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Abstract

Intermediate training of pre-trained trans-
former-based language models on domain-
specific data leads to substantial gains for down-
stream tasks. To increase efficiency and pre-
vent catastrophic forgetting alleviated from full
domain-adaptive pre-training, approaches such
as adapters have been developed. However,
these require additional parameters for each
layer, and are criticized for their limited expres-
siveness. In this work, we introduce TADA, a
novel task-agnostic domain adaptation method
which is modular, parameter-efficient, and thus,
data-efficient. Within TADA, we retrain the
embeddings to learn domain-aware input repre-
sentations and tokenizers for the transformer en-
coder, while freezing all other parameters of the
model. Then, task-specific fine-tuning is per-
formed. We further conduct experiments with
meta-embeddings and newly introduced meta-
tokenizers, resulting in one model per task in
multi-domain use cases. Our broad evaluation
in 4 downstream tasks for 14 domains across
single- and multi-domain setups and high- and
low-resource scenarios reveals that TADA is an
effective and efficient alternative to full domain-
adaptive pre-training and adapters for domain
adaptation, while not introducing additional pa-
rameters or complex training steps.

1 Introduction

Pre-trained language models (Radford et al., 2018;
Devlin et al., 2019) utilizing transformers (Vaswani
et al., 2017) have emerged as a key technology for
achieving impressive gains in a wide variety of
natural language processing (NLP) tasks. How-
ever, these pre-trained transformer-based language
models (PTLMs) are trained on massive and het-
erogeneous corpora with a focus on generalizabil-
ity without addressing particular domain-specific
concerns. In practice, the absence of such domain-
relevant information can severely hurt performance
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in downstream applications as shown in numerous
studies (i.a., Zhu and Goldberg, 2009; Ruder and
Plank, 2018; Friedrich et al., 2020).

To impart useful domain knowledge, two main
methods of domain adaptation leveraging trans-
formers have emerged: (1) Massive pre-training
from scratch (Beltagy et al., 2019; Wu et al., 2020)
relies on large-scale domain-specific corpora in-
corporating various self-supervised objectives dur-
ing pre-training. However, the extensive training
process is time- and resource-inefficient, as it re-
quires a large collection of (un)labeled domain-
specialized corpora and massive computational
power. (2) Domain-adaptive intermediate pre-
training (Gururangan et al., 2020) is considered
more light-weight, as it requires only a small
amount of in-domain data and fewer epochs contin-
ually training on the PTLM from a previous check-
point. However, fully pre-training the model (i.e.,
updating all PTLM parameters) may result in catas-
trophic forgetting and interference (McCloskey and
Cohen, 1989; Houlsby et al., 2019), in particular for
longer iterations of adaptation. To overcome these
limitations, alternatives such as adapters (Rebuffi
et al., 2017; Houlsby et al., 2019), and sparse fine-
tuning (Guo et al., 2021; Ben Zaken et al., 2022)
have been introduced. These approaches, however,
are still parameter- and time-inefficient, as they ei-
ther add additional parameters or require complex
training steps and/or models.

In this work, we propose Task-Agnostic Domain
Adaptation for transformers (TADA), a novel do-
main specialization framework. As depicted in
Figure 1, it consists of two steps: (1) We conduct
intermediate training of a pre-trained transformer-
based language model (e.g., BERT) on the unla-
beled domain-specific text corpora in order to in-
ject domain knowledge into the transformer. Here,
we fix the parameter weights of the encoder while
updating only the weights of the embeddings (i.e.,
embedding-based domain-adaptive pre-training).
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Figure 1: Overview of the TADA framework consisting of two steps. Part A: Domain specialization is performed
via embedding-based domain-adaptive intermediate pre-training with Masked Language Modeling (MLM) objective
on in-domain data. Part B: The domain-specialized embeddings are then fine-tuned for downstream tasks in single-
or multi-domain scenarios with two meta-embeddings methods: average (AVG) and attention-based (ATT).

As a result, we obtain domain-specialized embed-
dings for each domain with the shared encoder
from the original PTLM without adding further pa-
rameters for domain adaptation. (2) The obtained
domain-specialized embeddings along with the en-
coder can then be fine-tuned for downstream tasks
in single- or multi-domain scenarios (Lange et al.,
2021b), where the latter is conducted with meta-
embeddings (Coates and Bollegala, 2018; Kiela
et al., 2018) and a novel meta-tokenization method
for different tokenizers.

Contributions. We advance the field of domain
specialization with the following contributions:
(i) We propose a modular, parameter-efficient, and
task-agnostic domain adaptation method (TADA)
without introducing additional parameters for in-
termediate training of PTLMs. (ii) We demon-
strate the effectiveness of our specialization method
on four heterogeneous downstream tasks – dia-
log state tracking (DST), response retrieval (RR),
named entity recognition (NER), and natural lan-
guage inference (NLI) across 14 domains. (iii) We
propose modular domain specialization via meta-
embeddings and show the advantages in multi-
domain scenarios. (iv) We introduce the concept
of meta-tokenization to combine sequences from
different tokenizers in a single transformer model
and perform the first study on this promising topic.
(v) We release the code and resources for TADA
publicly.1

1https://github.com/boschresearch/TADA

2 Methods for Domain Specialization

To inject domain-specific knowledge through
domain-adaptive pre-training into PTLMs, these
models are trained on unlabeled in-domain text
corpora. For this, we introduce a novel embedding-
based intermediate training approach as an alter-
native to fully pre-training and adapters (§ 2.1),
and further study the effects of domain-specific to-
kenization (§ 2.2). We then utilize multiple domain-
specialized embeddings with our newly proposed
meta-tokenizers and powerful meta-embeddings in
multi-domain scenarios (§ 2.3 and § 2.4).

2.1 Domain Specialization
Following successful work on intermediate pre-
training leveraging language modeling for domain-
adaptation (Gururangan et al., 2020; Hung et al.,
2022a) and language-adaptation (Glavaš et al.,
2020; Hung et al., 2022b), we investigate the effects
of training with masked language modeling (MLM)
on domain-specific text corpora (e.g., clinical re-
ports or academic publications). For this, the MLM
loss Lmlm is commonly computed as the negative
log-likelihood of the true token probability (Devlin
et al., 2019; Liu et al., 2019).

Lmlm = −
M∑

m=1

logP (tm) , (1)

where M is the total number of masked tokens in
a given text and P (tm) is the predicted probability
of the token tm over the vocabulary size.
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Fully pre-training the model requires adjusting
all of the model’s parameters, which can be undesir-
able due to time- and resource-inefficiency and can
dramatically increase the risk of catastrophic for-
getting of the previously acquired knowledge (Mc-
Closkey and Cohen, 1989; Ansell et al., 2022).
To alleviate these issues, we propose a parameter-
efficient approach without adding additional pa-
rameters during intermediate domain-specialized
adaptation: we freeze most of the PTLM parame-
ters and only update the input embeddings weights
of the first transformer layer (i.e., the parameters
of the embeddings layer) during MLM. With this,
the model can learn domain-specific input repre-
sentations while preserving acquired knowledge
in the frozen parameters. As shown in Figure 1,
the encoder parameters are fixed during intermedi-
ate pre-training while only the embeddings layer
parameters are updated.

As a result, after intermediate MLM, multiple
embeddings specialized for different domains are
all applicable with the same shared encoder. As
these trained domain-specialized embeddings are
easily portable to any downstream task, we ex-
periment with their combination in multi-domain
scenarios via meta-embeddings methods (Yin and
Schütze, 2016; Kiela et al., 2018). We discuss this
in more detail in Section § 2.3.

2.2 Domain-Specific Tokenization
Inspired by previous work on domain-specialized
tokenizers and vocabularies for language model
pre-training (Beltagy et al., 2019; Lee et al., 2019;
Yang et al., 2020), we study the domain adaptation
of tokenizers for transformers and train domain-
specialized variants with the standard WordPiece
algorithm (Schuster and Nakajima, 2012) anal-
ogously to the BERT tokenizer. As a result,
the domain-specialized tokenizers cover more in-
domain terms compared to the original PTLM to-
kenizers. In particular, this reduces the number of
out-of-vocabulary tokens, i.e., words that have to
be split into multiple subwords, whose embedding
quality often does not match the quality of word-
level representations (Hedderich et al., 2021).

2.3 Meta-Embeddings
Given n embeddings from different domains D,
each domain would have an input representation
xDi ∈ RE , 1 ≤ i ≤ n, where n is the number
of domains and E is the dimension of the input
embeddings. Here, we consider two variants: aver-

aging (Coates and Bollegala, 2018) and attention-
based meta-embeddings (Kiela et al., 2018).

Averaging merges all embeddings into one vec-
tor without training additional parameters by taking
the unweighted average:

eAV G =
1

n

∑

i

xDi , (2)

In addition, a weighted average with dynamic atten-
tion weights αDi can be used. For this, the attention
weights are computed as follows:

αDi =
exp(V · tanh(WxDi))∑n

k=1 exp(V · tanh(WxDk))
, (3)

with W ∈ RH×E and V ∈ R1×H being parame-
ters that are randomly initialized and learned dur-
ing training and H is the dimension of the attention
vector which is a predefined hyperparameter.

The domain embeddings xDi are then weighted
using the learned attention weights αDi into one
representation vector:

eATT =
∑

i

αDi · xDi , (4)

As Averaging simply merges all information into
one vector, it cannot focus on valuable domain
knowledge in specific embeddings. In contrast, the
attention-based weighting allows for dynamic com-
binations of embeddings based on their importance
depending on the current input token.

As shown in related works, these meta-
embeddings approaches suffered from critical
mismatch issues when combining embeddings
of different sizes and input granularities (e.g.,
character- and word-level embeddings) that could
be addressed by learning additional mappings to
the same dimensions on word-level to force all
the input embeddings towards a common input
space (Lange et al., 2021a).

Our proposed method prevents these issues by
(a) keeping the input granularity fixed, which alle-
viates the need for learning additional mappings,
and (b) locating all domain embeddings in the same
space immediately after pre-training by freezing
the subsequent transformer layers. We compare
the results of two variants in Section § 4. More
information on meta-embeddings can be found in
the survey of Bollegala and O’ Neill (2022).
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Domain Text: Acetaminophen is an analgesic drug => TOK-1: Ace #ta #mino #phen is an anal #gesic dr #ug (10 subwords)
=> TOK-2: Aceta #minophen is an anal #gesic drug (7 subwords)

Aggregation: SPACE DYNAMIC TRUNCATION

TOK-1 [Ace #ta #mino #phen] is an [anal #gesic] [dr #ug] [Ace #ta] [#mino #phen] is an anal #gesic [dr #ug] [Ace] [#mino] is an anal #gesic [dr]
TOK-2 [Aceta #minophen] is an [anal #gesic] drug Aceta #minophen is an anal #gesic drug Aceta #minophen is an anal #gesic drug

Table 1: Examples of our proposed aggregation approaches for meta-tokenization: SPACE, DYNAMIC, TRUNCATION
for a given text and two different tokenizers (TOK-1, TOK-2). The bottom of the table shows the results after
aggregation. [a b . . . z] denotes the average of all embedding vectors corresponding to subword tokens a, b, . . ., z.

Task Dataset Domain Background Train / Dev / Test License†

DST, RR MultiWOZ 2.1 (Eric et al., 2020)

Taxi 200 K 1,654 / 207 / 195

MIT
Restaurant 200 K 3,813 / 438 / 437
Hotel 200 K 3,381 / 416 / 394
Train 200 K 3,103 / 484 / 494
Attraction 200 K 2,717 / 401 / 395

NLI MNLI (Williams et al., 2018)

Government 46.0 K 77,350 / 2,000 / 2,000 OANC
Travel 47.4 K 77,350 / 2,000 / 2,000 OANC
Slate 214.8 K 77,306 / 2,000 / 2,000 OANC
Telephone 234.6 K 83,348 / 2,000 / 2,000 OANC
Fiction 299.5 K 77,348 / 2,000 / 2,000 CC-BY-SA-3.0; CC-BY-3.0

NER

CoNLL (Tjong Kim Sang and De Meulder, 2003) News 51.0 K 14,987 / 3,466 / 3,684 DUA
I2B2-CLIN (Uzuner et al., 2011) Clinical 299.9 K 13,052 / 3,263 / 27,625 DUA
SEC (Salinas Alvarado et al., 2015) Financial 4.8 K 825 / 207 / 443 CC-BY-3.0
LITBANK (Bamman et al., 2019) Fiction 299.5 K 5,548 / 1,388 / 2,973 CC-BY-4.0
SOFC (Friedrich et al., 2020) Science 300.1 K 489 / 123 / 263 CC-BY-4.0

Table 2: Overview of the selected datasets for 4 tasks (DST, RR, NLI, NER) on 14 domains. For each domain, we
report the number of collected in-domain texts for domain-adaptive pre-training, as well as the size and license
of the downstream dataset. All selected datasets are applicable for commercial usage. †License: Open American
National Corpus (OANC), Direct Universal Access (DUA), Creative Commons Attribution Share-Alike (CC-BY-
SA), Creative Commons Attribution International License (CC-BY).

2.4 Meta-Tokenization for Meta-Embeddings

To utilize our domain-adapted tokenizers in a sin-
gle model with meta-embeddings, we have to align
different output sequences generated by each tok-
enizer for the same input. This is not straightfor-
ward due to mismatches in subword token bound-
aries and sequence lengths. We thus introduce three
different aggregation methods to perform the meta-
tokenization:
(a) SPACE: We split the input sequence on white-
spaces into tokens and aggregate for each tokenizer
all subword tokens corresponding to a particular
token in the original sequence.
(b) DYNAMIC: The shortest sequence from all to-
kenizers is taken as a reference. Subwords from
longer sequences are aggregated accordingly. This
assumes that word-level knowledge is more useful
than subword knowledge and that fewer word split-
ting is an indication of in-domain knowledge.
(c) TRUNCATION: This method is similar to the
DYNAMIC aggregation, but it uses only the first
subword for each token instead of computing the
average when a token is split into more subwords.

Once the token and subword boundaries are de-
termined, we retrieve the subword embeddings

from the embedding layer corresponding to the
tokenizer and perform the aggregation if necessary,
in our case averaging all subword embeddings. Ex-
amples for each method are shown in Table 1.

3 Experimental Setup

This section introduces four downstream tasks with
their respective datasets and evaluation metrics. We
further provide details on our models, their hyper-
parameters, and the baseline systems.

3.1 Tasks and Evaluation Measures

We evaluate our domain-specialized models and
baselines on four prominent downstream tasks: di-
alog state tracking (DST), response retrieval (RR),
named entity recognition (NER), and natural lan-
guage inference (NLI) with five domains per task.
Table 2 shows the statistics of all datasets.

DST is cast as a multi-classification dialog task.
Given a dialog history (sequence of utterances) and
a predefined ontology, the goal is to predict the
output state, i.e., (domain, slot, value) tuples (Wu
et al., 2020) like (restaurant, pricerange, expen-
sive). The standard joint goal accuracy is adopted
as the evaluation measure: at each dialog turn, it
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compares the predicted dialog states against the
annotated ground truth. The predicted state is con-
sidered accurate if and only if all the predicted slot
values match exactly to the ground truth.

RR is a ranking task, relevant for retrieval-based
task-oriented dialog systems (Henderson et al.,
2019; Wu et al., 2020). Given the dialog context,
the model ranks N dataset utterances, including the
true response to the context (i.e., the candidate set
covers one true response and N−1 false responses).
Following Henderson et al. (2019), we report the
recall at top rank given 99 randomly sampled false
responses, denoted as R100@1.

NER is a sequence tagging task, aiming to de-
tect named entities within a sentence by classify-
ing each token into the entity type from a prede-
fined set of categories (e.g., PERSON, ORGA-
NIZATION) including a neutral type (O) for non-
entities. Following prior work (Tjong Kim Sang
and De Meulder, 2003; Nadeau and Sekine, 2007),
we report the strict micro F1 score.

NLI is a language understanding task testing
the reasoning abilities of machine learning models
beyond simple pattern recognition. The task is to
determine if a hypothesis logically follows the rela-
tionship from a premise, inferred by ENTAILMENT

(true), CONTRADICTION (false), or NEUTRAL (un-
defined). Following Williams et al. (2018), accu-
racy is reported as the evaluation measure.

3.2 Background Data for MLM-Specialization

We take unlabeled background datasets from the
original or related text sources to specialize our
models with domain-adaptive pre-training (details
are available in Appendix C). For MLM training,
we randomly sample up to 200K domain-specific
sentences2 and dynamically mask 15% of the sub-
word tokens following Liu et al. (2019).

3.3 Models and Baselines

We experiment with the most widely used PTLM:
BERT (Devlin et al., 2019) for NER and NLI. For
DST and RR as dialog tasks, we experiment with
BERT and TOD-BERT (Wu et al., 2020) follow-
ing Hung et al. (2022a) for comparing general- and
task-specific PTLMs.3 We want to highlight that

2Except for four low-resource domains. For these, we
randomly sample 44K (GOVERNMENT, TRAVEL, NEWS) and
4.5K (FINANCIAL) respectively.

3We use the pre-trained models from HuggingFace:
bert-base-uncased (NLI, NER) and bert-base-cased,
TODBERT/TOD-BERT-JNT-V1 (RR, DST).

our proposed method can be easily applied to any
existing PTLM. As baselines, we report the perfor-
mance of the non-specialized variants and compare
them against (a) full pre-training (Gururangan et al.,
2020), (b) adapter-based models (Houlsby et al.,
2019), and (c) our domain-specialized PTLM vari-
ants trained with TADA.

3.4 Hyperparameters and Optimization

During MLM training, we fix the maximum se-
quence length to 256 (DST, RR) and 128 (NER,
NLI) subwords and do lowercasing. We train for
30 epochs in batches of 32 instances and search
for the optimal learning rate among the following
values: {5 · 10−5, 1 · 10−5, 1 · 10−6}. Early stop-
ping is applied on the development set performance
(patience: 3 epochs) and the cross-entropy loss is
minimized using AdamW (Loshchilov and Hutter,
2019). For DST and RR, we follow the hyperpa-
rameter setup from Hung et al. (2022a). For NLI,
we train for 3 epochs in batches of 32 instances. For
NER, we train 10 epochs in batches of 8 instances.
Both tasks use a fixed learning rate of 5 · 10−5.

4 Evaluation Results

For each downstream task, we first conduct ex-
periments in a single-domain scenario, i.e., train-
ing and testing on data from the same domain, to
show the advantages of our proposed approach of
task-agnostic domain-adaptive embedding-based
pre-training and tokenizers (§ 4.1). We further con-
sider the combination of domain-specialized em-
beddings with meta-embeddings variants (Coates
and Bollegala, 2018; Kiela et al., 2018) in a multi-
domain scenario, where we jointly train on data
from all domains of the respective task (§ 4.2).

4.1 Single-Domain Evaluation

We report downstream performance for the single-
domain scenario in Table 3, with each subtable
being segmented into three parts: (1) at the top, we
show baseline results (BERT, TOD-BERT) without
any domain specialization; (2) in the middle, we
show results of domain-specialized PTLMs via full
domain-adaptive training and the adapter-based ap-
proach; (3) the bottom of the table contains results
of our proposed approach specializing only the em-
beddings and the domain-specific tokenization.

In both DST and RR, TOD-BERT outperforms
BERT due to its training for conversational knowl-
edge. By further domain-adaptive pre-training with
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DST RR
Model Taxi Restaurant Hotel Train Attraction Avg. Taxi Restaurant Hotel Train Attraction Avg.

BERT 23.87 35.44 30.18 41.93 29.77 32.24 23.25 37.61 38.97 44.53 48.47 38.57
TOD-BERT 30.45 43.58 36.20 48.79 42.70 40.34 45.68 57.43 53.84 60.66 60.26 55.57

BERT (MLM-FULL) 23.74 37.09 32.77 40.96 36.66 34.24 31.37 53.08 45.41 51.66 52.23 46.75
TOD-BERT (MLM-FULL) 29.94 43.14 36.11 47.61 41.54 39.67 41.77 55.27 50.60 55.17 54.62 51.49
BERT (MLM-ADAPT) 22.52 40.49 31.90 42.17 35.05 34.43 32.84 44.01 39.15 38.43 45.05 39.90
TOD-BERT (MLM-ADAPT) 32.06 44.06 36.74 48.84 43.50 41.04 49.08 58.18 55.55 59.46 60.26 56.51

BERT (MLM-EMB) 22.39 31.26 25.75 41.00 34.02 30.88 40.89 54.24 47.30 52.18 56.50 50.22
TOD-BERT (MLM-EMB) 32.00 43.47 36.67 47.34 42.80 40.46 47.08 57.71 55.65 60.72 60.39 56.31
TOD-BERT (MLM-EMBTOK-S) 33.03 41.14 36.77 47.50 40.77 39.84 50.41 58.97 56.48 62.63 59.56 57.61
TOD-BERT (MLM-EMBTOK-X) 32.55 44.60 36.92 47.27 43.58 40.98 50.77 60.40 56.87 62.11 60.89 58.21

NLI NER
Model Government Telephone Fiction Slate Travel Avg. Financial Fiction News Clinical Science Avg.

BERT 79.07 78.18 76.63 73.40 77.33 76.92 90.56 72.09 90.04 85.91 78.23 83.44

BERT (MLM-FULL) 80.82 81.43 76.43 71.97 77.78 77.69 90.53 72.33 90.62 86.18 78.19 83.57
BERT (MLM-ADAPT) 75.58 73.70 72.33 67.11 72.42 72.23 76.62 63.82 89.17 80.64 61.65 74.38

BERT (MLM-EMB) 80.77 80.42 79.27 73.50 77.94 78.38 90.38 71.79 90.67 85.82 78.82 83.50
BERT (MLM-EMBTOK-S) 80.57 79.15 78.51 72.94 77.28 77.69 87.49 69.90 89.55 85.53 79.39 82.37
BERT (MLM-EMBTOK-X) 81.08 80.16 78.97 73.15 77.68 78.21 89.27 69.77 89.21 85.31 77.33 82.18

Table 3: Results of our single-domain models with domain-specialized embeddings and tokenizers on four tasks.

full MLM training (MLM-FULL), TOD-BERT’s
performance decreases (i.e., -4% for RR and -0.8%
for DST compared to TOD-BERT). It is argued
that full MLM domain specialization has negative
interference: while TOD-BERT is being trained on
domain data during intermediate pre-training, the
model is forgetting the conversational knowledge
obtained during the initial dialogic pre-training
stage (Wu et al., 2020). The hypothesis is further
supported by the observations for the adapter-based
method which gains slight performance increases.

Our proposed embedding-based domain-
adaptation (MLM-EMB) yields similar perfor-
mance gains as specialization with adapters for
TOD-BERT on average. Inspired by previous work
on domain-specialized subtokens for language
model pre-training (Beltagy et al., 2019; Yang
et al., 2020), we additionally train domain-specific
tokenizers (MLM-EMBTOK) with the WordPiece
algorithm (Schuster and Nakajima, 2012). The
training corpora are either obtained from only
background corpora (S) or from the combination
of background and training set of each domain (X).
Further, our domain-specialized tokenizers coupled
with the embedding-based domain-adaptive pre-
training exhibit similar average performance for
DST and outperform the state-of-the-art adapters
and all other methods for RR.

Similar findings are observed for NLI and NER.
MLM-EMB compared to MLM-FULL results in
+0.7% performance gains in NLI and reaches simi-
lar average gains in NER. Especially for NLI, the
domain-specialized tokenizers (MLM-EMBTOK)

are beneficial in combination with our domain-
specialized embeddings, while having considerably
fewer trainable parameters. Given that TADA is
substantially more efficient and parameter-free (i.e.,
without adding extra parameters), this promises
more sustainable domain-adaptive pre-training.

4.2 Multi-Domain Evaluation

In practice, a single model must be able to han-
dle multiple domains because the deployment of
multiple models may not be feasible. To simu-
late a multi-domain setting, we utilize the domain-
specialized embeddings from each domain (§ 4.1)
and combine them with meta-embeddings (§ 2.3).

To train a single model for each task applicable
to all domains, we concatenate the training sets of
all domains for each task. As baselines for DST and
RR, we report the performance of BERT and TOD-
BERT and a version fine-tuned on the concatenated
multi-domain training sets (MLM-FULL). We test
the effect of multi-domain specialization in two
variants: averaging (AVG) and attention-based
(ATT) meta-embeddings. We conduct experiments
to check whether including general-purpose em-
beddings from TOD-BERT (EMB+MLM-EMBs)
is beneficial compared to the one without (MLM-
EMBs). The results in Table 4 show that combin-
ing domain-specialized embeddings outperforms
TOD-BERT in both tasks. In particular, aver-
aging meta-embeddings performs better in RR
while attention-based ones work better in DST
by 3.8% and 2.2% compared to TOD-BERT, re-
spectively. It is further suggested that combining
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DST RR
Model Taxi Restaurant Hotel Train Attraction Avg. Taxi Restaurant Hotel Train Attraction Avg.

BERT 29.10 39.92 36.67 47.63 42.32 39.13 44.87 51.98 49.11 50.15 54.81 50.18
TOD-BERT 34.65 44.24 39.54 51.66 44.24 42.87 50.99 61.53 56.09 58.94 62.76 58.06
BERT (MLM-FULL) 31.94 42.16 38.48 45.37 41.48 39.89 49.59 55.76 54.66 55.59 59.85 55.09
TOD-BERT (MLM-FULL) 32.26 45.70 39.51 51.31 45.92 42.94 53.51 64.44 59.22 62.14 66.49 61.16

(AVG) TOD-BERT (EMB+MLM-EMBs) 37.65 46.06 39.61 51.95 46.95 44.44 52.84 62.56 58.54 60.79 64.87 59.92
(ATT) TOD-BERT (EMB+MLM-EMBs) 35.13 46.86 40.73 51.10 44.76 43.72 53.06 63.18 56.94 60.45 64.13 59.55
(AVG) TOD-BERT (MLM-EMBs) 35.42 46.71 40.82 52.34 47.30 44.52 55.20 64.58 60.39 62.84 66.11 61.82
(ATT) TOD-BERT (MLM-EMBs) 37.35 46.98 41.32 51.92 47.88 45.09 53.73 64.00 59.89 61.54 65.05 60.84

NLI NER
Model Government Telephone Fiction Slate Travel Avg. Financial Fiction News Clinical Science Avg.

BERT 82.88 82.10 80.69 76.01 80.11 80.36 87.68 69.11 89.96 85.76 76.14 81.73
BERT (MLM-FULL) 83.29 81.79 81.11 76.32 79.66 80.43 88.71 69.92 89.69 85.61 80.03 82.79

(AVG) BERT (MLM-EMBs) 83.80 80.87 81.70 77.60 81.30 81.05 87.72 68.78 90.16 85.68 78.22 82.11
(ATT) BERT (MLM-EMBs) 83.50 81.64 81.74 76.68 80.36 80.78 88.89 69.05 90.56 85.43 80.55 82.90

Table 4: Results of our multi-domain models leveraging meta-embeddings on four downstream tasks.

only domain-specialized embeddings (i.e., without
adding general-purpose embeddings) works better
for both meta-embeddings variants.

These findings are confirmed by NLI and NER
experiments. The meta-embeddings applied in our
multi-domain scenarios outperform BERT by 0.7
points for NLI and 1.2 points for NER, respec-
tively. An encouraging finding is that two domains
(FINANCIAL, SCIENCE) with the smallest number
of training resources benefit the most compared to
the other domains in the NER task. Such few-shot
settings are further investigated in § 5.1.

Overall, we find that the meta-embeddings pro-
vide a simple yet effective way to combine sev-
eral domain-specialized embeddings, alleviating
the need of deploying multiple models.

5 Analysis

To more precisely analyze the advantages of our
proposed embedding-based domain-adaptive pre-
training methods and tokenizers, we study the fol-
lowing: few-shot transfer capability (§ 5.1), the
effect of domain-specialized tokenizers on sub-
word tokens (§ 5.2), and the combinations of
multiple domain-specialized tokenizers with meta-
tokenizers in multi-domain scenarios (§ 5.3).

5.1 Few-Shot Learning

We report few-shot experiments in Table 5 us-
ing 1% and 20% of the training data for NLI.
We run three experiments with different random
seeds to reduce variance and report the mean and
standard deviation for these limited data scenar-
ios. MLM-EMB on average outperforms MLM-
FULL by 1% in the single-domain scenario, es-
pecially for SLATE and TRAVEL domains with

the largest improvements (i.e., 3.3% and 2.7%, re-
spectively). In contrast, the adapter-based models
(MLM-ADAPT) perform worse in this few-shot
setting. This demonstrates the negative interfer-
ence (-10%) caused by the additional parameters
that cannot be properly trained given the scarcity
of task data for fine-tuning. In multi-domain set-
tings, attention-based meta-embeddings on average
surpass the standard BERT model in both few-shot
setups. Overall, these findings demonstrate the
strength of our proposed embedding-based domain-
adaptive pre-training in limited data scenarios.

5.2 Domain-Specific Tokenizers

To study whether domain-specialized tokenizers
better represent the target domain, we select the
development sets and count the number of words
that are split into multiple tokens for each tokenizer.
The assumption is that the domain-specialized to-
kenizers allow for word-level segmentation, and
thus, word-level embeddings, instead of fallbacks
to lower-quality embeddings from multiple sub-
word tokens.

We compare three different tokenizers for each
setting: (a) TOK-O: original tokenizer from PTLMs
without domain specialization; (b) TOK-S: domain-
specialized tokenizer trained on the in-domain
background corpus; (c) TOK-X: domain-specialized
tokenizer trained on the concatenated in-domain
background corpus plus the training set.

Table 6 shows the results on all four tasks av-
eraged across domains. It is evident that TOK-X
compared to TOK-O in general significantly reduces
the number of tokens split into multiple subwords
(-42.6% in DST, RR; -31.7% in NLI; -20.5% in
NER). This indicates that the domain-specialized
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Government Telephone Fiction Slate Travel Avg.

Model 1% 20% 1% 20% 1% 20% 1% 20% 1% 20% 1% 20%

SD

BERT 57.62±5.4 75.21±.4 49.20±1.9 74.45±.3 43.76±2.2 72.90±.3 46.70±2.1 67.71±.5 54.05±4.0 71.55±.4 50.27±2.4 72.36±.1

BERT (MLM-FULL) 61.92±1.8 76.07±.7 54.53±1.6 75.07±.7 49.32±1.4 73.21±.6 45.81±0.7 67.26±.6 56.56±3.5 72.50±.4 53.63±0.5 72.82±.4

BERT (MLM-ADAPT) 42.88±1.8 67.93±.2 41.27±1.1 65.80±.2 38.12±1.7 59.53±.4 38.91±2.1 54.71±.7 40.74±2.8 65.89±.6 40.38±1.5 62.78±.7

BERT (MLM-EMB) 61.66±1.0 76.61±.3 49.86±0.8 75.33±.3 48.35±4.1 72.22±.6 49.10±2.5 68.26±.3 60.27±1.6 72.73±.6 53.85±1.7 73.03±.1

BERT (MLM-EMBTOK-X) 61.27±1.8 75.75±.5 49.20±5.5 74.11±.1 49.74±0.8 72.26±.8 49.10±1.9 66.51±.8 58.99±2.3 72.15±.8 53.66±2.0 72.16±.1

MD
BERT 69.56±3.2 79.49±.7 64.80±2.0 77.72±.2 61.53±2.5 76.84±.7 61.43±2.0 72.64±.4 66.40±2.9 76.42±.5 64.74±1.8 76.62±.2

(AVG) BERT (MLM-EMBs) 70.13±1.3 80.00±.2 64.39±1.3 78.28±.2 62.24±1.7 76.94±.4 62.61±1.6 71.61±.3 66.45±1.4 76.21±.4 65.16±1.3 76.61±.1

(ATT) BERT (MLM-EMBs) 71.21±1.1 79.90±.3 65.56±1.4 78.48±.1 61.33±1.3 77.34±.3 61.99±1.3 72.69±.4 66.24±1.7 76.32±.5 65.27±1.6 76.95±.2

Table 5: Few-shot learning results on NLI task for 1% and 20% of the training data size in single-domain (SD) and
multi-domain (MD) scenarios. We report mean and standard deviation of 3 runs with different random seeds.

Dialog State Tracking and Response Retrieval
Model Taxi Restaur. Hotel Train Attract. Avg. Diff.

TOK-O 856 1597 1530 1659 1310 1390.4 -
TOK-S 715 1338 951 951 946 1048.2 -24.6%
TOK-X 465 959 753 753 740 798.4 -42.6%

Natural Language Inference
Model Govern. Tele. Fiction Slate Travel Avg. Diff.

TOK-O 4095 4221 3379 5094 5883 4534.3 -
TOK-S 1874 3517 3568 3597 3685 3248.2 -28.4%
TOK-X 1873 3522 2426 3683 3984 3097.6 -31.7%

Named Entity Recognition
Model Financ. Fiction News Clinical Science Avg. Diff.

TOK-O 397 1930 6357 5121 832 2927.4 -
TOK-S 695 1958 8526 3744 653 3115.2 +6.4%
TOK-X 600 1822 5818 2939 463 2328.4 -20.5%

Table 6: The number of words that have to be split into
multiple tokens (>= subwords) for different tokenizers.

tokenizers cover more tokens on the word-level,
and thus, convey more domain-specific information.
For domains with smaller background datasets, e.g.,
FINANCIAL and NEWS, the tokenizers are not able
to leverage more word-level information. For ex-
ample, TOK-S that was trained on the background
data performs worse in these domains, as the back-
ground data is too small and the models overfit
on background data coming from a similar, but
not equal source. Including the training corpora
helps to avoid overfitting and/or shift the tokeniz-
ers towards the dataset word distribution, as TOK-X
improves for both domains over TOK-S. The find-
ing is well-aligned with the results in Table 3 (see
§ 4.1) and supports our hypothesis that word-level
tokenization is beneficial.

5.3 Study on Meta-Tokenizers

In Section § 4.2, we experiment with multi-
ple domain-specialized embeddings inside meta-
embeddings. These embeddings are, however,
based on the original tokenizers and not on the
domain-specialized ones. While the latter are con-
sidered to contain more domain knowledge and

Model DST RR NLI NER

(AVG) BERT‡ (MLM-EMBs) 44.52 61.82 81.05 82.11
(ATT) BERT‡ (MLM-EMBs) 45.09 60.84 80.78 82.90

(AVG) BERT‡ (MLM-EMBTOKs-X) dyn 42.16 59.87 79.10 70.73
(AVG) BERT‡ (MLM-EMBTOKs-X) space 41.57 58.54 79.51 70.63
(AVG) BERT‡ (MLM-EMBTOKs-X) trun 40.26 58.07 79.47 66.66
(ATT) BERT‡ (MLM-EMBTOKs-X) dyn 42.73 59.22 79.32 70.83
(ATT) BERT‡ (MLM-EMBTOKs-X) space 41.45 58.95 79.93 70.71
(ATT) BERT‡ (MLM-EMBTOKs-X) trun 40.82 59.09 79.67 68.41

Table 7: Results of meta-tokenizers in multi-domain
experiments with meta-embeddings. Here bold indi-
cates the best performance and underline indicates the
best-performing meta-tokenization aggregation method.
‡BERT variants: TOD-BERT (DST, RR) and BERT
(NLI, NER).

achieve better downstream single-domain perfor-
mance (§ 4.1), it is not straightforward to combine
tokenized output by different tokenizers for the
same input due to mismatches in subword bound-
aries and sequence lengths.

Therefore, we further conduct experiments with
meta-tokenizers in the meta-embeddings setup fol-
lowing § 2.4. We compare the best multi-domain
models with our proposed aggregation approaches.
The averaged results across domains are shown in
Table 7 (per-domain results are available in Ap-
pendix D). Overall, it is observed that the SPACE

and DYNAMIC approaches work better than TRUN-
CATION. However, there is still a performance
gap between using multiple embeddings sharing
the same sequence from the original tokenizer
compared to the domain-specialized tokenizers.
Nonetheless, this study shows the general appli-
cability of meta-tokenizers in transformers and sug-
gests future work toward leveraging the domain-
specialized tokenizers in meta-embeddings.

6 Related Work

Domain Adaptation. Domain adaptation is a
type of transfer learning that aims to enable the
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trained model to be generalized into a specific
domain of interest (Farahani et al., 2021). Re-
cent studies have focused on neural unsupervised
or self-supervised domain adaptation leveraging
PTLMs (Ramponi and Plank, 2020), which do not
rely on large-scale labeled target domain data to
acquire domain-specific knowledge. Gururangan
et al. (2020) proposed domain-adaptive interme-
diate pre-training, continually training PTLM on
MLM with domain-relevant unlabeled data, leading
to improvements in downstream tasks in both high-
and low-resource setups. The proposed approach
has been applied to multiple tasks (Glavaš et al.,
2020; Lewis et al., 2020) across languages (Hung
et al., 2023; Wang et al., 2023), however, requires
fully pre-training (i.e., update all PTLM parame-
ters) during domain adaptation, which can poten-
tially result in catastrophic forgetting and negative
interference (Houlsby et al., 2019; He et al., 2021).

Parameter-Efficient Training. Parameter-
efficient methods for domain adaptation alleviate
these problems. They have shown robust perfor-
mance in low-resource and few-shot scenarios (Fu
et al., 2022), where only a small portion of parame-
ters are trained while the majority of parameters are
frozen and shared across tasks. These lightweight
alternatives are shown to be more stable than
their corresponding fully fine-tuned counterparts
and perform on par with or better than expensive
fully pre-training setups, including adapters,
prompt-based fine-tuning, and sparse subnetworks.
Adapters (Rebuffi et al., 2017; Houlsby et al., 2019)
are additional trainable neural modules injected
into each layer of the otherwise frozen PTLM,
including their variants (Pfeiffer et al., 2021),
have been adopted in both single-domain (Bapna
and Firat, 2019) and multi-domain (Hung et al.,
2022a) scenarios. Sparse subnetworks (Hu et al.,
2022; Ansell et al., 2022) reduce the number of
training parameters by keeping only the most
important ones, resulting in a more compact model
that requires fewer parameters for fine-tuning.
Prompt-based fine-tuning (Li and Liang, 2021;
Lester et al., 2021; Goswami et al., 2023) reduces
the need for extensive fine-tuning with fewer
training examples by adding prompts or cues to
the input data. These approaches, however, are
still parameter- and time-inefficient, as they add
additional parameters, require complex training
steps, are less intuitive to the expressiveness, or are
limited to the multi-domain scenario for domain

adaptation. A broader overview and discussion of
recent domain adaptation methods in low-resource
scenarios is given in the survey of Hedderich et al.
(2021).

7 Conclusions

In this paper, we introduced TADA – a novel
task-agnostic domain adaptation method which
is modular and parameter-efficient for pre-trained
transformer-based language models. We demon-
strated the efficacy of TADA in 4 downstream tasks
across 14 domains in both single- and multi-domain
settings, as well as high- and low-resource sce-
narios. An in-depth analysis revealed the advan-
tages of TADA in few-shot transfer and highlighted
how our domain-specialized tokenizers take the
domain vocabularies into account. We conducted
the first study on meta-tokenizers and showed their
potential in combination with meta-embeddings
in multi-domain applications. Our work points
to multiple future directions, including advanced
meta-tokenization methods and the applicability of
TADA beyond the studied tasks in this paper.

Acknowledgements

We would like to thank the members of the NLP
and Neuro-Symbolic AI research group at the
Bosch Center for Artificial Intelligence (BCAI) and
the anonymous reviewers for their feedback.

Limitations

In this work, we have focused on the efficiency
concerns of task-agnostic domain adaptation ap-
proaches leveraging pre-trained transformer-based
language models. The experiments are conducted
on four tasks across 14 domains in both high- and
low-resource scenarios. We only consider the meth-
ods utilizing pre-collected in-domain unlabeled
text corpora for domain-adaptive pre-training. It
is worth pointing out that the selected domains are
strongly correlated to the selected tasks, which does
not reflect the wide spectrum of domain interests.
Besides, the datasets are covered only in English
to magnify the domain adaptation controlling fac-
tors and use cases, while multilinguality would
be the next step to explore. We experimented on
encoder-only PTLM based on the downstream clas-
sification tasks, where the encoder-decoder PTLM
would be applicable to different tasks (e.g., natural
language generation, summarization, etc.) requir-
ing more computational resources. We hope that
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future research builds on top of our findings and
extends the research toward more domains, more
languages, more tasks, and specifically with the
meta-tokenizers for efficiency concerns of domain
adaptation approaches.

Ethics Statement

We utilized the pre-collected in-domain unlabeled
text corpora to explore the domain-adaptation pre-
training approaches with efficiency concerns in this
work. Although we carefully consider the data
distribution and the selection procedures, the pre-
collected background sets for each domain might
introduce the potential risk of sampling biases.
Moreover, (pre)training, as well as fine-tuning of
large-scale PTLMs, might pose a potential threat
to the environment (Strubell et al., 2019): in light
of the context, the task-agnostic domain adaptation
approaches we introduced are aimed at mitigating
towards the directions of reducing the carbon foot-
print of pretrained language models.
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A Computational Information

All the experiments are performed on Nvidia Tesla V100 GPUs with 32GB VRAM and run on a carbon-
neutral GPU cluster. The number of parameters and the total computational budget for domain-adaptive
pre-training (in GPU hours) are shown in Table 8.

Model # Trainable Parameters MLM Budget (in GPU hours)

BERT‡ (MLM-FULL) ∼110 M ∼5.5h (NER and NLI), 7.5h (DST and RR)
BERT‡ (MLM-ADAPT) ∼0.9 M ∼2.5h (NER and NLI), 3.5h (DST and RR)
BERT‡ (MLM-EMB) ∼24 M ∼3.5h (NER and NLI), 4.5h (DST and RR)

Table 8: Overview of the computational information for the domain-adaptive pre-training. ‡BERT variants: BERT
(NLI, NER) and TOD-BERT (DST, RR).

B Hyperparameters

Detailed explanations of our hyperparameters are provided in the main paper in Section § 3.4. In our
conducted experiments, we only search for the learning rate in domain-adaptive pre-training. The best
learning rate depends on the selected domains and methods for each task.

C In-domain Unlabeled Text Corpora

We provide more detailed information on the background datasets that are used for domain-adaptive
pre-training in Table 9.

Task Domain Background dataset # Sentences

DST, RR

Taxi

DomainCC corpus from Hung et al. (2022a).

200 K
Restaurant 200 K
Hotel 200 K
Train 200 K
Attraction 200 K

NLI

Government

The respective part of the OANC corpus.

46.0 K
Travel 47.4 K
Slate 214.8 K
Telephone 234.6 K

Fiction The books corpus (Zhu et al., 2015), used as the pre-training data of BERT (Devlin et al., 2019). 299.5 K

NER

News The Reuters news corpus in NLTK (nltk.corpus.reuters). Similar to the training data of 51.0 KCoNLL (Tjong Kim Sang and De Meulder, 2003).
Clinical Pubmed abstracts from clinical publications filtered following Lange et al. (2022). 299.9 K
Financial The financial phrase bank from Malo et al. (2014). 4.8 K
Fiction Same as NLI FICTION, described above. 299.5 K

Science Randomly sampled SemanticScholar abstracts from Biology (70%) and Computer Science (30%). 300.1 KSimilar to the pre-training data of SciBERT (Beltagy et al., 2019).

Table 9: Overview of the background datasets and their sizes as reported in Table 2 in the background column. The
background datasets are used to train domain-specific tokenizers and domain-adapted embeddings layer.
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D Per-Domain Results for Meta-Tokenizers

We provide the results for each domain in our multi-domain experiments with meta-tokenizers and
meta-embeddings in Table 10 for DST and RR, and in Table 11 for NLI and NER.

DST RR
Model Taxi Restaurant Hotel Train Attraction Avg. Taxi Restaurant Hotel Train Attraction Avg.

(AVG) TOD-BERT (MLM-EMBs) 35.42 46.71 40.82 52.34 47.30 44.52 55.20 64.58 60.39 62.84 66.11 61.82
(ATT) TOD-BERT (MLM-EMBs) 37.35 46.98 41.32 51.92 47.88 45.09 53.73 64.00 59.89 61.54 65.05 60.84

(AVG) TOD-BERT (MLM-EMBTOKs-X) dyn 32.06 44.12 40.54 49.89 44.21 42.16 52.84 62.54 58.26 61.24 64.46 59.87
(AVG) TOD-BERT (MLM-EMBTOKs-X) space 31.35 44.89 37.27 49.47 44.86 41.57 51.59 62.46 56.44 60.21 61.99 58.54
(AVG) TOD-BERT (MLM-EMBTOKs-X) trun 33.61 43.88 38.20 44.24 41.35 40.26 52.55 61.19 55.55 58.58 62.47 58.07
(ATT) TOD-BERT (MLM-EMBTOKs-X) dyn 34.06 45.01 39.73 50.11 44.73 42.73 51.22 62.08 58.04 61.39 63.35 59.22
(ATT) TOD-BERT (MLM-EMBTOKs-X) space 30.19 42.57 40.23 49.84 44.41 41.45 51.51 61.64 57.30 60.91 63.41 58.95
(ATT) TOD-BERT (MLM-EMBTOKs-X) trun 31.45 43.44 37.08 48.13 44.02 40.82 51.59 62.63 57.97 60.66 62.62 59.09

Table 10: Results of meta-tokenizers in multi-domain experiments with meta-embeddings on two downstream
tasks: DST and RR, with joint goal accuracy (%) and R100@1 (%) as evaluation metric, respectively. Three
meta-tokenization aggregation methods: dynamic (dyn), space (space), truncation (trun), are combined with two
meta-embeddings approaches: average (AVG), attention-based (ATT).

NLI NER
Model Government Telephone Fiction Slate Travel Avg. Financial Fiction News Clinical Science Avg.

(AVG) BERT (MLM-EMBs) 83.80 80.87 81.70 77.60 81.30 81.05 87.72 68.78 90.16 85.68 78.22 82.11
(ATT) BERT (MLM-EMBs) 83.50 81.64 81.74 76.68 80.36 80.78 88.89 69.05 90.56 85.43 80.55 82.90

(AVG) BERT (MLM-EMBTOKs-X) dyn 81.08 79.81 80.44 75.35 78.80 79.10 83.26 59.70 75.93 70.42 64.33 70.73
(AVG) BERT (MLM-EMBTOKs-X) space 81.90 81.33 80.49 75.14 78.69 79.51 83.68 61.68 76.39 70.78 60.61 70.63
(AVG) BERT (MLM-EMBTOKs-X) trun 81.44 81.38 79.17 75.86 79.50 79.47 77.99 53.53 74.37 67.08 60.33 66.66
(ATT) BERT (MLM-EMBTOKs-X) dyn 81.70 80.62 80.33 74.78 79.15 79.32 84.64 59.98 76.08 71.30 62.17 70.83
(ATT) BERT (MLM-EMBTOKs-X) space 83.34 81.43 80.23 74.83 79.81 79.93 83.70 62.03 76.04 71.54 60.22 70.71
(ATT) BERT (MLM-EMBTOKs-X) trun 82.37 81.64 78.81 75.65 79.90 79.67 80.33 58.80 74.49 66.92 61.51 68.41

Table 11: Results of meta-tokenizers in multi-domain experiments with meta-embeddings on two downstream
tasks: NLI and NER, with accuracy (%) and F1 (%) as the evaluation metric, respectively. Three meta-tokenization
aggregation methods: dynamic (dyn), space (space), truncation (trun), are combined with two meta-embeddings
approaches: average (AVG), attention-based (ATT).
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