dev F1 Test F1

Res14

w/o joint 66.85 72.07

joint
w/o sentiment 67.55 73.70
w/o pre-training 67.12 72.58
full model 68.00 74.34

Lap14

w/o joint 60.03 60.33

joint
w/o sentiment 61.90 60.54
w/o pre-training 61.06 60.02
full model 62.55 60.96

Res15

w/o joint 70.83 63.99

joint
w/o sentiment 71.54 65.04
w/o pre-training 71.24 64.48
full model 72.21 65.41

Res16

w/o joint 70.47 70.30

joint
w/o sentiment 71.44 71.39
w/o pre-training 70.75 71.69
full model 73.04 72.34

Table 3: Ablation test. The displayed scores are F1
score for triplets extraction on Db.

traction over most datasets decrease by 1%− 2%,
which proves that retrieving triplets only based on
the semantic similarities is infeasible even counter-
productive. However, joint training of the retriever
and ASTE modules could dynamically optimize
the retrieved triplets for better ASTE.

On the other hand, we evaluate two ablated mod-
els under joint training. First, we amputate the
label information

∑L
l=1 αlV

l in Eq. (5) to obtain
model “w/o sentiment”. Its degraded performance
confirms the importance of sentiment label informa-
tion. Second, we remove the retriever pre-training
and jointly train the full model to obtain results

Models Base Base+Aug Ours

Avg. F1 66.19 66.99(+0.80) 68.26(+2.07)

Table 4: Average F1 score for triplets extraction onDb.

“w/o pre-training”. By comparison, we find that the
pre-training increased the F1 scores, which verifies
that pre-training encodes label similarity and im-
proves the quality of retrieval. It makes the label
information of retrieved triplets more similar to the
gold sentiment polarities and thus achieves better
sentiment prediction performance.

6.4 Auxiliary Experiment

In order to prove the improvement of our model de-
rives from the triplets retrieval instead of external
augmented data, we conduct an auxiliary experi-
ment and display the average F1 scores for triplet
extraction in Table 4. Specifically, we remove the
retrieval module from our full model to obtain a
Base model. Then we pre-train the Base model on
the pseudo-labeled data and fine-tune it on the orig-
inal Db and the results are denoted as Base+Aug.
As Table 4 shown, even if Base+Aug gets 0.8 gain,
our model achieves a higher 2.07 improvement
compared to Base. Since we didn’t use external
data for ASTE’s joint training in our method, the
results reveal that the capabilities of our model are
not from the external data but mainly come from
the assistance of triplets retrieval.
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(a) (b)

Figure 3: Results on Res14 of Db.

(a) (b)

Figure 4: Effects of retrieval on Db.

7 Analysis

7.1 Inference Results Analysis
To prove the advantage of our method in dealing
with challenging cases, we execute an in-depth
study to analyze the results of triplets extraction
from two perspectives: dis, the distance between
aspect and opinion terms, and fre, the frequency
of aspect/opinion terms appearing in the training
set,

dis =
|ia − io|

n
,

fre = min(frea, freo),
(9)

where ia and io represent the start indexes of the
aspect and opinion term, n is the length of the
sentence, frea and freo are times of the aspect
and opinion term appear in the training set.

Firstly, according to dis, we divided all the gold
triplets into three groups and compared the propor-
tion of triplets with different dis correctly extracted
by Base (declared in §6.4) and our model. As
Fig. 3(a) shows, our model extracted more triplets
with dis > 0.6 successfully. This means that the
Base model may fail to connect the aspect term
with a correct faraway opinion term. Neverthe-
less, our model could reduce the influence of long-
distance by referring to relevant triplets.

Secondly, in Fig. 3(b) we categorized all the
triplets into three groups by the frequency fre and
find that our model could extract more triplets con-
taining aspect/opinion terms that never appear in

the training set (fre = 0). We conjecture that our
model could find them by imitating similar triplets.
As a result, we conclude that our model can solve
such tricky cases better.

7.2 Sensitivity Analysis

We perform a sensitivity analysis to determine the
effects of retrieval accuracy and the number of re-
trieved triplets. According to the triplets’ retrieval
accuracy, we put all the triplets into different buck-
ets and compare the proportion of triplets correctly
extracted by Base and our model over them. In
Fig. 4(a), when the accuracy is in [0.8, 1], the im-
provements of our model are more significant. Un-
fortunately, when the accuracy falls into [0, 0.2],
our model is even slightly weak. This ensures that
our model improves ASTE by retrieving triplets
with the same sentiment polarities as the gold senti-
ments. The more triplets with the same sentiments
retrieved, the greater their auxiliary function.

Besides, we investigate the effects of the number
L of the retrieved triplets in Fig. 4(b). It is noted
that the F1 score for triplets extraction increases
withL. But ifL is too large, the computational com-
plexity will increase rapidly while the performance
improvement is weak. So we set L to 5 to obtain a
trade-off between complexity and performance.

7.3 Case Study

To better understand the effectiveness of retrieved
triplets, we empirically perform a case study on
Db in Fig. 5. BEFORE denotes extracted results of
Base model (declared in §6.4), AFTER denotes the
results of our full model, and RETRIEVED is our
model’s top-1 retrieved triplets and the sentences
they come from. These cases demonstrate that
the retrieved triplets could extract aspect-opinion
pair with long-distance and overcome the problems
of uncommon aspect/opinion terms with low fre-
quency in the training set.

8 Conclusion

In this paper, we proposed a retrieval-based ASTE
approach name RLI, which could exploit the senti-
ment information of neighbors to solve challenging
cases in ASTE. A retriever fetching both seman-
tic and sentiment-similar triplets is devised, and
we jointly train the retriever with the ASTE frame-
work to remedy the specialized challenges when
adapting the retrieve-based methods in aspect-level
sentiment analysis tasks. In addition, we proposed

4921



 (null)

(cake, not ultra sweet, pos)

(null)  (patties, real, pos)  

The  is  every penny and you get 
 ( both in  AND ) .

(quality, more than enough, pos)

(cake, not ultra sweet, neg)

(cake, flurry, pos) 

 was  and so was the . 
(Service, good, pos) 
(null) 

(Service, good, pos) 
(atmosphere, good, pos) 

And these are not small, wimpy, fast food type 
burgers - these are ,  . 

The icing made this , it was , 
,  and . 

From , the  were 
… 

(beginning appetizers, incredible, pos)

... you go for the  amounts of  , the 
 , ...

(atmosphere, aimable, pos)

(patties, full sized, pos) (null)  

and yes  is so dam  and so are all 
the .
(dal bukhara, good, pos) 

I plan to come here again and  to 
trying their assortment of .
(bruschetta, look forward, pos)

Highly  is the  
and .
(spider rolls, recommended, pos) 

Highly  is the  
and .
(spider rolls, recommended, pos) 

(cake, creamy, pos) 

(cake, light, pos)

(icing, flurry, pos) 

(null)

Figure 5: Case Study. “Long distance” denotes the distance between aspect and opinion terms is considerably long.
“Uncommon aspect/opinion” represents that the term appears in the training set once or less. “Overlapped triplets”
denotes there are multiple triplets containing the same aspect or opinion in the sentence.

a simple yet effective pre-train method for the re-
triever to implicitly encode the label similarities.
Extensive experiments and analyses have proven
the superiority of the proposed method.

Limitations

Our method has three major limitations. First, the
auxiliary data corpus with label information might
be rare. Recall that the corpus we used in this paper
is the training set of different benchmarks. How-
ever, large-scale labeled data as the auxiliary data
source might be infeasible in practice, hence it may
limit the model deployment in real-world scenar-
ios. Second, our method is trained and evaluated
on English datasets. Additional data processing as
well as annotation is necessary for other linguistic
settings. Third, external unlabeled data with the
same domain as the ASTE datasets are needed for
the pre-training of the retriever. In our experiment,
we choose two external datasets in the restaurant
and electronics domains. If our method is applied
to other fields, we need to find additional external
data in the corresponding domain for pre-training.
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A Statistics of Dataset

In order to quantitatively compare our method to
prior work, we conduct our experiments on two
widely used ASTE datasets Da and Db, which are
released by Peng et al. (2020) and Xu et al. (2020b)
and originate from Semeval2014 (Pontiki et al.,
2014), Semeval2015 (Pontiki et al., 2015), and Se-
meval2016 (Pontiki et al., 2016). The statistics
are shown in Table 5. Each of them consists of
three datasets: Restaurant14, Restaurant15, Restau-
rant16, and Laptop14. The first three datasets are
from the restaurant domain, in which each sen-
tence describes a customer’s evaluation of restau-
rant service, environment, food, etc. The Laptop14
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Dataset
Res14 Lap14 Res15 Res16

s/pos/neu/neg s/pos/neu/neg s/pos/neu/neg s/pos/neu/neg

Da

Train 1300/1575/143/427 593/703/25/195 842/933/49/307 920/664/117/484
Dev 323/377/32/115 148/179/9/50 210 /225/10/81 228/207/16/114
Test 496/675/45/142 318/291/25/139 320 /362/27/76 339/335/50/105

Db

Train 1266/1692/166/480 906/817/126/517 605/783/25/205 857/1015/50/329
Dev 310/404/54/119 219/169/36/141 148/185/11/53 210/252/11/76
Test 492/773/66/155 328/364/63/116 322/317/25/143 326/407/29/78

Table 5: Statistics of Da and Db. s, pos/neu/neg denote the numbers of the sentence, positive/neutral/negative
triplets, respectively.

datasets inDa andDb contain customer evaluations
related to electronic products. All the datasets con-
tain initialized training set, development set, and
test set. Since existing popular methods are imple-
mented on either Da or Db, evaluating our model
on two datasets can compare it with existing meth-
ods as comprehensively as possible and get more
reliable experimental conclusions.

During the pre-training for retrieval, we adopt
two document-level datasets named Yelp (Tang
et al., 2015) and Amazon (McAuley et al., 2015)
as external data, which are processed and released
by He et al. (2018). For each dataset, we sort all
the data according to the length of the document
and select the shortest 10, 000 pieces of data for
pre-training of our retriever. Specifically, Yelp is
from the restaurant domain, which is used to gener-
ate pseudo-labeled data for Restaurant14, Restau-
rant15, and Restaurant16. Amazon is from the elec-
tronics domain, which is used to generate external
data for Laptop14.

B Experimental Settings

We adopt the BERT-base model from huggingface
Transformer library 3 for all experiments. We pre-
train the relevance scores for 10 epochs with batch
size 8 and learning rate 1e − 5. We jointly train
the full model for 30 epochs with batch size 1,
and a learning rate of 1e − 5. We also use an
early stopping and a linear warmup for 10% of the
training step during the joint learning. We adopt the
Adam optimizer and accumulate gradients for each
batch. We set the dropout rate, the maximum span
width, the number of candidate aspect and opinion
terms, the number L of retrieved triplet, the loss
coefficients α to 0.5, 8, half of the sentence length,
5, and 5.

3https://github.com/huggingface/transformers

In each iteration, we first extract candidate as-
pect terms and opinion terms and pair them into
candidate aspect-opinion pairs. Then we retrieve
relevant triplets for each pair and help them pre-
dict if the pair is valid and further determine their
sentiment polarities. Finally, we update the pa-
rameters by gradient descent. The code is im-
plemented with PyTorch 1.9.0 and transformers
4.1.1 and launched on an Ubuntu server with an
NVidia Tesla V100 (32G). In addition, we will test
our model with Mindspore, which is a new deep-
learning framework4.

4https://www.mindspore.cn/
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