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Abstract

Aspect Category Sentiment Analysis (ACSA)
is one of the main subtasks of sentiment analy-
sis, which aims at predicting polarity over a
given aspect category. Recently, generative
methods have emerged as an efficient way to
use a pre-trained language model for ACSA.
However, those methods fail to model relations
between target words and opinion words in a
sentence including multiple aspects. To tackle
this problem, this paper proposes a method to
incorporate Abstract Meaning Representation
(AMR), which describes the semantic represen-
tation of a sentence as a directed graph, into a
text generation model. Furthermore, two regu-
larizers are designed to guide the allocation of
cross attention weights over AMR graphs. One
is the identical regularizer, which constrains the
attention weights of aligned nodes, the other
is the entropy regularizer, which helps the de-
coder generate tokens by only giving a high
degree of consideration to a few related nodes
in the AMR graph. Experimental results on
three datasets show that the proposed method
outperforms state-of-the-art methods, proving
the effectiveness of our model.

1 Introduction

Aspect based sentiment analysis is an important
task, which analyzes sentiments regarding an as-
pect of a product or a service. This task includes
many subtasks, such as Aspect Category Detection
(ACD) and Aspect Category Sentiment Analysis
(ACSA). ACD is the task of detecting aspect cate-
gories while ACSA concentrates on predicting the
polarity of given aspect categories. This study fo-
cuses on ACSA only. Figure 1 shows an example
of ACSA task, where negative and positive are the
polarities of the two provided categories service
and food.

The conventional approaches carry out ACSA
as a classification task. Wang et al. (2016) and
Cheng et al. (2017) use an attention mechanism

The staff are rude but food is great

<service: negative> <food: positive>

rude-01

contrast-01

great

foodstaff

ARG1 ARG2

ARG1 domain

Figure 1: Example of ACSA with the corresponding
AMR graph and alignment with the review sentence.

for discovering aspect-related words. To achieve
better representations, pre-trained language mod-
els such as BERT (Devlin et al., 2019) are used
(Sun et al., 2019; Jiang et al., 2019). Although
achieving competitive results, the fine-tuning of a
pre-trained language model for ACSA suffers from
two drawbacks: the difference between fine-tuning
and pre-training tasks and the gap between newly
initialized classification layers and the pre-trained
model. Such inconsistency is often harmful to the
training of an outstanding classifier for ACSA.

To solve the above problems, Liu et al. (2021)
propose to transform the sentiment classification
task into text generation, which better leverages the
power of pre-trained language models following
the seq2seq framework like BART (Lewis et al.,
2020). However, the naive text generation method
cannot fully capture relations between opinion
words and target words in sentences containing
multiple aspects.

Abstract Meaning Representation (AMR, Ba-
narescu et al., 2013), which is a semantic represen-
tation of a sentence in the form of rooted, labeled,
directed and acyclic graphs, can model the relations
between the target words and associated opinion
words. For example, in Figure 1, the relation be-
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tween “staff ” and “rude” is captured by a directed
edge between two nodes “staff ” and “rude-01”. In
addition, the AMR graph also provides the high
level semantic information, which means words
with the same meaning, like “but”, “although” and
“nevertheless”, could be represented by the same
node “contrast-01”. This paper investigates the
potential of combining AMR with the naive text
generation model to perform ACSA.

Furthermore, we also design two regularizers for
guiding cross attentions over the AMR graph of
the decoder. We observe that words (in a sentence)
and nodes (in an AMR graph) that are semanti-
cally similar should be paid the same amounts of
attention. Therefore, we minimize the difference of
two cross attentions over aligned words and AMR
nodes. Moreover, the decoded tokens should only
be attentive to related AMR nodes. To achieve that,
we minimize the entropy of the cross attentions
over the AMR graph in the decoder layers.

We evaluate our model using the Rest14, Rest14-
hard and MAMS benchmark datasets. The results
show that our model is better than the baselines and
achieves a state-of-the-art performance.

Our contributions can be summarized as follows:

• We propose a model that incorporates an
AMR graph encoder within a seq2seq frame-
work for capturing the relations between the
target words and opinion words and using this
semantic information for ACSA. To the best
of our knowledge, this is the first attempt to
explore how to use AMR in ACSA.

• We propose two regularizers to improve the
cross attention mechanism over the AMR
graph using AMR alignments and informa-
tion entropy.

• We demonstrate the effectiveness of our pro-
posed method through experiments on three
datasets.

2 Related Work

Aspect Category Sentiment Analysis Numer-
ous attempts have been made to improve ACSA.
Wang et al. (2016) propose an LSTM-based model
combined with an attention mechanism to attend
for suitable words with given aspects. Ruder et al.
(2016) capture inter-sentence relations within a
review using a hierarchical bidirectional LSTM
model. Xue and Li (2018) extract features using

CNN and output features related to the categories
of aspects by using a gated mechanism. Xing et al.
(2019), Liang et al. (2019) and Zhu et al. (2019)
incorporate aspect category information into a sen-
tence decoder for generating representations spe-
cific to both the aspect and its context. Sun et al.
(2019) construct auxiliary sentences from aspects
for performing ACSA as a sentence-pair classifica-
tion task. Jiang et al. (2019) propose a new capsule
network which captures relationship between the
aspects and the contexts. Li et al. (2020b) aggre-
gate the sentiments of the words that indicate an
aspect category, so as to predict the sentiment of
this category. Liu et al. (2021) use a template-based
method to perform ACSA as a generation task; this
can leverage the knowledge of a pre-trained lan-
guage model. Shan et al. (2022) use additional
syntactic information to enhance the sentiment fea-
tures. Liu et al. (2023) utilize commonsense knowl-
edge graph and data augmentation to overcome the
shortage of training data.

To avoid error propagation, joint models which
perform ACSA and ACD simultaneously have been
proposed. Schmitt et al. (2018) propose two mod-
els with LSTM and CNN, which output an aspect
category and its corresponding polarity at the same
time. Hu et al. (2019) apply orthogonal and sparse-
ness constraints on attention weights. Wang et al.
(2019) design an AS-Capsules model to explore
the correlation of aspects with sentiments through
share modules. Li et al. (2020a) propose a joint
model with a shared sentiment prediction layer.

AMR With the development of AMR parsers,
AMR-to-text generation models and larger parallel
datasets, AMR has been applied successfully to
many downstream text generation tasks. For exam-
ple, it has been integrated into a machine translation
model as additional information for the source side
(Song et al., 2019; Nguyen et al., 2021; Xu et al.,
2021). In text summarization, several researchers
transform AMR representations of sentences into
an AMR graph of a summary and generate a text
summary from the extracted subgraph (Liu et al.,
2015; Dohare and Karnick, 2017; Hardy and Vla-
chos, 2018; Inácio and Pardo, 2021). However, as
explained in Section 1, there has been no attempt
to apply AMR to ACSA.

3 Text Generation Model for ACSA

This section presents an overview of the text gen-
eration model for ACSA proposed by Liu et al.
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(2021), since our proposed model is based on it.
The model follows the seq2seq framework that
converts a review sentence to a target sentence in-
dicating the polarity of the aspect. It fine-tunes
the pre-trained BART model for the text genera-
tion task. The model takes a review sentence X =
{x1, x2, ..., x|X|} = x1:|X| as an input and gen-
erates a target sentence Y = {y1, y2, ..., y|Y |} =
y1:|Y |, where |X| and |Y | are the number of tokens
in the source and target sentence respectively.

3.1 Target Sentence Creation
The target sentence is formed by filling an aspect
category and a sentiment word into a predefined
template. We denote the set of aspect categories
by A = {a1, a2, ..., a|A|} and the set of sentiment
words by S = {s1, s2, ..., s|S|}. The template is de-
fined manually like “The sentiment polarity of [AS-
PECT_CATEGORY] is [SENTIMENT_WORD]”.
For each review sentence X whose corresponding
aspect category is ap and sentiment polarity is st,
we fill the slots in the template and get the target
sentence “The sentiment polarity of ⟨ap⟩ is ⟨st⟩”
(E.g., “The sentiment polarity of service is nega-
tive”).

3.2 Training and Inference
For the training, given a pair of sentences (X,Y),
the method fetches the input sentence X into the
encoder to get vector presentation henc of X as in
Equation (1). In the decoder, the hidden vector at a
time step j is calculated using henc and the hidden
vectors of the previous time steps, as in Equation
(2).

henc = Encoder(x1:|X|) (1)

hdecj = Decoder(henc, hdec1:j−1) (2)

The conditional probability of the output token yj
is:

P (yj |y1:j−1, x1:|X|) = softmax(Whdecj +b), (3)

where W ∈ Rdh×|V| and b ∈ R|V|, |V| represents
the vocabulary size. The loss function of this model
is the following Cross Entropy:

Lce = −
|Y |∑

j=1

logP (yj |y1:j−1, x1:|X|). (4)

For inference, we calculate the probabilities of
all possible target sentences with different senti-
ment polarity classes using the trained model and

choose the one with the highest probability. For
an input sentence X, aspect category ap and senti-
ment polarity st, the probability of a target sentence
Yap,st = {y1, y2, ..., ym} is calculated as follows:

f(Yap,st) =
m∑

j=1

logP (yj |y1:j−1,X) (5)

4 Proposed Method

Figure 2 shows our proposed model, which fol-
lows general text generation methods (Liu et al.,
2021). To encode semantic information from an
AMR graph, we use a graph encoder module (Sub-
section 4.1). We incorporate that information by
adding a new cross attention layer to the decoder
(Subsection 4.2). We also introduce two types of
regularizers to guide the attention score of the new
cross attention layer (Subsection 4.3). In addition,
Subsection 4.4 introduces the loss function of the
model, and 4.5 presents the pre-training procedure
to overcome the difficulty of training newly initial-
ized layers and a pre-trained language model.

4.1 AMR Encoder

The AMR encoder adopts Graph Attention Net-
works (GAT, Velickovic et al., 2018). For a given
input sequence X = {x1, x2, ...x|X|}, we con-
struct a corresponding AMR graph G = (V,E)
from the pre-trained AMR parser (Bai et al., 2022),
where V = {v1, v2, ..., v|V |} is the set of nodes
and E ∈ R|V |×|V | is the adjacency matrix present-
ing the relations between the nodes. We treat the
AMR graph as an undirected graph, which means
eij = eji = 1 if the two nodes vi and vj are con-
nected, otherwise 0.

Given a graph G = (V,E) and node vi ∈ V,
we can obtain h′i, the hidden state of node vi, as
follows:

h′i = σ
( ∑

j∈Ni

αijWhj
)

(6)

αij =
exp

(
σ
(
aT [Whi∥Whj ]

))
∑

k∈Ni
exp

(
σ
(
aT [Whi∥Whk]

)) , (7)

where aT and W are trainable parameters, σ is the
LeakyRELU function, ∥ denotes the concatenation
of two vectors, Ni is the set of neighbor nodes of vi
in G, and hi is the initial representation of vi. Note
that a node (word) consists of several subwords in
general. Using the embedding of the AMR parser,
hi is defined as the average of the subword vectors.
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Figure 2: Architecture of our proposed model.

Applying the multi-head attention mechanism
from the Transformer architecture (Vaswani et al.,
2017), we obtain the updated representation of
node vi :

h′i =

K∥∥∥∥
k=1

σ
( ∑

j∈Ni

αk
ijW

khj
)
, (8)

, where K is the number of attention heads, αk
ij are

the attention coefficients of the k-th head, Wk is
the weight matrix at the k-th head, and ∥ stands for
the concatenation of multiple vectors.

4.2 Decoder

After obtaining the graph information, we feed it
into each decoder layer by adding a new cross atten-
tion module for AMR referred to as “AMR Cross
Attention” in Figure 2. We write h′ for the repre-
sentations of the AMR nodes obtained from GAT,
x is the vector representation of the input sentence
and yl is the output of l-th decoder layer. The out-
put of the (l+1)-th decoder layer, yl+1, is obtained

as follows:

ẏl = LN(yl + SelfAttn(yl)) (9)

ÿl = LN(ẏl + CrossAttn(ẏl, x)) (10)
...
y l = LN(ÿl + CrossAttn(ÿl, h′)) (11)

yl+1 = LN(
...
y l + FFN(

...
y l)), (12)

where LN is the layer normalization function,
SelfAttn is the self-attention module, CrossAttn
is the cross-attention module, and FFN is the feed-
forward neural network.

Training a deep model like Transformer is re-
ally hard and even harder with one more cross-
attention module. To overcome this difficulty, we
employ ReZero (Bachlechner et al., 2021) as the
AMR cross attention module instead of the normal
residual module. This method is implemented as
follows:

ỹl = ÿl + αF(ÿl), (13)

where F denotes non-trivial functions and α is
a trainable parameter which helps moderate the
updating of the AMR cross attention.

4.3 AMR Cross Attention Regularizers

To incorporate the semantic information from the
AMR graph more effectively, we propose two regu-
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larizers over the attention scores of the AMR cross
attention module.

Identical Regularizer Intuitively, a word in a
sentence and its aligned node in the AMR graph
should receive the same attention as they are sup-
posed to represent similar semantic information.
Two transformation matrices for the cross atten-
tion matrix over each of the source (input) sen-
tences and the AMR graphs, alignsrc ∈ R|X|×|P |

and alignamr ∈ R|V |×|P |, respectively, are defined
in Equations (14) and (15), where |P | is the number
of aligned pairs of words and nodes.

alignsrc[i, k] =





1
|Ti| if token xi belongs to an

aligned word at position k

0 otherwise
(14)

alignamr[j, k] =





1 if node vj is aligned
at position k

0 otherwise
(15)

Here, Ti denotes a set of subwords in the aligned
word. With these matrices and two given cross
attention matrices Asrc ∈ R|Y |×|X|, Ai_amr ∈
R|Y |×|V | over the review sentence and the AMR
graph, respectively, the identical regularizer is for-
mulated as follows:

Lir =

L∑

i=1

1

L
∥Ai

src·alignsrc−Ai
i_amr·alignamr∥F ,

(16)
where ∥∥F denotes the Frobenius norm and L is
the number of the decoder layers. The matrix Asrc

is obtained from an oracle fine-tuned text genera-
tion model. Also, the matrix Ai_amr is obtained
by fetching the same input with the regular cross
attention layer over the source sentence, which is
indicated by the yellow line in Figure 2.

Entropy Regularizer We expect that our model
concentrates on a few important nodes. This means
that the cross attention distribution of the tokens
over the AMR nodes is supposed to be skewed.
Therefore, we try to minimize the information en-
tropy (Shannon, 1948) of the attention scores of
the tokens over the AMR nodes. We first calculate
the mean of the cross attention score of the token i

at the node j over H attention heads as follows:

ãij =
1

H
H∑

h=1

aijh (17)

Then, the entropy of the l-th decoder layer is calcu-
lated over |V | nodes and |Y | output tokens:

H l = − 1

|Y |

|Y |∑

i

|V |∑

j

ãij log ãij (18)

The entropy regularizer is defined as the mean en-
tropy of the L decoder layers:

Ler =
1

L

L∑

l=1

H l (19)

4.4 Loss Function
For training the proposed model, the loss function
is the sum of the normal cross entropy loss and the
aforementioned two regularizers:

L = Lce + λ1Lir + λ2Ler, (20)

where λ1 is the scaling factors of the identical reg-
ularizer and λ2 is that of the entropy regularizer.

4.5 Pre-training
It is hard to fine-tune our model, which consists of
randomly initialized modules like the AMR graph
encoder and the AMR cross attention together with
the pre-trained BART. Following (Bataa and Wu,
2019) and (Gheini et al., 2021), which show the
positive effect of pre-training a language model
with in-domain data and fine-tuning a cross atten-
tion layer, after initializing the whole model, we
train it with text denoising tasks using review sen-
tences. Following BART, we add noise into the
input sentences using the following three methods:

• Token Masking: random tokens are sampled
and replaced by [MASK] token.

• Word Deletion: instead of deleting subwords
like BART, the whole of text spans is deleted
in this method.

• Text Infilling: random text spans are replaced
by [MASK] using a Poisson distribution.

Algorithm 1 shows the pseudocode of the text cor-
ruption algorithm that adds noise by the above three
methods.
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Algorithm 1 Text corruption algorithm
Input: review sentence X = {x1, x2, ...xn}
Output: corrupted review sentence X’ = {x′

1, x
′
2, ...x

′
m}

ptoken ← 0.15 - probability of replacing one token by
[MASK]
pword ← 0.3 - probability of replacing text spans by [MASK]
λPossion ← 3 - value for λ parameter in Possion distribution
1: p← gen_random[0, 1]
2: if p < 1

3
then

3: X’← mask_tokens(X, ptoken)
4: else if p < 2

3
then

5: X’ ← mask_text_spans(X, pword, λPossion) -
Sampling text spans with span lengths drawn from a Pois-
son distribution and masking them.

6: else
7: X’← mask_text_spans(X, pword, λPossion)
8: X’← delete_mask_tokens(X’)
9: end if

The entropy regularizer is also taken into account
in this pre-training step. That is, the loss function
of the pre-training is defined as:

L = Lce + λ3Ler, (21)

where λ3 is the scaling factor for the entropy regu-
larizer.

5 Experiments

5.1 Dataset

The following three datasets are used in our experi-
ments.

• Rest14: This dataset consists of reviews in
the restaurant domain, which is included in
the Semeval-2014 task (Pontiki et al., 2014).
Samples labeled with “conflict” are removed,
so the remaining samples have the labels “pos-
itive”, “negative” and “neutral”. In addition,
we follow the splitting of the development set
suggested by Tay et al. (2018) for the sake of
a fair comparison.

• Rest14-hard: Xue and Li (2018) construct
this dataset for better evaluating a model on
sentences with multiple aspects. The training
set and development set are the same as those
of Rest14.

• MAMS-ACSA: For the same purpose as the
Rest14-hard, Jiang et al. (2019) propose a
larger dataset for ACSA in which each sen-
tence contains at least two different aspects.

Their details are shown in Table 1.

Dataset #Pos #Neg #Neu

Rest14
Train 1855 733 430
Dev 324 106 70
Test 657 222 94

Rest14-hard Test 21 20 12

MAMS-ACSA
Train 1929 2084 3077
Dev 241 259 388
Test 245 363 393

Table 1: Statistics of datasets.

5.2 Baselines

We compare our method with multiple baselines:

• GCAE (Xue and Li, 2018): employs CNN
model with gating mechanism to selectively
output the sentiment polarity related to a given
aspect.

• AS-Capsules (Wang et al., 2019): exploits
the correlation between aspects and corre-
sponding sentiments through a capsule-based
model.

• CapsNet (Jiang et al., 2019): is the capsule
network based model to learn the relations
between the aspects and the contexts.

• CapsNet-BERT (Jiang et al., 2019): is the
CapsNet model based on the pre-trained
BERT.

• BERT-pair-QA-B (Sun et al., 2019): per-
forms ACSA as the sentence pair classifi-
cation task by fine-tuning of the pre-trained
BERT.

• AC-MIMLLN (Li et al., 2020b): predicts the
polarity of a given aspect by combining the
sentiments of the words indicating the aspect.

• AC-MIMLLN-BERT (Li et al., 2020b): is
the AC-MIMLLN model based on the pre-
trained BERT.

• BART generation (Liu et al., 2021): per-
forms ACSA by a text generation model with
the pre-trained BART. It is almost equivalent
to our model without AMR.

• BART generation with pre-training: is the
BART generation model combined with our
pre-training method except for applying en-
tropy regularization.
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5.3 Implementation Details

The template used for constructing the target sen-
tences in our experiments is “Quality of [AS-
PECT_CATEGORY] is [SENTIMENT_WORD]”.
The [ASPECT_CATEGORY] is filled by the aspect
word, while the [SENTIMENT_WORD] is filled
by one of {excellent, awful, fine} which corre-
sponds to {positive, negative, neutral} respec-
tively. For AMR parsing, we use the pre-trained
model of AMRBART1 (Bai et al., 2022). In addi-
tion, LEAMR2 (Blodgett and Schneider, 2021) is
adopted to align the words in the input sentence
and the nodes in the AMR graph.

In the pre-training step, we initialize the parame-
ters of BART using the checkpoint of BART base3.
Unlike the parameters of BART, the parameters of
the AMR graph encoder and the AMR cross atten-
tion modules are newly initialized with the uniform
distribution. After pre-training, the last checkpoint
is used for fine-tuning the ACSA model. The Adam
optimizer (Kingma and Ba, 2015) is used for op-
timizing the model. The original parameters of
BART’s encoder and decoder are trained with a
learning rate 2e-5 while the learning rate is set to
3e-5 for the parameters in the AMR graph encoder
and the AMR cross attention modules. We set the
number of the attention heads of AMR encoder to
6, the number of AMR cross attention heads to 6,
the batch size is 16 and the dropout value 0.1. The
initial value for the ReZero weight α is 1. The reg-
ularization coefficients λ1 and λ2 are set to (0.075,
0.1), (0.075, 0.1) and (0.025, 0.0075) for the three
datasets, while λ3 is always set to 5e-3. All hyper-
parameters are tuned based on the accuracy on the
development set.

5.4 Experimental Results

The results of the experiments are presented in Ta-
ble 2. The models were trained and evaluated five
times with different initializations of the param-
eters. The table shows the average and standard
deviation of the accuracy of five trials using the for-
mat “mean (±std)”. First, our model outperforms
all baselines on the three datasets, which indicates
the necessity of incorporating the semantic infor-
mation into the text generation model for ACSA.
Second, compared with the models that learn rela-
tions between the aspect and the context like Cap-

1https://github.com/goodbai-nlp/AMRBART
2https://github.com/ablodge/leamr
3https://huggingface.co/facebook/bart-base

sNet, AC-MIMLLN, BERT-pair-QA-B and BART
generation, the dominance of our model proves
that exploiting the AMR graph to learn relations
between words is a better way to capture contextual
information. The fact that our model also outper-
forms BART generation with the pre-training fur-
ther supports the effectiveness of the AMR. Third,
the competitive results over the Rest14-hard and
MAMS datasets show the effectiveness of the iden-
tical and entropy regularizers in enabling the model
to concentrate on the correct aspect-related nodes,
which is essential for identification of the polarity
over multiple aspects.

5.5 Ablation Study

To further investigate the effects of the different
modules in our model, we conducted ablation stud-
ies. The results are presented in Table 3. First, it is
found that the removal of the identical regularizer
downgrades the performance, which indicates the
importance of precisely capturing the semantic in-
formation. Second, we also notice that the models
without the entropy regularizer perform poorly with
reduction by 0.8, 1.1 and 0.4 percentage points in
the accuracy on Rest14, Rest14-hard and MAMS,
respectively. This shows that the entropy regular-
izer is essential to prevent models from attending
to unnecessary AMR nodes. In addition, removing
both regularizers degrades the performance more
than removing each of the regularizer, which con-
firms the essential roles of these regulairzers in per-
forming ACSA. Third, removing the pre-training
procedure hurts the performance badly, which leads
to decreases by 1.4, 7.5 and 1.5 percentage points
on the three datasets respectively. This indicates
the big gap between the newly initialized modules
and the pre-trained model and the necessity of the
pre-training step for overcoming this problem. In
summary, the ablation studies show that each com-
ponent contributes to the entire model. The contri-
bution of the pre-training step is the greatest, while
those of the identical and entropy regularizers are
comparable to each other.

6 Analysis

6.1 Case Study

To further examine how the semantic information
of AMR and two regularizers work well in ACSA,
a few examples are shown as a case study. Ta-
ble 4 compares our model with the state-of-the-art
method “BART generation”. The symbols P, N
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Model Rest14 Rest14-hard MAMS
GCAE (Xue and Li, 2018) 81.3(±0.883) 54.7(±4.92) 72.1†
AS-Capsules (Wang et al., 2019) 82.2(±0.414) 60.8(±2.77) 75.1(±0.473)
CapsNet (Jiang et al., 2019) 81.2(±0.631) 54.0(±0.924) 74.0†
AC-MIMLLN (Li et al., 2020b) 81.6(±0.715) 65.3(±2.26) 76.4(±0.704)
BERT-pair-QA-B (Sun et al., 2019) 87.5(±1.18) 69.4(±4.37) 79.1(±0.973)
CapsNet-BERT (Jiang et al., 2019) 86.6(±0.943) 51.3(±1.41) 79.5†
AC-MIMLLN-BERT (Li et al., 2020b) 89.3(±0.720) 74.7(±3.29) 81.2(±0.606)
BART generation (Liu et al., 2021) 90.5(±0.315) 77.4(±2.16) 83.1(±0.478)
BART generation with pre-training 90.6(±0.517) 75.5(±3.77) 83.6(±0.847)
Our model 91.2(±0.258) 78.1(±2.53) 84.6(±0.453)

Table 2: Accuracy (%) of ACSA models. † refers to citation from Jiang et al. (2019).

Model Rest14 Rest14-hard MAMS
Our model 91.2(±0.258) 78.1(±2.53) 84.6(±0.453)
w/o identical regularizer 91.0(±0.424) 77.4(±1.89) 84.0(±0.320)
w/o entropy regularizer 90.4(±0.162) 77.0(±1.68) 84.2(±1.10)
w/o entropy and identical regularizer 90.3(±0.426) 74.3(±1.69) 83.8(±0.638)
w/o pre-training 89.8(±0.217) 70.6 (±1.03) 83.1(±0.618)

Table 3: Ablation study.

and O represent the positive, negative and neutral
class respectively. The first example, “I never had
an orange donut before so I gave it a shot”, has
no explicit sentiment expression. With the help
of semantic information and two regularizers, our
model can correctly predict the true label while
BART generation cannot. The second and third ex-
amples contain multiple aspects, which can affect
each other’s predictions. In the second example,
the BART generation model may capture the posi-
tive sentiment toward the aspect word “atmosphere”
for anticipating the sentiment of the different as-
pect “service’, which leads to outputting the wrong
label. Another incorrect prediction by this baseline
is shown in the third example, where the polari-
ties of “food” and “staff ” are mistakenly swapped.
In contrast, our model pays attention to only the
aspect-related AMR nodes, resulting in the correct
predictions in both examples. However, our model
also faces a difficulty in some cases. In the last
example, it wrongly predicts the sentiment polarity
for “miscellaneous” because it is really hard to cap-
ture aspect-related AMR nodes for a coarse-grained
aspect class like “miscellaneous”.

6.2 Attention Visualization

To study the effectiveness of the two regularizers
in guiding the AMR cross attention collocation, we
illustrate the cross attention matrix produced by

our full model and the model without two regu-
larizers in Figure 3. The review sentence is “The
food was good overall, but unremarkable given the
price.”. The polarity label of the aspect category
“food” is positive and the polarity of the aspect cat-
egory “price” is negative. The model without two
regularizers has dense attention matrices that might
be noise for prediction of the polarity. In contrast,
the attention matrices of our full model are sparse.
For example, as for the food category, the word
“food” and “excellent” in the target sentence pay
much attention or more attention than the model
without the regularizers to the nodes “food” and
“good-02” in the AMR graph. Similarly, as for the
price category, “price” in the target sentence pays
a great deal of attention to the node “price-01” in
the AMR graph, while “awful” pays less attention
to “remarkable-02” than the model without the reg-
ularizers. Those cases indicate that our attention
mechanism works well even when a review sen-
tence contains multiple aspects.

7 Conclusions

In this paper we proposed a model which integrated
the semantic information from the Abstract Mean-
ing Representation (AMR) and the text generation
method for the task of Aspect Category Sentiment
Analysis (ACSA). Moreover, to more precisely cap-
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Sentence Aspect Category BART Generation Our Model Label

I never had an orange donut before so I {food} (P) (O) (O)

gave it a shot.

The atmosphere was wonderful, however {ambiance, service, food} (P, P, N) (P, N, N) (P, N, N)

the service and food were not.

There are several specials that change {food, staff} (O, P) (P, O) (P, O)

daily, which the servers recite from memory.

The place was busy and had a bohemian feel. {place, miscellaneous} (P, P) (N, P) (N, O)

Table 4: Case studies of our model compared with state-of-the-art method.
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contrast-01 good-02 food overall remarkable-02 cause-01 thing price-01 :polarity-

Qu
al

ity
of

fo
od

is
ex

ce
lle

nt
.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b) Food category, full model.
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(c) Price category, model without regularizers.
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(d) Price category, full model.

Figure 3: Attention scores of target sentences over AMR
graph in our models.

ture the semantic correlations between the target
words and the AMR nodes, we proposed two reg-
ularizers: the identical and entropy regularizers,
over the AMR cross attention modules. The exper-

imental results on three datasets showed that our
model outperformed all baselines.

8 Limitations

Currently, our model only exploits the direct rela-
tions between nodes in the AMR graph. In other
words, only one-hop neighborhoods can be con-
sidered. However, there are a few cases where an
opinion word and a related aspect word can be in a
k-hop neighborhood. In the future, we will design
a model that can capture long distance relations
in the AMR graph. Another limitation is that the
errors of the pre-trained AMR parsers and AMR
alignment models are propagated to the model as a
whole. What is required is to improve the perfor-
mance of those modules.
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