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Abstract

Existing approaches in the vision-and-language
pre-training (VLP) paradigm mainly deploy ei-
ther fusion-based encoders or dual-encoders,
failing to achieve both effectiveness and effi-
ciency in downstream multimodal tasks. In
this paper, we build a flexible VLP model by
incorporating cross-modal fusions into a dual-
encoder architecture, where the introduced fu-
sion modules can be easily decoupled from the
dual encoder so as to switch the model to a
fusion-free one. To better absorb cross-modal
features from the fusion modules, we design a
cross-modal knowledge transfer strategy along
with other comprehensive pre-training tasks to
guide the training process, which can further
strengthen both the fusion-based and fusion-
free representation learning. Extensive experi-
ments conducted on various downstream vision-
language tasks show that our proposed model is
well-equipped with effectiveness as well as ef-
ficiency, demonstrating a superior performance
compared with other strong VLP models.

1 Introduction

With the great development of self-supervised pre-
training in both the community of natural language
processing (Devlin et al., 2019; Raffel et al., 2020)
and computer vision (Dosovitskiy et al., 2021; Bao
et al., 2022a), recent researches have also wit-
nessed the success of Vision-and-Language Pre-
training (VLP). VLP learns generic multimodal
representations from large-scale image-text pairs
and can be further finetuned on various downstream
Vision-Language (VL) tasks, including image-text
retrieval (Lin et al., 2014), visual question answer-
ing (Goyal et al., 2017), visual reasoning (Suhr
et al., 2019) and visual entailment (Xie et al., 2019).

The core of VLP resides in modeling the interac-
tion between image and text representations. Most
of the mainstreams first represent the input image
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Figure 1: Different designs for vision-language fusions
based on multi-head attention, “I" and “T" are short for
image and text respectively. (a) Lightweight: only a few
or even no parameters are used for VL fusions. (b) Con-
catenation: multi-head cross-attentions are applied to
fuse the concatenation of image and text. (c) Cascading:
first uses self-attentions to fully encode the unimodal in-
put, then fuses the encoded features via cross-attentions.
(d) Parallel: self-attentions and cross-attentions are in-
dependently calculated.

via pre-trained deep feature extractors, then feed
the derived visual features along with the text em-
beddings into multi-layer Transformers(Vaswani
et al., 2017), in which cross-modal attention is used
to fuse multimodal representations. Despite demon-
strating superior performances on downstream VL
tasks, the fusion-based methods need to jointly en-
code image and text representations, significantly
degrading the efficiency in retrieval tasks with mas-
sive candidates of image-text pairs.

To make VLP models applicable in real-world
scenarios, another line of methods independently
encode text and image with dual encoders, shown
in Fig. 1(a), in which cross-modal fusion is con-
ducted by lightweight modules such as dot pro-
duction. Thanks to the dual-encoder architecture,
encoded features of image and text can be pre-
computed offline for inference efficiency. Never-
theless, independent encoding with shallow inter-
action fails to fully exploit the cross-modal interac-
tion, making the performance far from satisfactory
in VL classification tasks that require a strong abil-
ity of multimodal reasoning.

There are some recent works that attempt to keep
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Figure 2: An example intuitively illustrates why a fusion-free text encoder can still work when the cross-modal
fusions are removed from it. During training, the cross-modal fusions teach the text feature to “associate" what the
related images could be. In inference of image-text retrieval, since a relevant image candidate is naturally closer to
other images that are also related to the same text, the text feature along with its “associated" images will become
closer to the relevant candidates than the original text feature.

both effectiveness and efficiency in downstream VL
tasks. In particular, Wang et al. (2021b) empower a
dual-encoder model by distilling knowledge from
a fusion-based model. Although the distilled dual-
encoder learns useful knowledge from cross-modal
fusions while keeping its efficiency, this kind of
method needs to pre-train a fusion-based model as
a teacher and the performance is severely limited
by the ability of the teacher model. VLMo (Bao
et al., 2022b) introduces mixture-of-experts to en-
code various modalities with a modality-agnostic
Transformer, which can be used as either a fusion
encoder or a dual encoder. However, to fully train
such a sparse model with experts towards different
modalities, not only the image-text pairs but also
massive images and text are required.

In this paper, we propose a unified and flexi-
ble VLP model named FOD, which incorporates
cross-modal fusions into a dual-encoder architec-
ture for achieving both efficacy and efficiency in
multimodal scenarios. Specifically, we adopt a dual
architecture with one image encoder and one text
encoder, in which cross-modal fusions are placed
in the text encoder side. Considering that conven-
tional fusions are based on either concatenation
(Kim et al., 2021; Singh et al., 2022) or cascad-
ing (Li et al., 2021a; Dou et al., 2022) that can’t
be directly decoupled from the boarding encoder,
we employ a parallel-style fusion module to model
cross-modal interactions, shown in Fig. 1. In this
way, FOD can explicitly capture the complex in-
teraction between modalities during training while
switching the fusion-based text encoder to a fusion-
free one by removing the fusion module.

In order to retain more cross-modal knowledge
in FOD when the fusion modules are removed, we

further design a cross-modal knowledge transfer
strategy that forces both the unimodal features of
image and text to approximate the multimodal rep-
resentation produced by the fusion-based encoder.
Intuitively, since paired image and text describe the
same object in different views, we can naturally
associate a set of relevant images when given a
caption (and vice versa). Thus, if the text feature
learns to “associate" its related images and absorbs
them to enhance itself, the enhanced text feature
can become closer to the relevant image candidates
(and also farther to the unrelated ones) in infer-
ence. A concrete example illustrating this intuition
is shown in Fig. 2.

We evaluate our model on both image-text re-
trieval tasks and vision-language understanding
tasks. Experimental results show that our model
outperforms other VLP methods on all downstream
VL tasks, and even performs competitively with
models that use a larger order of magnitude of data
for pre-training. Thanks to the detachable fusion
module and the strategy of knowledge transfer, our
model can be flexibly switched to a fusion-free
pattern to enjoy a much faster inference speed of
retrieval while retaining most of the performance.

2 Related Work

Without considering the ways of visual feature ex-
traction, the approaches of vision-language pre-
training can be divided into two categories based
on the interaction form between image and text.
The first category, fusion-based model, explicitly
utilizes deep fusion layers with cross-modal atten-
tion to model the interaction of images and texts
(Tan and Bansal, 2019; Lu et al., 2019; Su et al.,
2019; Li et al., 2019; Chen et al., 2020; Li et al.,
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Figure 3: Overview of FOD, which consists of an image encoder and a flexible text encoder. The text encoder
can be switched between fusion-based pattern and fusion-free pattern. We utilize three complementary learning
strategies to jointly train FOD: Fusion-free learning with Image-Text Contrastive learning (ITC), Fusion-based
learning with Image-Text Matching (ITM) and Mask Language Modeling (MLM), and Cross-modal Knowledge
Transfer with Image-to-Multimodal (I2M) and Text-to-Multimodal (T2M) learning.

2020, 2021b; Gan et al., 2020; Zhang et al., 2021;
Huang et al., 2020, 2021; Kim et al., 2021; Li et al.,
2021a; Wang et al., 2021c; Li et al., 2022; Zeng
et al., 2022; Wang et al., 2022). These models per-
form well on vision-language understanding tasks
due to the ability of capturing deep cross-modal
features. However, for vision-language retrieval
tasks, the fusion-based methods need to encode all
the possible image-text pairs to find the most rel-
evant candidate, resulting in extremely high time
cost.

The second category, dual-based model, utilizes
a visual encoder and a text encoder to separately
encode images and text, while the interaction be-
tween images and text is modeled by cosine sim-
ilarity or linear projection (Radford et al., 2021;
Jia et al., 2021; Yao et al., 2021). Although dual-
based models are effective for retrieval tasks since
features can be pre-computed and cached offline,
the shallow interaction is insufficient to tackle the
vision-language understanding tasks that require
complex VL reasoning. Besides, training a dual-
based model often necessitates a large number of
image-text pairs (e.g. 300M for Filip (Yao et al.,
2021) and 1.8 B for ALIGN (Jia et al., 2021)).

Recently, some researchers have devoted them-
selves to investigating a unified model that is well-
performed on vision-language understanding tasks
while maintaining the efficiency towards retrieval
tasks (Wang et al., 2021b; Liu et al., 2021; Wang
et al., 2021a; Bao et al., 2022b; Dou et al., 2022).
To achieve this, one line of the works leverage
knowledge distillation, in which a fusion-encoder

model is pre-trained as a teacher model to guide
the training of a dual-encoder model (Wang et al.,
2021b), but the performance is inevitably limited
by the teacher model. Other efforts attempt to train
a modality-agnostic encoder with shared parame-
ters, which can be used as either a fusion encoder
or a dual encoder (Wang et al., 2021a; Bao et al.,
2022b). Despite the benefits of modeling all the
modalities into a single encoder, it is hard to fully
train such a huge model and a large number of train-
ing samples in different modalities are required.
Different from these methods, we incorporate a
detachable cross-modal fusion module into a dual-
encoder architecture, which can easily remove the
fusion module in inference and switch to a fusion-
free model. More importantly, our model does not
rely on teacher models or massive data in other
modalities.

3 Model Architecture

As shown in Fig. 3, FOD is in a transformer-based
dual-encoder architecture that includes a visual en-
coder and a text encoder. The text encoder can
be flexibly switched between a fusion-based pat-
tern and a fusion-free pattern. For the fusion-based
pattern, cross-modal fusions are incorporated into
the text encoder to model multimodal interactions.
For the fusion-free pattern, the fusion module is
decoupled from the text encoder so as to get rid of
the cross-modal calculation. During training, both
fusion-based and fusion-free patterns are involved
in the learning process, while in inference, the text
encoder will be switched to one of the two patterns
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according to the type of downstream tasks. In the
following sections, we introduce the visual encoder
and the two patterns of the text encoder, followed
by the pre-training strategies.

3.1 Visual Encoder

We utilize Vision Transformer (Dosovitskiy et al.,
2021) to build the visual encoder. Given a 2D
image I ∈ RC×H×W , we first reshape I into a
sequence of 2D image patches V p ∈ RN×(P 2·C),
where (H,W ) is the original image resolution, C is
the number of channels, (P, P ) is the patch resolu-
tion, and N = HW/P 2 is the number of patches.

V p = [vp1 ; · · · ; vpN ]. (1)

Then we flatten the patches and embed them to
V e ∈ RN×D with a trainable linear projection
ω ∈ R(P 2·C)×D, where D is the hidden size.

V e = [vp1ω; · · · ; vpNω]. (2)

We also prepend a learnable embedding V e
cls ∈

RD to the patch embeddings V e. Besides, posi-
tional information is also important for path repre-
sentations. Therefore, the embedded patches V̄ are
obtained by summing [V e

cls;V
e] and learnable 1D

position embeddings Vpos ∈ R(N+1)×D. Finally,
we obtained visual features V by encoding V̄ with
the visual encoder VE.

V̄ = [V e
cls; v

e
1; · · · ; veN ] + Vpos,

V = VE(V̄ ).
(3)

3.2 Text Encoder

As mentioned before, there are two patterns of the
text encoder: fusion-free text encoder and fusion-
based text encoder. These two patterns are both
based on Transformers (Vaswani et al., 2017) and
share all the fusion-free parameters except the out-
put linear projection in the last encoding layer.

Given the input text t = {tcls;w1; · · · ;wS}, we
first embed t to T 0 ∈ RS×D via a word embedding
matrix and a position embedding matrix. Then
the text embedding T 0 can be fed into different
patterns of the text encoder to produce different
output features.

3.2.1 Fusion-free Text Encoder

In this pattern, the text encoder skips the cross-
modal fusions and outputs text-only features. The

text encoder is a L-layer Transformer, and the out-
put of the l-th layer T l is computed as follows:

T l
s = MSA(T l−1, T l−1, T l−1),

T̂ l = LN(T l
s + T l−1),

T l = LN(MLP(T̂ l) + T̂ l),

T = TL,

(4)

where MSA, LN and MLP are shot for Multi-Head
Self-Attention, layer normalization and multi-layer
perceptron respectively, T is the final features of
the fusion-free text encoder.

3.2.2 Fusion-based Text Encoder

To fully capture vision-and-language interactions,
both self-attention and cross-modal attention are
considered in the fusion-based encoder. Specif-
ically, in the l-th layer, we separately compute
the fusion-free self-attention and the image-fused
cross-attention, and then sum them up to produce
the multimodal features. The detailed process is
shown as follows:

M0 = T 0,

M l
s = MSA(M l−1,M l−1,M l−1),

M l
c = MCA(M l−1, V, V ),

M̃ l =
1

2
× (M l

s +M l
c),

M̂ l = LN(M̃ l +M l−1),

M l = LN(MLP(M̂ l) + M̂ l),

M = ML,

(5)

where MCA is Multi-Head Cross Attention, V is
the final visual features produced by the visual
encoder. The MCA, LN and MLP modules are
reused from the fusion-free text encoder. Notably,
the cross-modal attention is introduced in a parallel
manner, which is parameter-efficient and can be
easily decoupled from the encoder.

In addition, the cross-modal fusions can also
be placed in the visual side to build a fusion-based
visual encoder, or be placed in both sides for deeper
interaction. We will discuss this in the experiment
section.

4 Pre-training Strategies

FOD is jointly trained with three different strate-
gies, namely fusion-free learning, fusion-based
learning and cross-modal knowledge transfer,
which are complementary to each other.
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4.1 Fusion-free Learning
For this strategy, we utilize image-text contrastive
learning to train the dual architecture with the abil-
ity of unimodal encoding, which is not only bene-
ficial to other cross-modal learning strategies, but
also the basis for applying the model to downstream
retrieval tasks.

4.1.1 Image-Text Contrast
We select Vcls and Tcls produced by visual encoder
and fusion-free text encoder to compute the loss
of contrastive learning. In order to have more neg-
ative examples here, we maintain two queues to
store the most recent K image and text representa-
tions computed by momentum encoders like MoCo
(He et al., 2020). For convenience, we denote
these representations in queues as V k

cls and T k
cls,

where k ∈ {1, · · · ,K}. For each image repre-
sentation V j

cls and text representation T j
cls in the

current batch, the image-to-text similarities pi2tj

and text-to-image similarities pt2ij are computed
by:

si2tj,k = g(fv(V
j
cls))

⊤g(ft(T
k
cls)),

st2ij,k = g(ft(T
j
cls))

⊤g(fv(V
k
cls)),

(6)

pi2tj =
exp(si2tj,j/σ)∑K
k=1 exp(s

i2t
j,k/σ)

, pt2ij =
exp(st2ij,j/σ)∑K
k=1 exp(s

t2i
j,k/σ)

,

(7)

where fv and ft are linear projections, g is L2 nor-
malization, and σ is a learnable temperature pa-
rameter. Let yi2t and yt2i denote the ground-truth
ont-hot similarity, where positive pairs have a prob-
ability of 1 and negative pairs have a probability of
0. The image-text contrastive loss Litc is defined
as the cross-entropy H between p and y:

Litc =
1

2
×

[
H(yi2t, pi2t) +H(yt2i, pt2i)

]
. (8)

4.2 Fusion-based learning
For this strategy, we apply image-text matching
(ITM) and mask language modeling (MLM) to the
fusion-based text encoder for learning both coarse-
grained and fine-grained cross-modal fusions.

4.2.1 Image-Text Matching
ITM focuses on coarse-grained multimodal learn-
ing, which aims to predict whether a pair of im-
age and text is matched or not. Since the image-
text pairs in a batch are all positive, we sample
global hard negative image-text pairs from all in-
put batches on all the GPUs based on the simi-
larity scores calculated in Eq. 7. Then we feed
the final hidden vector of the fusion-based encoder

Mcls into a binary classifier to predict a two-class
probability pitm. Given the ground-truth label
yitm ∈ {0, 1}, the image-text matching loss Litm is
defined as the cross-entropy H between yitm and
pitm:

Litm = H(yitm, pitm). (9)

4.2.2 Masked Language Modeling
MLM predicts masked tokens on the image-fused
text features, which serves as the fine-grained cross-
modal learning. Formally, we randomly mask 15%
of the tokens in the text sequence t with a whole
word masking strategy (Cui et al., 2021) and de-
note the input embedding of the masked text as T̄ 0.
Then the model is trained to predict the masked
tokens based on the final outputs M̄ by feeding T̄ 0

into the fusion-based encoder. The detailed process
is similar to Eq. 5. Let ymask denote the ground-
truth label of the masked tokens, and pmask denote
the models’ prediction for the masked tokens, then
the masked language modeling loss is defined as
the cross-entropy H between ymask and pmask:

Lmlm = H(ymask, pmask). (10)

4.3 Cross-modal Knowledge Transfer
In our preliminary experiments, we observe that if
the ITM loss is removed from the training process,
the performance in retrieval tasks would dramat-
ically degrade. From the perspective of feature
distributions, we believe that ITM can better close
the spatial distance between the unimodal features
of image and text, which encourages us to explicitly
utilize ITM to enhance unimodal representations.

To achieve this, we further design the strategy
of cross-modal knowledge transfer (CKT). Given
an image-text pair, we can first extract its image
Vcls, text Tcls and multimodal representations Mcls.
Obviously, Mcls is the most comprehensive fea-
ture that describes the image-text pair among them,
but only Vcls and Tcls are used to compute simi-
larity score in retrieval tasks. In this case, if we
enhance the text feature to actively associate its re-
lated images by transferring knowledge from Mcls

to Tcls, it will be easier to find the relevant image
candidates based on the enhanced text feature in
inference (and similar for Vcls). Thus, we force
both Vcls and Tcls to approximate Mcls via mean-
squared loss in the last layer, which are calculated
as follows:

LI2M = MSE(fv(Vcls), ft(Mcls)),

LT2M = MSE(ft(Tcls), ft(Mcls)),
(11)
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Model # Pretrain
Images

MSCOCO (5K) Flickr30k (1K)
Text Retrieval Image Retrieval Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

UNITER-B 4M 64.4 87.4 93.1 50.3 78.5 87.2 85.9 97.1 98.8 72.5 92.4 96.1
OSCAR-B 4M 70.0 91.1 95.5 54.0 80.8 88.5 - - - - - -
ViLT-B 4M 61.5 86.3 92.7 42.7 72.9 83.1 83.5 96.7 98.6 64.4 88.7 93.8

Inference based on “Dual" setting

ALIGN 1.2B 77.0 93.5 96.9 59.9 83.3 89.8 95.3 99.8 100.0 84.9 97.4 98.6
Distill 4M - - - - - - 82.2 96.7 98.5 68.2 89.8 94.2
ALBEF 4M 65.9 88.5 93.8 49.1 76.4 84.9 89.7 98.5 99.7 74.5 93.2 96.3
X-VLM 4M 71.4 91.9 96.4 54.5 81.6 88.9 90.2 99.1 99.7 78.4 95.2 97.8
VLMo-B 4M 74.8 93.1 96.9 57.2 82.6 89.8 92.3 99.4 99.9 79.3 95.7 97.8
Ours 3M 77.3 94.3 96.9 58.9 83.2 90.0 94.6 99.7 99.9 83.5 96.4 98.1

Inference based on “Re-Rank" setting

BLIP† 129M 81.2 95.7 97.9 64.1 85.8 91.6 97.2 99.9 100.0 87.5 97.7 98.9
ALBEF† 4M 73.1 91.4 96.0 56.8 81.5 89.2 94.3 99.4 99.8 82.8 96.7 98.4
X-VLM† 4M 80.4 95.5 98.2 63.1 85.7 91.6 96.8 99.8 100.0 86.1 97.4 98.7
Ours† 3M 82.2 95.8 97.9 65.2 86.4 91.9 97.4 100.0 100.0 87.3 97.7 98.9

Table 1: Fine-tuned image-text retrieval results on MSCOCO (5K test set) and Flickr30K (1K test set). † inference
is based on the “Re-Rank" setting. The bold numbers denote the best results of methods that are pre-trained with the
standard 4M data.

Model # Pretrain
Images

Flickr30k (1K)
Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

UNITER 4M 83.6 95.7 97.7 68.7 89.2 93.9
ViLT 4M 69.7 91.0 96.0 51.3 79.9 87.9

Inference based on “Dual" setting

CLIP 400M 88.0 98.7 99.4 68.7 90.6 95.2
ALIGN 1.2B 88.6 98.7 99.7 75.7 93.8 96.8
ALBEF 4M 81.3 96.4 98.3 67.9 89.2 93.8
X-VLM 4M 84.7 97.9 99.3 72.5 92.7 96.3
VLMo 4M 88.2 97.9 99.4 73.4 92.9 96.6
Ours 3M 89.8 98.8 99.7 77.5 94.5 97.1

Inference based on “Re-Rank" setting

ALBEF† 4M 90.5 98.8 99.7 76.8 93.7 96.7
X-VLM† 4M 94.1 99.3 99.9 82.3 96.1 98.0
Ours† 3M 95.5 99.8 100.0 84.5 96.2 98.2

Table 2: Zero-Shot image-text retrieval results on
Flickr30K (1K test set). † inference is based on the
“Re-Rank" setting.

where fv and ft are the linear projections used in
Eq. 6. We do not freeze Mcls in knowledge transfer
so that multimodal and unimodal features can be
jointly trained.

5 Experiment

5.1 Pre-training Settings

5.1.1 Datasets
Following previous works (Chen et al., 2020; Kim
et al., 2021), we use four well-known image cap-
tioning datasets for pre-training: SBU Captions
(Ordonez et al., 2011), Microsoft COCO (Lin et al.,
2014), Visual Genome (Krishna et al., 2017) and
Google Conceptual Captions (GCC) (Sharma et al.,
2018). Since images in GCC and SBU are provided

Model # Pretrain
Images

VQAv2 NLVR2
test-dev test-std dev test-P

SimVLM 1.8B 77.87 78.14 81.72 81.77
BLIP 129M 78.25 78.32 82.15 82.24

UNITER 4M 72.70 72.91 77.18 77.85
OSCAR 4M 73.16 73.44 78.07 78.36
ViLT 4M 71.26 - 75.70 76.13
Distill 4M 68.05 - 74.16 74.30
ALBEF 4M 74.54 74.70 80.24 80.50
VLMo 4M 76.64 76.89 82.77 83.34
X-VLM 4M 78.07 78.09 84.16 84.21

Ours 3M 78.91 78.91 84.75 85.29

Table 3: Results on vision-language understanding tasks,
including visual question answering (VQAv2) and vi-
sual reasoning (NLVR2).

in url format and some of them are inaccessible, we
only collected 3.4M images, which is around 600K
less than the original settings. In the experiments,
we term the setting of 3.4M images as 3M.

5.1.2 Implementation Details

For model settings, the visual encoder adopts the
same architecture as ViT-Base (Dosovitskiy et al.,
2021) and we initialize it with pre-trained weights
of Beit (Bao et al., 2022b). The text encoder is
modified on Bert-Base (Devlin et al., 2019) by
adding a multi-head cross attention and we initial-
ize it with pre-trained weights of uncased-bert-base.
For hyper-parameter settings during pre-training,
the resolution of input images is 256 × 256 and
the patch size is 16 × 16. RandAugment (Cubuk
et al., 2020) is applied to the input images. We use
AdamW optimizer (Loshchilov and Hutter, 2017)
with weight decay of 1e-2 and the learning rate is
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Fusion
Methods

MSCOCO (5K) Flickr30k (1K)
TR@1 IR@1 TR@1 IR@1

Concatenation 72.5 54.2 92.6 80.5
Cascading 73.0 54.5 91.7 81.2
Parallel 73.5 55.4 93.1 81.6

Table 4: Ablation study of different fusion methods.
Results are obtained by only pre-training models with
50K steps.

Objectives MSCOCO (5K) VQAv2 NLVR2
I2M T2M TR IR test-dev test-P

% % 86.3 73.3 77.56 83.45
% ! 86.6 74.1 - -
! % 86.8 73.2 - -
! ! 87.2 74.3 77.57 83.37

Table 5: Ablation study of cross-modal knowledge trans-
fer. For retrieval tasks, we report the average of R@1,
R@5 and R@10.

warmed up to 1e-4 over the first 1k steps. We pre-
train for 300K steps on 32 NVIDIA A100 GPUs
with a batch size of 2048.

5.2 Downstream Vision-Language Tasks
5.2.1 Image-Text Retrieval Tasks
The vision-language retrieval tasks include image-
to-text retrieval and text-to-image retrieval. We
evaluate our model on the Karpathy and Fei-Fei
(2015) split of MSCOCO (Lin et al., 2014) and
Flickr30K. During fine-tuning, we preserve the
loss of image-text contrastive learning, image-text
matching and cross-modal knowledge transfer. For
a better comparison with various methods, we have
two settings in the inference phase, namely “Dual”
and “Re-Rank”.

For the “Dual” setting, we use Eq. 6 to pre-
compute images and text representations separately,
and compute the similarity scores of all possible
image-text pairs by dot production. For the “Re-
Rank" setting, we first utilize the similarity scores
derived from Eq. 6 to select the top-k candidates,
and then predict the final results by calculating their
ITM scores (pitm).

5.2.2 Visual Question Answering
The VQAv2 (Goyal et al., 2017) task requires to
predict answers based on the given pair of an image
and a question. Following Cho et al. (2021) and Li
et al. (2021a), we treat VQA as an answer genera-
tion problem. In order to compare fairly with other
methods, we restrict the answer generation space
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Figure 4: Ablation study of placing fusions in both text
and visual encoders. FOD-both: fusions are added on
both sides.

to the same candidate set (Kim et al., 2021; Bao
et al., 2022b) during inference.

5.2.3 Natural Language for Visual Reasoning
The NLVR2 (Suhr et al., 2019) task asks the model
to predict whether a text correctly describes a pair
of images. We follow previous work (Li et al.,
2021a; Zeng et al., 2022) to extend the fusion-based
encoder to enable reasoning over image pairs and
feed the encoded vector of the input pair into a
classification layer to predict answer.

5.3 Main Results

5.3.1 Image-Text Retrieval Results
Table 1 and Table 2 show the results of fine-tuned
and zero-shot image-text retrieval on MSCOCO
and Flickr30K. For a fair comparison, only base-
size models pre-trained on the standard 4M data are
selected as the compared models. In this setting,
our model achieves state-of-the-art performance
on both datasets, and even performs competitively
with CLIP, ALIGN and BLIP that are pre-trained
on a larger order of magnitude of data. Further-
more, thanks to the designed parallel-style fusions
and cross-modal knowledge transfer strategy, more
cross-modal knowledge is retrained when the fu-
sion module is decoupled in inference, narrowing
the gap between “Dual" and “Re-Rank" settings.
Detailed analysis of performances between “Dual"
and “Re-Rank" settings are given in Appendix.

5.3.2 Vision-Language Understanding Results
The VQA2 and NLVR2 are categorized as under-
standing tasks since they both require the ability of
VL reasoning, and the results are shown in Table
3. Our model achieves the best performances on
both tasks among all the competitors that are also
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“Terrier” “running” “grass” “fence”

A Boston Terrier is running on lush green grass in front of a white fence.

“on”

“woman” “pink” “apron” “holding”

A womanwearing a pink shirt and red apron stands in her restaurant holding food.

“food”

Figure 5: Grad-CAM visualizations of cross-modal attention maps according to different words on VL retrieval.

in base-size and pre-trained with the standard 4M
data, and even outperforms models pre-trained on
more data like SimVLM and BLIP, demonstrating
the effectiveness and efficiency of our model.

5.4 Ablation Studies

5.4.1 Different Designs of Fusions
We incorporate cross-modal fusions into a dual ar-
chitecture to better model vision-language interac-
tions. Conventional fusions are based on two kinds
of methods, namely concatenation and cascading.
(1) Concatenation jointly encodes the concatena-
tion of image and text, which is quadratic in time
complexity and twice in memory consumption. (2)
Cascading first uses self-attention to encode the
text input and then fuses it with image via cross-
attentions, which has a strong dependency between
cross-attention and self-attention. Table 4 reports
the ablation results of different fusions, our design
that incorporates cross-modal fusions in a paral-
lel manner outperforms other methods on retrieval
tasks, showing that parallel-style fusion can switch
our model into the “Dual” setting more flexibly.

5.4.2 Cross-modal Knowledge Transfer
We conduct the ablation experiments towards the
strategy of cross-modal knowledge transfer, which
is shown in Table 5. The objectives of I2M and
T2M are defined in Eq. 11. From the results we can
observe that: (1) I2M specifically improves the per-
formance on image-text retrieval (TR) while T2M
is beneficial for the text-image (IR) side, which are
consistent with their intuitions; (2) I2M and T2M
are complementary to each other. Adding both
I2M and T2M during training can further bring

improvements for retrieval tasks while keeping the
performances on VL understanding tasks.

5.4.3 Fusions on Both Sides
Intuitively, in addition to placing cross-modal fu-
sions in the text encoder, we can also add the fusion
modules into the visual side in a similar way. In
this setting, ITM and downstream classifications
are based on the concatenation of the multimodal
features produced by both text and visual encoders.
Fig. 4 shows the results of placing fusions in differ-
ent sides, from which we find that when fusions are
placed on both sides, the performance unexpect-
edly drops on all downstream tasks. We analyze
that one possible reason comes to the difference be-
tween text and vision in self-supervised learning. It
is obvious that BERT naturally works better in self-
supervision than ViT, and thus we can utilize the
MLM task from BERT to learn fine-grained cross-
modal interaction. When it comes to the visual
side, self-supervised tasks are much more complex
than MLM, inevitably making it more difficult to
train such a VLP model.

6 Qualitative Analysis

We further provide a qualitative analysis by using
Grad-CAM (Selvaraju et al., 2017) to illustrate the
per-word visualizations of the cross-modal atten-
tion maps of the fusion-based encoder. As shown
in Fig. 5, from the visualizations we observe that
when conducting image-text matching tasks, our
model can focus on specific regions in an image
according to different words in each sentence, in-
cluding objects, actions, attributes and background.
More examples are given in Appendix.
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7 Conclusion

In this work, we propose a flexible VLP model
that incorporates cross-modal fusions into a dual-
encoder architecture. The fusion module can be
easily decoupled in inference, enabling the model
to be switched between fusion-based and a fusion-
free patterns according to different scenarios. Ex-
tensive experiments conducted on both image-text
retrieval and vision-language understanding tasks
show that our model is well-equipped with ef-
fectiveness and efficiency compared with existing
VLP models.

Limitations

The findings of this study have to be seen in light
of some limitations. (1) It is non-trivial to extend
our model for generation tasks. Since the main
focus of this work is to improve both effectiveness
and efficiency of the dual-encoders, text-decoder
is not considered in model design. In the future,
autoregressive mechanisms will be consider to ap-
plied in model architecture so that the model can
be directly used for generation tasks like image
captioning. (2) There may be disadvantages of
the model in region-level VL tasks such as Object
Detection. The reason is that these tasks require
images in high resolution and fine-grained anno-
tations of bounding boxes, which are non-trivial
in generic VLP settings. To solve this problem,
exploring different levels of granularity between
image-text pairs is a promising direction and will
be considered as the future work.
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A Appendix

A.1 Statistics of Pre-training Datasets

In the expriments, we use four widely-used datasets
for pre-training: SBU Captions (Ordonez et al.,
2011), Microsoft COCO (Lin et al., 2014), Visual
Genome (Krishna et al., 2017) and Google Con-
ceptual Captions (Sharma et al., 2018). Due to the
inaccessible problem of url, we can only collected
3.4M images, which is around 600K less than the
original settings (Kim et al., 2021; Li et al., 2021a;
Bao et al., 2022b). Details are shown in Table 6.
Intuitively, if we can access to the full 4M data, our
model could perform better.

MSCOCO VG SBU GCC Sum

Original 113K 108K 867K 3.01M 4M
Ours 113K 108K 853K 2.36M 3.4M

Table 6: Comparison of # Images used in Pre-training
between official settings and ours.

A.2 Implementation Details

Image-Text Retrieval. Different from pre-
training, we set the resolution of images to 384×
384 and use the tasks of ITC, ITM and CKT in
image-text retrieval. The batch size is 256 and the
initial learning rate is 1e-5. For Flickr30K and
MSCOCO, we finetune 10 epochs and 5 epochs
respectively. For the “Re-Rank" setting that selects
top-k candidates, k is set to 128 for Flickr30K and
256 for MSCOCO following Li et al. (2021a) and
Zeng et al. (2022).

Visual Question Answering. For visual ques-
tion answering, most methods convert VQAv2 to a
classification task by preserving the most frequent
3192 answers in datasets. However, this will pre-
vent some data from being used for fine-tuning
because their answers are not in the candidate set.
Thus, we follow previous work (Cho et al., 2021;
Li et al., 2021a; Zeng et al., 2022) and treat VQA
as an answer generation problem. More specifi-
cally, we predict the probability distribution on the
vocabulary of the first token, and select the top-k
candidates with the highest probability from the dis-
tribution. Finally, we use language-modeling loss
to predict the final answer from the top-k candi-
dates. For a fair comparison, we restrict the answer
generation space to the same candidate set (Kim
et al., 2021; Bao et al., 2022b) during inference.

We finetune our model for 8 epochs with 256 batch
size and the learning rate is 2e-5. The resolution of
images is set to 576× 576 (Dou et al., 2022) and k
is set to 128.

Natural Language for Visual Reasoning. For
NLVR2, we follow previous work (Li et al., 2021a;
Zeng et al., 2022) and extend the fusion-based
encoder to enable reasoning over image pairs, in
which an additional pre-training step is applied for
training model to reason the relations among text
and images. Then, we fine-tune the model for 15
epochs. The batch size is 128, learning rate is 2e-
5 and the resolution of the input image is set to
384× 384.

A.3 Performance Retaining

For VL retrieval tasks that involve massive candi-
dates of image-text pairs, it is crucial for a VLP
model to have the ability of acting as a dual-encoder
for efficient inference. Table 7 reports the compar-
isons between “Re-Rank” and “Dual” settings on
retrieval tasks. Our model performs best in terms of
performance retraining when switched from “Re-
Rank” to “Dual” setting, showing the effectiveness
of the designed parallel-style fusions and cross-
modal knowledge transfer strategy.

Model Flickr30k MSCOCO
R D drop↓ R D drop↓

ALBEF 95.2 92.0 3.2 (3.4%) 81.3 76.4 4.9 (6.0%)
X-VLM 96.5 93.4 3.1 (3.2%) 85.8 80.8 5.0 (5.8%)

Ours 96.9 95.4 1.5 (1.5%) 86.6 83.4 3.2 (3.7%)

Table 7: Results of different retrieval settings on
MSCOCO (5K) and Flickr30k (1K). “R” and “D” are
short for “Re-Rank” and “Dual” settings. We report the
average of TR and IR.

A.4 Inference Speed

We further evaluate the inference time of our mod-
els and other compared methods on MSCOCO
dataset. All the models are evaluated on a single
A100 GPU. From the results reported in Table 8,
we can observe that our model is well-equipped
both efficacy and efficiency in retrieval tasks. No-
tably, when our model is switched to the fusion-
free (dual) pattern, it can still achieve a comparable
performance compared with other methods while
enjoy a much faster inference speed.
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“person” “Striped” “holding” “rope” “mountain”

The person has a striped shirt on and is holding on to a rope on a mountain.

“going” “into” “building”

A man in blue pants is going into a building

“water” “sunlight” “reflecting” “tree”

A large body of water with sunlight reflecting off the water and a tree to the side.

“man” “pants”

Figure 6: More examples of visualizations of cross-modal attention maps according to different words on VL
retrieval.

Model Inference
Time Speedup MSCOCO

TR@1 IR@1

OSCAR-B‡ - ≪ 1.0× 70.0 54.0
ViLT-B ∼ 10h 1.0× 61.5 42.7
ALBEF† ∼ 900s 40× 73.1 56.8
VLMo-B ∼ 30s 1, 200× 74.8 57.2

Ours† ∼ 900s 40× 82.2 65.2
Ours ∼ 30s 1, 200× 77.3 58.9

Table 8: Results of inference speed on MSCOCO (5K).
‡ relies on a heavy object detector. † inference is based
on the “Re-Rank" method.

A.5 Visualization

We provide more examples of per-word visualiza-
tions of our fusion-based encoder finetuned on VL
retrieval tasks, as shown in Fig. 6. The visualiza-
tions suggest that our model can focus on specific

regions of the image according to different words
in text when conducts image-text matching.
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5118

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
5.2 / Appendix A.2

�7 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
We report the average results of many experiments

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
5.1.2/ 5.2 / Appendix A.2

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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