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Abstract

Code execution is a fundamental aspect of pro-
gramming language semantics that reflects the
exact behavior of the code. However, most
pre-trained models for code intelligence ignore
the execution trace and only rely on source
code and syntactic structures. In this paper,
we investigate how well pre-trained models
can understand and perform code execution.
We develop a mutation-based data augmenta-
tion technique to create a large-scale and real-
istic Python dataset and task for code execu-
tion, which challenges existing models such
as Codex. We then present CodeExecutor, a
Transformer model that leverages code execu-
tion pre-training and curriculum learning to en-
hance its semantic comprehension. We evaluate
CodeExecutor on code execution and show its
promising performance and limitations. We
also demonstrate its potential benefits for code
intelligence tasks such as zero-shot code-to-
code search and text-to-code generation. Our
analysis provides insights into the learning and
generalization abilities of pre-trained models
for code execution.

1 Introduction

Pre-trained models have achieved remarkable re-
sults in natural language (NL) tasks (Radford et al.,
2018; Devlin et al., 2019; Raffel et al., 2020), in-
spiring the development of pre-trained models for
programming language (PL) tasks (Kanade et al.,
2020; Feng et al., 2020; Svyatkovskiy et al., 2020;
Wang et al., 2021b; Guo et al., 2021, 2022). These
models leverage source code and code structures,
such as abstract syntax tree (AST) (Wang et al.,
2021a; Guo et al., 2022) and data flow (Guo et al.,
2021), to learn code-related tasks. These structures,
while useful, are not sufficient to represent the dy-
namic behavior of code during execution, which is
reflected in the execution trace. Using Figure 1 as

∗Work done during internship at Microsoft. Shuai Lu and
Nan Duan are corresponding authors.

an example, the execution trace shows how code be-
haves during execution, reflecting the control flow
and the state changes of variables. On the other
hand, as stated by Casalnuovo et al. (2020), source
code contains two channels of information: natural
& formal. The natural channel (Hindle et al., 2012),
such as identifiers and comments, enables language
models to be leveraged to understand code-related
tasks. The formal channel is used by interpreters
and compilers to specify execution and has precise
semantics. The formal channel is unique to code
and is what makes it executable. Execution trace
falls into the second category since it reveals the
formal channel of information that distinguishes
code from natural language, as well as enabling
code execution precisely (Casalnuovo et al., 2020;
Chakraborty et al., 2022).

In this work, we aim to teach pre-trained models
the real-world code execution process. We pro-
pose CodeExecutor, a Transformer-based model
that learns to execute arbitrary programs and pre-
dict their execution traces. To support pre-training
on large-scale data, we construct the Python Co-
deNetMut dataset by producing mutations based
on submissions to competitive programming prob-
lems from CodeNet (Puri et al., 2021), along with
single-line Python transformations and programs
adapted from Python official tutorial. We design
a pre-training task that predicts both the line order
and the intermediate states of the execution trace,
and apply curriculum learning to gradually increase
the difficulty of the programs.

We evaluate CodeExecutor on code execution
tasks and show that it outperforms existing mod-
els and demonstrates promising capabilities. We
also conduct an in-depth analysis of the model’s
performance and reveal its strengths and weak-
nesses. Furthermore, we show that CodeExecutor
can improve downstream tasks like zero-shot code-
to-code search and text-to-code generation, indicat-
ing the potential of leveraging execution trace to
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h = 3 
w = 7
n = 10
for i in range(min(h, w)): 

n = n - max(h, w)      
if n <= 0: 

print(i + 1) 
break

<line> 1 <state> h : 3 
<line> 2 <state> h : 3 ; w : 7
<line> 3 <state> h : 3 ; w : 7 ; n : 10
<line> 4 <state> h : 3 ; w : 7 ; n : 10 ; i : 0
<line> 5 <state> h : 3 ; w : 7 ; n : 3 ; i : 0
<line> 6 <state> h : 3 ; w : 7 ; n : 3 ; i : 0
<line> 4 <state> h : 3 ; w : 7 ; n : 3 ; i : 1
<line> 5 <state> h : 3 ; w : 7 ; n : -4 ; i : 1
<line> 6 <state> h : 3 ; w : 7 ; n : -4 ; i : 1
<output> 2 
<line> 7 <state> h : 3 ; w : 7 ; n : -4 ; i : 1
<line> 8 <state> h : 3 ; w : 7 ; n : -4 ; i : 1

1
2
3
4
5
6
7
8

(a) Source Code (b) Execution Trace

Figure 1: Sample source code and its execution trace in the code execution task.

enhance code intelligence. Our models and datasets
are publicly available1. In summary, the contribu-
tions of this paper are:

• We present the first attempt at building a large-
scale pre-training dataset for real-world code
execution using a mutation-based data aug-
mentation approach.

• We propose a novel pre-trained model named
CodeExecutor that learns to predict the execu-
tion traces using a code execution pre-training
task and curriculum learning.

• We conduct a comprehensive evaluation of
CodeExecutor for code execution tasks, pro-
viding a detailed understanding of the model’s
performance.

• CodeExecutor significantly improves code in-
telligence tasks like zero-shot code-to-code
search and text-to-code generation.

2 Related Work

2.1 Learning to Execute
Previous works form the learning to execute task
as a problem that reads a program and com-
putes the program’s output. These works lever-
age architectures such as recurrent neural networks
(Zaremba and Sutskever, 2014), graph neural net-
works (Bieber et al., 2020; Wang et al., 2020) and
Transformers (Dehghani et al., 2019; Yan et al.,
2020; Austin et al., 2021; Nye et al., 2021). An-
other related task algorithm induction is to read a
short program, such as integer addition or polyno-
mial evaluation, and computes the output. Algo-
rithm induction task (Graves et al., 2014; Kurach
et al., 2016; Kaiser and Sutskever, 2016; Graves

1https://github.com/microsoft/CodeBERT/tree/
master/CodeExecutor

et al., 2016; Reed and de Freitas, 2016; Dehghani
et al., 2019; Velickovic et al., 2020a,b; Nye et al.,
2021) targets a particular algorithm with direct
algorithm-specific supervision compared with arbi-
trary programs in our code execution task.

Some emerging works also employ pre-trained
models to tackle the two tasks. Lu et al. (2022)
fine-tunes a small fraction of the weights in GPT-
2 (Radford et al., 2019) on non-language tasks,
including simple algorithm induction tasks like Bit
XOR. Austin et al. (2021) evaluates models pre-
trained on web documents and dialog data ranging
in size from 2 million to 137 billion parameters and
shows that largest models are generally unable to
predict the output of a program, whether few-shot
or fine-tuning. Nye et al. (2021) uses a "scratchpad"
to store intermediate computation steps to perform
multi-step computations, improving the ability of
models in Austin et al. (2021).

Different from previous works that predict pro-
gram’s output and mainly deal with specific algo-
rithms, we predict the program’s whole execution
trace and focus on imitating the real-world arbi-
trary program execution behavior. Besides, by us-
ing execution to capture code semantics, our work
is beneficial for tasks related to code intelligence.

2.2 Mathematical Problem Solving

Mathematical problem solving is a related domain
of code execution. Recent works show the ability
of language models to solve math problems, which
requires learning to execute a soft algorithm to ar-
rive at a deterministic answer. Amini et al. (2019);
Ling et al. (2017) map math problems to opera-
tion programs and focus on sequence-to-program
generation. Saxton et al. (2019) introduce the Deep-
Mind Mathematics dataset, which contains plug-
and-chug problems such as addition, list sorting,
and function evaluation. Henighan et al. (2020)
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Operator Description
CRP Constant Replacement Change numeric and string literals.
AOD Arithmetic Operator Deletion Delete a unary arithmetic operator ‘+’ or ‘-’.
AOR Arithmetic Operator Replacement Replace an arithmetic operator with another one. E.g. x * y can be

mutated to x / y.
ASR Assignment Operator Replacement Substitute an extended assignment operator with another.

BCR Break Continue Replacement Swap keywords break and continue in a loop body.
COD Conditional Operator Deletion Delete unary negation operator not or the negation of an membership

operator not in.
LCR Logical Connector Replacement Swap logical operators and with or and vice versa.
ROR Relational Operator Replacement Substitutes relational operators. E.g. x <= y can be mutated to x > y.
SIR Slice Index Removal Delete one argument of collection[start:end:step].
OIL One Iteration Loop Execute a loop only once by adding a break statement.
RIL Reverse Iteration Loop Change direction of loop iteration by the function reversed().
ZIL Zero Iteration Loop Interrupt realization of a loop during its first iteration.

Table 1: A set of mutation operators containing 12 operators we implement to mutate code examples.

shows that the majority of problems in the Deep-
Mind Mathematics dataset can be straightforwardly
solved with large Transformers. Hendrycks et al.
(2021) introduces the MATH dataset, consisting
of competition math problems with step-by-step
solutions written in LATEX and natural languages.
Cobbe et al. (2021) releases GSM8K, including
grade school math questions and natural language
solutions. Recently, Zhou et al. (2022) proposes
algorithmic prompting to improve the performance
of large language models on math problem solv-
ing, which starts from learning skills containing
addition, subtraction, multiplication, and parity.

Code execution involves calculations such as
addition, subtraction, multiplication, division, ex-
ponentiation, and modulus, which are similar to
solving math problems. With the added complex-
ity of managing variables, data structures, control
flows, and other programming concepts, learning
code execution requires a different set of skills and
knowledge from learning mathematics, although
some overlap exists.

3 Mutation-based Data Augmentation

The goal of code execution task is to learn to emu-
late the execution without running a program by an
interpreter. We treat the task as a generation task:
given a source code c, the execution trace t is re-
quired to be generated. Execution trace consists of
two components: one is the order in which the com-
puter executes statements, and the other is how the
states of the variables change when jumping from
one statement to another. Normally, the statements
inside a program are not executed sequentially, es-
pecially in a real-world scenario where programs
embody complex logic and rich semantics. More-

over, variables relate to various types of data struc-
tures with diverse characteristics and operations.
Given the complexity and difficulty of this task, it
is of great importance to build a large-scale dataset
and explore the capabilities and boundaries of large
language models for code execution.

3.1 Mutating Source Code

Constructing a large-scale Python dataset for real-
world code execution is very challenging. Pro-
grams retrieved from software development plat-
forms such as GitHub 2 are mostly not executable at
scale, as they depend on specific external resources
which are not easily available. Examples of exter-
nal resources include program inputs, file contents,
external modules, and third-party packages. For the
same reason, it is not practical to collect programs
from posts in coding question-answering websites
like StackOverflow 3.

We build the Python code execution dataset
based on submissions to competitive programming
problems from CodeNet benchmark (Puri et al.,
2021). We run each submission in a sandbox en-
vironment to get the execution trace and filter out
programs that exceed time and trace limits or result
in runtime errors.

To construct a large-scale dataset of executable
programs, we propose a mutation-based data aug-
mentation approach. For each submission, the ap-
proach modifies some parts of a program to gen-
erate diverse mutants, leading to different execu-
tion traces. Specifications of these modifications
are called mutation operators. It is inspired by
mutation testing (Hamlet, 1977; Jia and Harman,

2https://github.com/
3https://stackoverflow.com/
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2011) in software engineering, a popular technique
that supports the design of high-quality test suites
for programs. Following Derezińska and Hałas
(2014) that applies mutation testing technique to
Python programs, we first present a set of muta-
tion operators as shown in Table 1. Most of them
correspond to selected operators used in strongly
typed general purpose languages and are adopted
to the Python language. Operators designed for
Python features are also included, such as Slice
Index Removal (SIR) and Reverse Iteration Loop
(RIL). Then we convert a program into an AST
and extract its node type information to get a candi-
date list of all mutable literals, operators and state-
ments. Finally, we generate mutants and eliminate
those that are not executable. We use the CodeNet
Mutants (CodeNetMut) to build the pre-training
dataset. Greater detail of the dataset generation
process can be found in Appendix A.

3.2 Dataset Construction
Given the difficulty of training the model on real-
world complete programs, we build two simpler
datasets along with CodeNetMut for pre-training.

The first is the Python SingleLine dataset col-
lected by Fraser Greenlee 4, which consists of
nearly nine million examples of single-line transfor-
mations. Each example contains several variables
specified in initial values, a single line of Python
code, and the new set of variables and values re-
sulting from executing that line. We combine the
first two as the input code, and use the last one as
the target trace. We do not re-execute the dataset.
When pre-training on SingleLine data, we only ask
the model to predict the final states of the last code
line without line-by-line illustration. Figure 2 (a)(b)
show examples of these data. Since individual lines
of code constitute real-world complex programs,
the dataset serves as a foundation for learning about
code execution.

The second is the Python Tutorial dataset. This
dataset is created by crawling and filtering all the
executable code examples that appear in the official
Python tutorial 5. The official tutorial introduces
the basic concepts and most noteworthy features of
the Python language. To generate this dataset, we
apply the Constant Replacement operator (first row
in Table 1) to change numeric literals into diverse
values. This approach results in 3.4 million pro-

4https://www.kaggle.com/frasergreenlee/
python-state-changes

5https://docs.python.org/3/tutorial

c = 98 
z = 3 
c += z

1
2
3

(a)

Code:

Trace:
c : 101; z : 3 

f = 'ifailuhkqq’ 
l = ['a', 'i’] 
x = 2 
y = 5 
l = list(f[x:y])

1
2
3
4
5

(b)

Code:

Trace:
f : ‘ifailuhkqq’;
l : [‘a’,‘i’,‘l’];
x : 2; y : 5 

1
2
3
4
5
6
7

(c)

Code:

Trace:

<line> 1 <state> stack:[3, 866, -325] 
<line> 2 <state> stack:[3, 866, -325, 6] 
<line> 3 <state> stack:[3, 866, -325, 6, 7] 
<line> 4 <state> stack:[3, 866, -325, 6] 
<line> 5 <state> stack:[3, 866, -325] 
<line> 6 <state> stack:[3, 866] 
<line> 7 <state> stack:[3, 866] 

stack = [3, 866, -325] 
stack.append(6) 
stack.append(7) 
stack.pop() 
stack.pop() 
stack.pop() 
stack

Figure 2: (a) and (b) are examples from the SingleLine
dataset. (c) is an example from the Tutorial dataset.

grams. Figure 2 (c) shows an example of a mutant.
While the Tutorial dataset is not comprehensive
and does not cover every single feature, it provides
a good representation of Python’s flavor and style,
which offers valuable supervision for modeling the
execution of commonly used code blocks.

Therefore, the Python Code Execution datasets
are a series of datasets following an easy-to-hard
paradigm, including the SingleLine dataset, Tuto-
rial dataset, and CodeNetMut dataset.

4 CodeExecutor

Our CodeExecutor utilizes a Transformer-based
framework to learn code execution through pre-
training. We will first describe the model architec-
ture (§4.1), then the pre-training task (§4.2), and
finally, the curriculum learning strategy (§4.3).

4.1 Model Architecture

The model is based on Transformer and adopts the
same architecture as UniXcoder (Guo et al., 2022).
UniXcoder is a unified cross-modal pre-trained
model for programming language which has
encoder-only, decoder-only and encoder-decoder
modes. It utilizes mask attention matrices (Dong
et al., 2019) with prefix adapters to control the
behavior. We take the encoder-decoder manner
by using a special token [E2D] as the prefix in
front of the input. CodeExecutor consists of 12
Transformer layers. Each transformer layer is ar-
chitecturally identical, containing a multi-headed
self-attention pooling (Vaswani et al., 2017) fol-
lowed by a feed forward network.
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4.2 Pre-training Task

We propose a new pre-training task called code
execution. Our motivation for the task is to im-
prove the ability of our model to understand and
execute code. Traditional pre-training tasks such as
language modeling or denoising objective do not
involve code execution, and thus, models trained
on these tasks have limited ability to execute code.
By pre-training our model on the task of code ex-
ecution, we aim to improve its ability by learning
useful patterns from bimodal data of code and trace.
This will enable our model to generate more accu-
rate traces and understand the behavior of the code,
which is crucial for a wide range of code intelli-
gence applications that require code understanding.
With the knowledge of how the code works, the
model can better understand the underlying logic
of the code and use that understanding to better
perform these tasks.

We continue pre-training UniXcoder on the
task. At the pre-training stage, our model receives
code as inputs and learns to generate traces.
To facilitate a better understanding of code,
special tokens [i] indicating line numbers and
[INDENT ] [DETENT ] indicating indentation
are inserted into the code. Each line in trace can
be represented as [LINE], [i], [STATE], v1, :
, s1, [DICTSEP ], ..., [DICTSEP ], vk, :, sk,
[STATEEND], where k denotes the number
of variables and the state of k-th variable vk
is sk. The symbol [DICTSEP ] separates the
pairs within the dictionary and [STATEEND]
indicates the end of the states. This representation
allows our model to learn the state of variables
at each step of the execution, which is crucial for
understanding the behavior of the code.

4.3 Curriculum Learning

To improve the generalization capacity, we follow
the curriculum learning strategy during pre-training.
Curriculum learning (Bengio et al., 2009) (CL) is a
learning strategy that starts from easy instances and
then gradually handles harder ones, which imitates
the meaningful learning order in human curricula.
In our pre-training process, we organize the learn-
ing of the Python code execution datasets according
to a curriculum that starts with simple instances, i.e.
SingleLine data. First, we employ all the 9 million
SingleLine transformations to pre-train CodeEx-
ecutor until convergence. To achieve a balanced
dataset, we then reserve 3 million instances in Sin-

SingleLine Tutorial CodeNetMut
Difficulty Level Easy Medium Hard

Language Python Python Python
Pre-train # 8,950,959 3,422,943 2,838,644
Test # 7,968 13,744 19,541
Avg Code Len 3.28 4.90 8.26
Avg Trace Len 1.00 11.89 22.80
Avg State Num 2.44 1.34 3.67

Table 2: Statistics of pre-training dataset. “Avg Code
Len” and “Avg Trace Len” represent the average num-
ber of lines in a program and a trace, respectively. “Avg
State Num” denotes the average of the maximum num-
ber of states reached per line in a trace.

gleLine that are most difficult for our model to gen-
erate and add Tutorial data into the pre-training cor-
pus. We further add CodeNetMut data into the pre-
training corpus and pre-train the model to converge
on all the examples. To help distinguish difficulty
level, we add a prefix p ∈ {[SINGLELINE],
[TUTORIAL], [CODENETMUT ]} in front
of the input, indicating the kind of data, e.g.
[SINGLELINE] means receiving SingleLine
data. More details about pre-training settings and
model configurations can be found in Appendix B.

5 Experimental Setup

5.1 Dataset

We build our pre-training dataset as described in
Section 3. Table 2 shows some basic statistics. The
19,541 examples in CodeNetMut test split are from
39 unseen programming problems in CodeNet and
have not undergone the mutation process. Addition-
ally, we held out 10k programs from each dataset as
a validation split during pre-training. For Tutorial
and CodeNetMut, the ground truth trace is the exe-
cution result of the whole program. For SingleLine,
since the instances are simple programs consisting
of variable declarations and one-line transforma-
tions, the model is only asked to predict the final
states of variables, which is presented in the form
of a one-line trace. We observe the average length
of code and trace in CodeNetMut are about twice
as long as those in Tutorial. Also, executing pro-
grams in CodeNetMut requires managing a larger
number of variables in varying states.

5.2 Models

We evaluate several models on code execution
task. Codex model code-cushman-001 is a spe-
cialized GPT model fine-tuned on GitHub code
(Chen et al., 2021). We use few-shot learning
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Dataset Model General Line Identifier

Output Acc. Trace Acc. Precision Recall F1 Precision Recall F1

SingeLine Codex - 36.87 36.87 36.87 36.87 71.87 69.34 70.58
CEL-S1 - 93.32 93.32 93.32 93.32 96.94 96.86 96.90
CodeExecutor - 94.03 94.03 94.03 94.03 97.28 97.18 97.23

Tutorial

Codex 13.07 - - - - - - -
CEL-S2 79.51 85.59 95.94 84.24 89.71 97.29 87.30 92.02
CEL-S3 7.89 8.35 26.58 21.33 23.67 26.36 19.47 22.40
CodeExecutor 76.42 80.09 94.49 76.74 84.70 95.91 69.15 80.36

CodeNetMut Codex 17.45 - - - - - - -
CEL-S3 43.80 29.44 59.32 41.76 49.01 68.30 41.69 51.78
CodeExecutor 48.06 33.38 58.70 43.48 49.96 67.81 45.29 54.31

-w/o CL 45.93 30.98 60.21 42.45 49.79 68.55 41.58 51.76

Table 3: Results on the code execution task. In the Tutorial and CodeNetMut datasets, Codex cannot generate
execution traces in a uniform format. Therefore, we only report the output accuracy of Codex in these datasets.

by giving Codex three code and execution trace
pairs for the code execution task. CodeExecutor-
Limited (CEL) is a three-stage model pre-trained
with the code execution objective. CEL can only
access limited data in each stage, as opposed to
CodeExecutor which can utilize all the datasets
simultaneously (see Appendix C for a detailed com-
parison). It is initialized using the publicly avail-
able checkpoint of UniXcoder and continues to be
trained with SingleLine data, resulting in the model
CodeExecutorLimited-Stage1, which we call CEL-
S1. In the second stage, we initialize it with CEL-
S1 and employ Tutorial data to pre-train, so we
get the model CEL-S2. By continuing pre-training
CEL-S2, we use CodeNetMut to improve the ca-
pacity of executing real-world programs at the third
stage. CEL-S3 is produced after these stages men-
tioned above. CodeExecutor without Curriculum
Learning(CodeExecutor w/o CL) is a single-stage
model trained on all three datasets together.

5.3 Evaluation Metrics

We test model capabilities of executing code on the
test sets from three datasets. We measure functional
correctness of the sampled trace from three perspec-
tives. We report output accuracy and trace accuracy
to evaluate the general aspect. Output accuracy
checks if the model prints the same message as
the code execution, calculated only for programs
with standard output. Trace accuracy checks if the
model produces the same trace as the code execu-
tion, regardless of the order of states in a line of the
trace. To evaluate the correctness of each line and
the states of identifiers in the trace, we also assess
per-line score and identifier score. Line precision
is determined by the ratio of correctly identified

lines among all the lines in the traces generated
by the model. Line recall is the ratio of correctly
identified lines predicted by the model among all
the lines in the ground truth traces. Similarly, we
also calculate scores for the identifiers in the trace.

To deepen our understanding of model behav-
ior and error modes, we also conduct a qualitative
analysis by examining samples.

We randomly sample 50 code-trace pairs from
the test set and ask two programmers with at least
5 years of experience to evaluate whether CodeEx-
ecutor executes a program correctly in 7 aspects.
The category Basic includes basic knowledge for
a Python beginner like math operators, augmented
assignment operators, comparison operators, vari-
ables. The category Lists, Tuples, etc. consists of
typical Python data structures, such as lists, tuples,
dictionaries, sets, and related manipulation func-
tions. As shown in Table 4, we build the taxonomy,
along with a handbook to guide classification. Each
reviewer examines the generated trace line by line
and counts the occurrence frequency of each cate-
gory. They count all these categories if a trace line
involves multiple categories. When an error occurs,
they identify which kind of knowledge category
the model mistakes. Finally, they work together
to discuss the divergence of error attribution and
come to an agreement.

6 Results and Analysis

In this section, we evaluate CodeExecutor on code
execution task(§6.1), conduct an in-depth analy-
sis to understand model behavior and error mode
(§6.2), followed by two downstream tasks (§6.3).
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rec = ['10', '3', '5'] 
n, a, b = map(int, rec) 
nin = [a, b] 
nmax = min(nin) 
nmin = n - min(n, (n-nin[0])+(n-nin[1])) 
print(str(nmax) + " " + str(nmin))

1
2
3
4
5
6

Code: Prediction:
<line> 1 <state> rec:[10, 3, 5]  
<line> 2 <state> rec:[10, 3, 5]; n:10; a:3; b:5 
<line> 3 <state> rec:[10, 3, 5]; n:10; a:3; b:5; nin:[3, 5] 
<line> 4 <state> rec:[10, 3, 5]; n:10; a:3; b:5; nin:[3, 5]; nmax:3 
<line> 5 <state> rec:[10, 3, 5]; n:10; a:3; b:5; nin:[3, 5]; nmax:3; nmin:2
<output> 3 2 
<line> 6 <state> rec:[10, 3, 5]; n:10; a:3; b:5; nin:[3, 5]; nmax:3; nmin:2

Figure 3: An Example from CodeNetMut test split, where CodeExecutor produces an imperfect prediction, with the
mistake highlighted by an underline.

6.1 Overall Results

We evaluate the performance of models on Single-
Line, Tutorial and CodeNetMut datasets.

We show the result of SingleLine in Table 3
(top). CodeExecutor is able to execute around
94% of single-line transformations correctly, while
Codex fails to do so in most cases. CodeExecutor
also brings a 0.7% improvement over CEL-S1, indi-
cating learning hard programs during pre-training
helps better solve easier examples. Since each Sin-
gleLine program always produces a one-line trace
without standard outputs, we do not report output
accuracy, and the line precision/recall scores are
equal to trace accuracy.

For the Tutorial experiments in Table 3
(medium), CodeExecutor significantly outperforms
Codex on output accuracy (76.42% vs.13.07%).
The lower score of CodeExecutor compared to
CEL-S2 suggests a discrepancy between code ex-
amples in tutorials and CodeNet since the Tutorial
dataset is composed of mutants from only a few
programs in tutorial websites, limiting its diversity.
CEL-S3 struggles to produce traces, indicating that
it forgets most knowledge acquired in Tutorial data
in the last training stage.

CodeNetMut results are much lower than those
in SingleLine and Tutorial datasets, which shows
that it is more challenging to generate traces in
real-world scenarios. CodeExecutor produces the
correct output for nearly half of the examples
(48.06%), and about a third of the traces are the
exact match for the ground truth (33.38%). By pre-
training on the code execution task, CodeExecutor
boosts the performance of output by 30.6% abso-
lute points over Codex. Besides, CodeExecutor
yields 4.3% output accuracy score and 3.9% trace
accuracy score improvement than CEL-S3, which
indicates the effectiveness of the training strategy
described in 4.3. After removing curriculum learn-
ing, the output accuracy score drops from 48.06%
to 45.93% and the trace accuracy score drops from
33.38% to 30.98%, which shows the contribution

Category Total Correct Accuracy

Basic 204 183 89.71
Built-in Functions 42 35 83.33
Lists, Tuples, etc. 44 34 77.27
Strings 19 10 52.63
Conditional Statements 60 57 95.00
Loops 25 21 84.00
Function Calls 5 5 100.00

Table 4: Human evaluation results. To evaluate the ca-
pability of CodeExecutor, we classify Python program-
ming knowledge into seven categories and manually
analyze whether the generated trace is correct or wrong
when dealing with these categories. The third category
includes Python data structures, such as lists, tuples,
dictionaries and sets.

of curriculum learning.
These results demonstrate that the code execu-

tion task is challenging for pre-trained models on
source code like Codex. However, our CodeExecu-
tor model can achieve high performance to execute
simple programs and are capable of predicting com-
plex execution traces for real-world programs.

6.2 In-depth Study on Model Performance
We conduct a qualitative analysis of model perfor-
mance by examining samples (Table 4), resulting
in the following findings. More examples can be
found in Appendix D.

The Model Typically Has a Basic Sense of Con-
trol Flows Conditional statements, loops, and
function calls reveal the control flow of the pro-
gram. Control flow reflects the order in which the
program’s code executes. It is important for un-
derstanding a program and is often complex, as
it controls the code through certain decisions and
monitors which statements need to be executed
and which should be skipped. From Table 4, we
find that CodeExecutor has a rudimentary under-
standing of high-level multi-line control flows, es-
pecially expert at conditional statements and func-
tion calls. 57 out of 60 conditional statements and
all 5 calls to user-defined functions are predicted
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Model MAP

GraphCodeBERT 23.08
+ CodeExecutor 55.94

UniXcoder 71.86
+ CodeExecutor 79.13

Table 5: MAP score (%) on code-to-code search task
in zero-shot setting.

correctly. The accuracy of loops is 84%, while
the incorrect loops undergo wrong iterative times.
Take Figure 1 (a) as an example. CodeExecutor
predicts exactly the same trace as the ground truth
in (b). Our model recognizes that the for loop oc-
curred on line 4 will execute several times. In the
second iteration, “n” meets the condition of “n <=
0”, resulting in the “break” statement and termi-
nating the loop. The model behaves well on the
code block in the for loop, showing its capacity of
understanding control flows.

The Model Struggles to Handle the Intricacies
of Operations, Particularly in Relation to Data
Structures Complex programs often involve mul-
tiple categories of programming knowledge. Figure
3 shows an example that uses lists and strings. It
determines the maximum and minimum possible
number of people among “n”, who subscribe to
both Newspaper I and II, given that “a” people
subscribe to I and “b” people subscribe to II. Code-
Executor incorrectly calculates “nmin” in line 5,
expected 0 but got 2. This calculation involves re-
trieving values from a list, performing additions,
subtractions, and using the "min" function. The
compositionality of these operations makes it chal-
lenging for our model to fully comprehend the code
and generate accurate states. Additionally, as pre-
sented by the relatively low accuracy on “Lists,
Tuples, etc.” (77.27%) and “Strings” (52.63%) in
Table 4, we observe that the model falls short of
understanding data structures like lists and strings.
The understanding of data structures requires the
model to learn the behavior of objects after they
are created, modified, added or deleted. These
operations can be changeable and challenging for
the model to grasp. This suggests that the model
may struggle with complex programs that involve
multiple operations and data structures.

6.3 Downstream Tasks

To verify the effectiveness of CodeExecutor in rep-
resenting code semantics, we apply it to two code

Model Pass@1 Pass@10

Codex 12.48 45.59
+ CodeExecutor 17.87 49.69

Table 6: Results on HumanEval benchmark for the
text-to-code generation task. 50 solutions are evaluated
for each problem in both settings.

intelligence tasks – the zero-shot code-to-code-
search task and text-to-code generation task.

Zero-shot Code-to-code Search The task is in-
troduced by Guo et al. (2022). To avoid duplication
between the associate dataset and our pre-training
corpus, we construct a new dataset by collecting
9,987 Python functions from CodeNet (Puri et al.,
2021). Each function solves one of the 48 problems.
Given one function, we retrieve all the functions
that solve the same problem.

We first use the mean vectors of last hidden states
of a baseline model to calculate the similarity be-
tween two functions. To explore how code exe-
cution facilitates code-to-code-search, we execute
each function by providing a test case. We then
utilize the program outputs extracted from the exe-
cution trace generated by CodeExecutor, and sort
the candidates according to the edit similarity com-
pared with outputs of the query program.

From table 5, we find that CodeExecutor boosts
over 32.8 points compared with GraphCodeBERT
(Guo et al., 2021), and provides about 7.2 points
improvement compared with UniXcoder, showing
that code execution can significantly enhance the
comprehension of code semantics.

Text-to-code Generation We use HumanEval
benchmark (Chen et al., 2021) which includes 164
human-written programming problems.

We first leverage Codex (code-cushman-001)
to generate 200 solutions for each problem. Then
we use CodeExecutor to predict the outputs of each
solution by feeding example test cases in problem
descriptions. We rank the 200 solutions by the
edit similarity between their outputs and expected
outputs. Finally, we evaluate the correctness of
the first 50 solutions for each problem. Note that
different from other filtering strategies, our method
doesn’t need a real-world code executor but only
uses models to predict the execution results.

Table 6 demonstrates that with CodeExecutor as
a solution filter, the performance of text-to-code
generation is improved, indicating CodeExecutor
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is beneficial to other code intelligence tasks.

7 Conclusion

We propose a mutation-based data augmentation
method to create a large and realistic Python code
execution dataset and task, which pose a signifi-
cant challenge for current models such as Codex.
We develop CodeExecutor, a Transformer model
that leverages code execution as a pre-training ob-
jective and adopts a curriculum learning strategy.
CodeExecutor not only outperforms existing mod-
els on code execution, but also demonstrates its
generalizability to downstream tasks such as code-
to-code search and text-to-code generation. Our
work offers a novel and effective solution for code
execution and other code intelligence tasks.

Limitations

Several limitations of CodeExecutor, such as its
application to only Python, the lack of faithfulness
in the results produced, and the maximum length
limit for trace generation, point toward interesting
directions for future work.

Programming Language One limitation of our
current model is that it is currently only applied
to Python, which limits its use and effectiveness
in executing programs written in other program-
ming languages. This highlights the need for future
work to expand the model’s applicability to other
languages.

Faithfulness The result may not be faithful
enough when handling difficult examples, such
as those with complex logic, long loops, or many
branches. For example, we observe that in two com-
plicated programs that both contain the assignment

“alpha = list(’abcdefg’)”, our model correctly pre-
dicts the value of “alpha” in one case but incor-
rectly in the other. The lack of faithfulness needs to
be studied for further research on code execution.

Generation Window Size We limit the length
of generated trace to 1024 tokens. It can be a lim-
itation for programs with long execution traces,
particularly those with loops. Improving the ability
of Transformers to handle longer sequences (Tay
et al., 2021, 2022) would likely be beneficial for
the code execution task.

Ethical Statement

The work is conducted in compliance with ethical
principles. The datasets introduced in this paper
only used publicly available data. The annotation in
human evaluation was conducted by two authors of
the paper, and thus there are no associated concerns,
e.g. regarding compensation. Therefore, there are
no potential risks associated with the research.

References
Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik

Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. Mathqa: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 2357–2367. Association for Computational
Linguistics.

Jacob Austin, Augustus Odena, Maxwell I. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Con-
ference on Machine Learning, ICML 2009, Montreal,
Quebec, Canada, June 14-18, 2009, volume 382 of
ACM International Conference Proceeding Series,
pages 41–48. ACM.

David Bieber, Charles Sutton, Hugo Larochelle, and
Daniel Tarlow. 2020. Learning to execute programs
with instruction pointer attention graph neural net-
works. In Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual.

Casey Casalnuovo, Earl T. Barr, Santanu Kumar Dash,
Prem Devanbu, and Emily Morgan. 2020. A the-
ory of dual channel constraints. In ICSE-NIER 2020:
42nd International Conference on Software Engineer-
ing, New Ideas and Emerging Results, Seoul, South
Korea, 27 June - 19 July, 2020, pages 25–28. ACM.

Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding,
Premkumar T. Devanbu, and Baishakhi Ray. 2022.
Natgen: generative pre-training by "naturalizing"
source code. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
ESEC/FSE 2022, Singapore, Singapore, November
14-18, 2022, pages 18–30. ACM.

4992

https://doi.org/10.18653/v1/n19-1245
https://doi.org/10.18653/v1/n19-1245
https://doi.org/10.18653/v1/n19-1245
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://doi.org/10.1145/1553374.1553380
https://proceedings.neurips.cc/paper/2020/hash/62326dc7c4f7b849d6f013ba46489d6c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/62326dc7c4f7b849d6f013ba46489d6c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/62326dc7c4f7b849d6f013ba46489d6c-Abstract.html
https://doi.org/10.1145/3377816.3381720
https://doi.org/10.1145/3377816.3381720
https://doi.org/10.1145/3540250.3549162
https://doi.org/10.1145/3540250.3549162


Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers to solve
math word problems. CoRR, abs/2110.14168.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Univer-
sal transformers. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net.
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A Dataset Detail

To obtain executable programs, we build the Python
Code Execution dataset based on submissions to
competitive programming problems from CodeNet
(Puri et al., 2021). These human-written programs
with real-world complexity are derived from online
judge websites AIZU 6 and AtCoder 7. CodeNet
contains 240k Python submissions, aiming to solve
8,00 distinct programming problems. Each sub-
mission is a single-file Python program that reads
from stdin and writes to stdout. Each programming
problem provides at least one sample input and at
most four sample inputs. Since executing a pro-
gram relies on an input, we replace the statements
that read from input streams with assignment state-
ments that assign input values to variables. We
run each submission in a sandbox environment to
get the execution trace for that program. Programs
are restricted to one second of execution time and
1024 lines of execution trace, and will be filtered

6https://onlinejudge.u-aizu.ac.jp/
7https://atcoder.jp/

out if they exceed the limits. We also remove the
programs that result in runtime errors during pars-
ing or execution, by catching Python exceptions
raised in programs. This results in a dataset of 387k
executable programs, each paired with a trace.

To construct a large-scale dataset of executable
programs, we propose a mutation-based data aug-
mentation approach. we first present a set of muta-
tion operators as shown in Table 1. Most of them
correspond to selected operators used in strongly
typed general purpose languages and are adopted
to the Python language. Operators designed for
Python features are also included, such as Slice
Index Removal (SIR) and Reverse Iteration Loop
(RIL). Then we leverage the tree-sitter8 to convert
a program into an abstract syntax tree and then ex-
tract its node type information to get a candidate
list of all mutable literals, operators and statements.
For each mutable candidate, we apply the related
mutation operators with 50% probability. Specifi-
cally, we change a numeric literal x into a random
number from a Gaussian distribution with mean
x and standard deviation 100. We either extend a
string with one or two random characters or shorten
a string. We randomly pick one of the three loop-
related operators or keep it as it is when handling
each loop. All operators can be applied before a
mutated program execution, and possible mutants
with errors are to be detected and eliminated during
execution. By mutating each program 20 times, we
obtain 3.2M deduplicated programs, each paired
with a trace.

We use the CodeNet Mutants (CodeNetMut) to
build the pre-training dataset. To prevent data leak-
age, all submissions to the same problem become
part of the same split. We use submissions of
710 problems with their mutants to build the pre-
training dataset. Since mutation greatly enhances
diversity, these programs embody rich semantics
and complex operations. Other submissions (with-
out mutations) are used to build the validation and
test dataset. These human-authored programs en-
sure the quality of evaluation data.

B Model Configurations

We build our model based on 12 layers of Trans-
former with 768 dimensional hidden states and 12
attention heads. We add 210 additional special
tokens into the vocabulary to represent 200 line
numbers, 3 pre-training dataset names, and trace

8https://tree-sitter.github.io/tree-sitter/
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Model Stage1 (S1) Stage2 (S2) Stage3 (S3)

CEL SingleLine Tutorial CodeNetMut
CodeExecutor SingleLine SingleLine (3M), Tutorial SingleLine (3M), Tutorial, CodeNetMut

Table 7: Datasets that CEL and CodeExecutor use for three-stage pre-training. “SingleLine (3M)” denotes 3 million
instances within SingleLine that are most difficult for CodeExecutor to generate.

Figure 4: An example from CodeNetMut test split, which covers all the categories of Python programming
knowledge. CodeExecutor gives the correct prediction.

structure described in §4.2. During pre-training,
we set the max length of input sequence and batch
size to be 1024 and 256, respectively. We use the
Adam optimizer to update model parameters with
4e-4 learning rate. We first employ the SingleLine
dataset to pre-train the model with the code execu-
tion objective for 500k steps. We then reserve 3
million instances in SingleLine that are most diffi-
cult for our model to generate and add Tutorial data
into the corpus, pre-training for 300k steps. We add
CodeNetMut into the corpus and further pre-train
for 300k steps. We pre-train the model on a cluster
of 16 NVIDIA Tesla V100 with 32GB memory
and the total training time is about a month. For
inference, we set beam search as 10.

C Three-stage Pre-training

In table 7, we list the datasets that CodeExecutor-
Limited (CEL) and CodeExecutor use for three-
stage pre-training, respectively.

The first stage of pre-training for CEL uses the
SingleLine dataset, resulting in the model CEL-S1.
In the second stage, CEL is initialized with CEL-S1
and pre-trained with the Tutorial dataset, resulting
in the model CEL-S2. In the third stage, CEL is
initialized with CEL-S2 and pre-trained with the
CodeNetMut dataset, resulting in the model CEL-
S3.

On the other hand, CodeExecutor is first pre-
trained with the SingleLine dataset, then the 3 mil-
lion most challenging SingleLine data is selected
for later training stages based on the model’s loss.
In the second stage, CodeExecutor is pre-trained
with the 3 million difficult SingleLine data, along
with the Tutorial dataset. In the third stage, Code-
Executor is pre-trained with the 3 million difficult
SingleLine data, the entire Tutorial dataset, and the
CodeNetMut dataset.

D Qualitative Examples

Additional examples are shown here.
Figure 4 shows an example that covers all the

categories of Python programming knowledge in
Table 4. CodeExecutor generates the same trace as
ground truth.

Figure 5 is an example of performing division
calculations with decimals. CodeExecutor is able
to produce the correct first fifteen digits and makes
errors in the remaining two digits.
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Figure 5: An example of division calculations with dec-
imals, where CodeExecutor correctly produce the first
fifteen digits, with mistakes highlighted by an underline.
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