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Abstract

We advocate the importance of exposing uncer-
tainty on results of language model prompting
which display bias modes resembling cognitive
biases, and propose to help users grasp the level
of uncertainty via simple quantifying metrics.
Cognitive biases in the human decision mak-
ing process can lead to flawed responses when
we face uncertainty. Not surprisingly, we have
seen biases in language models resembling cog-
nitive biases as a result of training on biased
text, raising dangers in downstream tasks that
are centered around people’s lives if users trust
their results too much. In this work, we re-
veal two bias modes leveraging cognitive biases
when we prompt BERT, accompanied by two
bias metrics. On a drug-drug interaction extrac-
tion task, our bias measurements reveal an error
pattern similar to the availability bias when the
labels for training prompts are imbalanced, and
show that a toning-down transformation of the
drug-drug description in a prompt can elicit a
bias similar to the framing effect, warning users
to distrust when prompting language models
for answers.1

1 Introduction

Cognitive biases describe the flawed human re-
sponse patterns for decision making under uncer-
tainty (Tversky and Kahneman, 1974, 1981; Ja-
cowitz and Kahneman, 1995; Kahneman and Fred-
erick, 2002; Meyer, 2004). For example, when
people are biased by the availability heuristic, they
make probability judgments based on the ease with
which information comes to mind (Tversky and
Kahneman, 1973). Knowing cognitive biases can
help predict what types of error will be made,
which is also helpful for interpreting behaviors of
generative systems such as language models, as
they may err in a similar pattern as humans do, espe-
cially when the data used to build the systems carry

1The source code of this paper is available at https:
//github.com/nusnlp/CBPrompt.

man-made biases (Schwartz et al., 2022; Jones and
Steinhardt, 2022). We are inspired by leveraging
cognitive biases – systematic error patterns which
deviate from rational decisions – to study error pat-
terns of language models. We highlight the impor-
tance of exposing uncertainty to users of language
models (Pinhanez, 2021), and leverage cognitive
biases to quantify the level of imprecision in results
when performing language model prompting via
simple, perceptual metrics.

Some would argue that the biases in machines
are a result of unmatched data distributions in train-
ing and test sets. However, merely matching train-
ing and test distributions does not solve the prob-
lem of biased predictions for long-tailed input dis-
tributions. For example, on the drug-drug interac-
tion (DDI) dataset (Segura-Bedmar et al., 2013),
the training and test distributions are identically
skewed, and there are 100 times more Negative
(non-interacting) drug pairs than the interacting
drug pairs in both sets. Though performances on
the development set and test set are not too bad for
positive class inputs with a prompt-based BERT
model (Devlin et al., 2019), the model still most fre-
quently mistakes positive pairs for negative pairs,
as shown by the confusion matrix in the left part of
Figure 1. This label bias towards Negative mimics
the availability bias. The availability bias is one of
the most common cognitive biases in real life, es-
pecially in doctors’ diagnoses which increase with
years of training (Mamede et al., 2010; Saposnik
et al., 2016). Moreover, an equal number of sam-
ples in each class during training does not guaran-
tee that a “majority” class does not exist, especially
when the input distribution of the negative class has
a higher variance (i.e., highly diversified samples
in the negative class) and the samples within the
positive class share more common characteristics.
Considering the input variance, even though sam-
ple sizes are the same, the negative class still can
be viewed as the majority class. More on this can
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Figure 1: Left: An illustration of the negative class vs. the four positive classes of the DDI data. The confusion
matrix of the development set predictions shows that the most frequent wrong prediction for positive input pairs is
the negative class (the majority label), calling for the need to quantify the availability bias. Right: An observation
on the framing effect paraphrase (in purple) and the original sentence (in blue): the paraphrase describes the two
non-interacting drugs in a slightly more toned-down way compared to the original sentence, and it leads to the
correct prediction whereas the original sentence does not, calling for the need to quantify the framing effect.

be found in Appendix A.
In addition to the availability bias, the framing

effect is another common cognitive bias. The fram-
ing effect is prevalent in medical diagnoses (Loke
and Tan, 1992), where doctors intentionally frame
diagnoses positively (“90% chance to survive”) or
negatively (“10% chance to die”) to make patients
perceive the results differently. It was recently
found that a failure mode of a code generation lan-
guage model Codex (Chen et al., 2021) resembles
the framing effect – how an input prompt is framed
changes the model output predictably (Jones and
Steinhardt, 2022). In our study, prompting BERT
with paraphrases generated by toning-down the
original inputs improves prediction results, sug-
gesting a bias brought by the tone of the input
sentences.

It is important to see that the biases found above
are not the expected behavior of BERT as a prompt-
based classification model, and our goal of this pa-
per is to analyze these failure modes from the lens
of cognitive biases and quantify them via simple
metrics. We are devoted to warning practitioners
about the risks of biased language model predic-
tions, especially on biomedical tasks.

On a case study of the DDI extraction task, we
measure output label distribution with content-free
prompts and how model output changes when ap-
plying a toning-down transformation to prompt
texts. Our key findings are:

• We have identified an error pattern similar to
the availability bias when the labels for train-

ing prompts are imbalanced, and our measure-
ments quantitatively show that the bias is high-
est towards the majority label.

• We have motivated a toning-down transforma-
tion of the drug-drug description in a prompt
and found that this framing can elicit a bias
similar to the framing effect.

2 Related Work

2.1 Cognitive Biases in Language Models
Recent work on studying behaviors of pretrained
language models (PLMs) has revealed that some
failure modes bear resemblance to cognitive biases.
Wallace et al. (2019) study triggering prompts that
fool the GPT-2 language model to generate con-
tents that mimic hallucinations arising from cog-
nitive biases. Zhao et al. (2021) find the major-
ity label bias to be one of the pitfalls for GPT-3
(Brown et al., 2020), resembling the availability
bias. Liu et al. (2022a) and Lu et al. (2022) show
that specific order of training examples can lead to
different model performance for GPT-3, analogous
to the anchoring bias where estimates may be in-
fluenced by what information is provided first or
last. Jones and Steinhardt (2022) capture failures
in GPT-3 and Codex and find that error patterns of
large language models (LLMs) resemble cognitive
biases in humans. Agrawal et al. (2022) also find a
bias in GPT-3 which is similar to the framing effect,
where using separate prompts rather than a chained
prompt leads to wrong answers for medication ex-
traction. In a nutshell, most of these works focus on
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studying issues of LLMs and have discerned their
error patterns’ resemblance to human cognitive bi-
ases. We follow this line of research, and argue that
relatively small PLMs, such as BERT, also display
biases resembling human cognitive biases, and we
propose metrics to quantify two of these biases.

2.2 Prompt-Based Language Models

As a booming research area, prompt-based methods
show their success through few-shot learning per-
formance for language models (Zhao et al., 2021;
Jones and Steinhardt, 2022; Lu et al., 2022). How-
ever, prompts may not be understood by models
the way humans do (Khashabi et al., 2022) and
they affect biases in models (Webson and Pavlick,
2022; Utama et al., 2021; Prabhumoye et al., 2021).
From a taxonomy viewpoint, prompt-based meth-
ods include: Prompt design, where the job is de-
signing human-readable prompts to demonstrate
to a frozen language model for downstream tasks
(Brown et al., 2020); Prompt tuning, where tunable
soft prompts are used for a frozen language model
(Lester et al., 2021; Qin and Eisner, 2021; Sanh
et al., 2022; Liu et al., 2022b); and Prompt-based
fine-tuning, which utilizes fixed human-readable
prompts to fine-tune a model (Scao and Rush, 2021;
Gao et al., 2021; Schick and Schütze, 2021a,b;
Tam et al., 2021), such as pattern-exploiting train-
ing (Schick and Schütze, 2021b; Tam et al., 2021).
While the first two types are popular for large lan-
guage models such as GPTs, prompt-based fine-
tuning is more common when prompting BERT
and other relatively small language models. In this
work, we focus on prompt-based fine-tuning meth-
ods for BERT. Studies on interpretability focus on
providing measures for the incompleteness that pro-
duces unquantified biases (Doshi-Velez and Kim,
2017). Here we aim to fill in the gap for quantify-
ing the biases of prompt-based language models.
In addition, adversarial input is a popular technique
to interpret how a model is fooled, by tweaking im-
age pixels (Akhtar and Mian, 2018; Li et al., 2019)
or textual triggers (Wallace et al., 2019). However,
in this work, we seek to study the effect of altered
texts by leveraging cognitive bias patterns.

3 Proposed Metrics

We propose two metrics for quantifying the bias
modes by the availability bias and the framing ef-
fect respectively in prompt-based BERT, helping
users perceive how much bias comes with prompt-

ing results.

3.1 The Availability Bias Metric

The error by the availability bias can be viewed
as a shortcut of how a model “thinks” an answer
is easier to recall and occurs more readily than
it actually occurs at test time, as long as it has
seen many prompted instances of the same answer
during training. On the DDI dataset, the majority
label of prompts during training is Negative and the
inference results show many false negatives. This
resembles a situation when a human sees many
negative examples, then the human inferences are
more likely to be negative.

The Availability Bias Score. To quantify the avail-
ability bias for the DDI task, we are inspired by
the work of (Zhao et al., 2021), where a language
model’s bias towards certain answers is estimated
by feeding into the model a dummy test input that
is content-free, i.e., with a dummy prompt, and
measuring the deviation of the content-free pre-
diction score from the uniform prediction score.
Following this idea, we propose an availability bias
metric via querying a model with multiple dummy
test prompt inputs and computing the deviation of
the prediction scores from the uniform prediction
score as the bias measurement.

The intuition is that, when a dummy-content test
prompt is given, the best that an unbiased model
can do is to make a uniform random guess. If avail-
ability biases are present in the results, the number
of predictions in each class will not be uniform.
Henceforth, we can measure the deviation of the
imbalanced predictions from the uniform predic-
tion score to quantify the availability bias. We input
dummy prompts to a language model, and measure
the frequency of prediction of each class, and then
compute the difference between class frequency
and the uniform prediction score. For example,
the DDI task features 5 classes, including 4 DDI
types and Negative. Hence, the difference from
1/5 = 20% is the availability bias score of each
class.

In particular, we evaluate against a prompt-based
fine-tuned BERT model and first obtain predictions
conditioned on dummy prompt inputs. Let N de-
note the number of dummy test prompts, xdummy

denote a dummy prompt input.

ŷ = argmax
y

p(y|xdummy) (1)
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where p(y|xdummy) is the softmax score obtained
from the classification layer. Then we measure the
frequency of each class prediction, i.e., the number
of dummy predictions in each class (denoted by
count(Ci)) divided by total number of dummy test
prompts N .

count(Ci) =
N∑

j=1

1{ŷj = Ci} (2)

where 1{·} evaluates to 1 when the condition in
the curly braces is met and 0 otherwise. Let M
denote the number of classes. We propose the ab-
solute deviation of the frequency from 1/M as the
availability bias score for each class Ci, denoted by
Availability(Ci), and computed as follows:

Availability(Ci) =
∣∣∣count(Ci)

N
− 1

M

∣∣∣ (3)

For fairness in the dummy prompt design, we
extract from each class an equal number of test
instances and replace any UMLS keyword in the
text with a dummy word, N/A, to form dummy
prompts. The choice of dummy word follows the
content-free prompt design in (Zhao et al., 2021).
The reason to construct dummy prompts by extract-
ing templates from each class is to mitigate the
effect that a class-specific content-free input may
correlate with surface class patterns. Moreover,
our metric is robust to the number of dummy test
prompts used, and we discuss it in Appendix B.

3.2 The Framing Effect Metric
The framing effect describes a biased perception
about the same thing when it is framed differently,
e.g., toning down an expression. We observe
similar biases in BERT prompting when we trans-
form the same input text describing a drug-drug
interaction into a toned-down expression. When
we use paraphrases as input for prompt-based
fine-tuning and testing, the test predictions change
and test F1 score increases.

Measuring Framing Effect via Paraphrasing
To measure the framing effect, we paraphrase the
original drug-drug interaction descriptions to sound
softer. We leverage the GPT-3 (Brown et al., 2020)
model to build a paraphrase dataset, which contains
500 training instances, 50 development instances,
and 300 test instances. To gauge the quality of para-
phrase generation, we first compute BERTScore

(Zhang et al., 2020) of the 850 generated sentences
and their source reference sentences. BERTScore is
a cosine similarity metric based on contextual em-
beddings to evaluate how much candidate and refer-
ence sentences match. The average BERTScore of
all pairs is 97%, suggesting that the generated sen-
tences are similar to the original sentences. How-
ever, BERTScore does not take into account the
specific characteristics of a candidate, such as how
toned-down a paraphrase is compared to the origi-
nal sentence.

Therefore, we extend BERTScore and propose a
Framing Effect Paraphrase (FEP) score to measure
the framing effect-based P,R, F1 scores for para-
phrases and their source sentences. We focus on
the framing effect of toning down a description and
introduce a dictionary of toned-down words. The
FEP score will award a paraphrase if any word in
the paraphrase occurs in the dictionary, and penal-
ize the source sentence if it already contains toned-
down words. The reason to award a paraphrase
is to encourage the use of toned-down words, and
the source sentence is penalized because the best
a paraphrase can do is to retain a tone-down word
(since it is already in the source sentence), so the
paraphrase will not receive a score for that word
match. The dictionary of toned-down words, de-
noted as A, is a list of toned-down words/rules,
such as hedging words and uncertainty adjectives
or adverbs, such as “may”, “can”, and “reportedly”,
and words indicating conditions, such as “if” and
“when”.

Given a source sentence x and a paraphrase x̂,
to compute precision, the FEP score not only com-
putes a maximal matching similarity (by greedy
matching) of each token x̂j in x̂ to a token in x, but
also computes a reward score of each token in x̂ by
a scoring function ϕA, and precision is the larger of
the two. Similarly, to compute recall, the FEP score
computes both a matching similarity of each token
xi in x to a token in x̂ and a penalty score of each
token in x by 1− ϕA(xi), and recall is the smaller
of the two. We then measure F1 score by combin-
ing the precision and recall. The FEP precision,
recall, and F1 are denoted as PFEP, RFEP, FFEP

respectively and are defined as follows:

PFEP =
1

|x̂|
∑

x̂j∈x̂
max(max

xi∈x
(x⊤

i x̂j), ϕA(x̂j))

(4)
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where

ϕA(x̂j) =

{
1 if x̂j ∈ A
0 if x̂j /∈ A

(5)

RFEP =
1

|x|
∑

xi∈x
min(max

x̂j∈x̂
(x⊤

i x̂j), 1− ϕA(xi))

(6)

FFEP = 2
PFEP ·RFEP

PFEP +RFEP
(7)

The original sentence x and the paraphrase x̂
are used as the input sentence of a prompt for
fine-tuning BERT and testing, respectively. The
prompt pattern will be introduced in Section 4.1.
We then calculate conditional probabilities in a
given FFEP score range to measure the fine-grained
performance changes caused by the toning down
effect. For FFEP in [a, b), we compute the con-
ditional probability of test pairs that are correctly
predicted using the paraphrase input, given that
the predictions of their original sentence are wrong.
Specifically, we propose to measure the conditional
probability, denoted as ∆ in a given FFEP score
range, as follows:

∆ =

∑

k∈T
1{f(xk) ̸= yk, f(x̂k) = yk}
∑

k∈T
1{f(xk) ̸= yk}

, (8)

given FFEP(x
k, x̂k) in [a, b)

where T denotes the indices of test instances with
FFEP scores in the given range, f denotes the
prompt-based language model, f(xk) and f(x̂k)
denote the model prediction for the k-th test input
xk and x̂k respectively, and y denotes the correct
label.

4 Experiments

4.1 Dataset and Model
We focus on the relation extraction task of drug-
drug interactions, and use the DDIExtraction
dataset (Segura-Bedmar et al., 2013) for our ex-
periments. The DDI dataset was constructed with
MedLine abstracts and DrugBank documents on
drug-drug interactions. The DDI dataset uses 4
positive DDI types to annotate the semantic re-
lation for the interaction of a drug pair, includ-
ing Mechanism (DDI-mechanism), Effect (DDI-
effect), Advice (DDI-advise), and Int (DDI-int),

and a false class, which we refer to as the Nega-
tive class. Mechanism denotes the relation about
a pharmacokinetic mechanism, Effect is used to
annotate an effect or a pharmacodynamics mech-
anism, Advice is the relation describing an advice
or recommendation regarding a drug interaction,
and Int is the type for any other positive interaction
types (Zhang et al., 2018). The classes are im-
balanced with 85.2% Negative, 6.2% Effect, 4.9%
Mechanism, 3.1% Advice, and 0.6% Int. Among
all positive DDI types, Mechanism and Advice are
better recognized, while Effect and Int are harder
to be identified. For data preprocessing, we fol-
low (Yasunaga et al., 2022) to replace the names of
drugs of a pair to be classified with “@DRUG$”,
and split the dataset into 25,296 training, 2,496
development, and 5,716 test instances.

The language model we study in this work is
BERT-base2, which uses a transformer (Vaswani
et al., 2017) neural network pretrained on a 3.3 bil-
lion word corpus of general-domain English texts.
For prompting BERT, we use the prompt-based
fine-tuning method ADAPET3 (Tam et al., 2021).
The ADAPET method fine-tunes BERT via cloze-
style prompt inputs with a [MASK] token (or to-
kens). The output is a softmax score produced by
BERT over the [MASK] token vocabulary, which
then corresponds to a class label. During training,
the model is fine-tuned to minimize the sum of
the decoupled label loss and the label-conditioned
MLM loss. We stick to a single prompt pattern,
“([MASK]) [TEXT]”, where [MASK] is the label
phrase to be predicted and [TEXT] is the input
drug pair description. The verbalizers are {“0":
“false", “DDI-effect": “effect", “DDI-mechanism":
“mechanism", “DDI-advise": “advice", “DDI-int":
“interaction"}. We use a simple prompt pattern in
this work. Since we obtain similar findings with
more complex prompt patterns, we do not include
them in this paper.

4.2 Measuring Availability Bias
In our experiments, we construct a total of 100
dummy test prompts, with 20 templates randomly
extracted from each class. For the dummy test
prompt design, we search for UMLS keyword
contents in a sentence and replace them with
dummy phrases N/A, and apply the prompt pattern:
([MASK]) [TEXT]. The [TEXT] part contains a

2https://huggingface.co/
bert-base-uncased

3https://github.com/rrmenon10/ADAPET
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Availability bias score (%)

Training size 10-shot 100-shot 1,000-shot 10,000-shot 25,296
Negative 26.3 (2.1) 77.7 (2.1) 39.7 (3.9) 47.0 (3.6) 52.0 (2.8)

Mechanism 20.0 (0.0) 20.0 (0.0) 13.7 (0.5) 17.3 (1.2) 16.7 (1.3)
Advice 20.0 (0.0) 18.3 (1.7) 8.3 (2.6) 7.0 (2.4) 8.3 (2.6)
Effect 33.7 (2.1) 20.0 (0.0) 16.3 (2.1) 12.7 (2.5) 11.7 (2.4)

Int 20.0 (0.0) 19.3 (0.5) 1.3 (0.5) 10.0 (0.8) 15.3 (1.2)

Table 1: Availability bias score (%) for each class on the DDI task. Column 2-5: few-shot training settings. Column
6: full training set. Mean and standard deviation are shown.

Test data # pairs F1

Paraphrase, including
invalid paraphrases

300 44.6

Original sentences
of the above

300 10.2

Paraphrase, excluding
invalid paraphrases

208 55.7

Original sentences
of the above

208 9.0

Table 2: F1 score (%) on the framing effect test set.

test sentence with multiple N/As and the [MASK]
part will be the predicted label during testing. For
UMLS keyword extraction, we exploit MetaMap4

and its Python wrapper5. An example dummy test
prompt is shown below.

([MASK]) @DRUG$ competes with a N/A
of N/A for N/A N/A N/A notably
N/A N/A N/A N/A N/A @DRUG$
N/A N/A N/A and N/A N/A

The language model we measure against is
BERT-base, fine-tuned via the ADAPET method
with prompt inputs of the full DDI training set and
few-shot training sets including 10, 100, 1,000,
10,000-shot training settings. Note that the original
test F1 scores of the positive DDI types on the 10,
100, 1,000, 10,000-shot, and full training set are
5.04%, 12.36%, 56.16%, 74.64%, and 80.36% re-
spectively. We repeat the experiments three times
with different random seeds, and report the mean
and standard deviation.

4https://lhncbc.nlm.nih.gov/ii/tools/
MetaMap.html

5https://github.com/AnthonyMRios/
pymetamap

Table 1 shows the availability bias score (%) for
each class, on different fine-tuned BERT models.
The rightmost column in Table 1 represents the
scores for the BERT model fine-tuned on the full
training set. The upper limit for the availability bias
score is (100-20)/100=80%, and the closer the bias
score gets to the upper limit, the more biased the
model makes predictions towards the associated
class. As expected, the bias towards the Negative
class is the largest, by 52%, suggesting that when
supposedly making random guess for dummy in-
puts, the model’s behavior is vastly biased towards
predicting drug pairs as no relation.

In addition, results in column 2 to column 5 in
Table 1 present availability bias scores for few-
shot training cases. It is interesting to see that the
10-shot trained model exhibits lower bias score
towards the majority class. However, its accuracy
on the original full test set is only 5.04%. For
the remaining cases, the conclusion that the model
outputs are biased towards the majority class also
holds in few-shot training settings.

Though one may argue that labels in prompts
do not matter much for classification as in tradi-
tional supervised learning (Min et al., 2022), we
find that it is not true from our availability bias
scores obtained. The label in a prompt still plays an
important part in prompt-based training, leading to
availability bias-like predictions. The practical im-
plication of knowing this bias pattern is that when
users see model predictions, they can be informed
that a prediction given by a model is biased towards
the predicted label by the quantified amount.

4.3 Measuring Framing Effect

We first build the paraphrase dataset, where
we randomly select 500 training instances, 50
development instances, and 300 test instances
from the full DDI training, development, and
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FFEP
# Ori.
wrong

# Pp.
correct ∆

[0.99, 1.00) 78 77 98.7
[0.97, 0.99) 23 12 52.2
[0.95, 0.97) 35 27 77.1
[0.00, 1.00) 141 119 84.4

Table 3: Framing effect score: conditional probabilities
(∆) on the DDI test set. # Ori. wrong denotes the
number of wrong predictions with the original inputs.
# Pp. correct denotes the number of correct predictions
using paraphrase inputs within those that are originally
predicted wrongly. Results for FFEP scores lower than
0.95 are not presented and used for analysis as there are
too few such test instances (less than 3).

test set respectively for paraphrasing. The
paraphrases are generated by prompting GPT-3
with a demonstration and the actual query, where a
priming example (in blue) is appended to the test
sentence to be paraphrased (denoted as [INPUT]).
In our experiments, we design 8 priming examples
and randomly pick one of them as demonstration.
An example GPT-3 query is given below.

Paraphrase the following drug interaction
description. === Although @DRUG$ exerts
a slight intrinsic anticonvulsant effect, its
abrupt suppression of the protective effect of
a @DRUG$ agonist can give rise to convulsions
in epileptic patients. Description: @DRUG$
exerts a slight intrinsic anticonvulsant effect,
and its abrupt suppression of the protective
effect of a @DRUG$ agonist is reportedly to
give rise to convulsions in epileptic patients.
=== [INPUT] Rephrase the above description
to sound soft. Write the description in a warm
tone. Description:

We illustrate several GPT-3 generated para-
phrases of the test instances in Figure 2. For
training and testing, we use all the generated
paraphrases, although some paraphrases contain
hallucinations (e.g., an untruthful trailing sentence
that may come from the priming example) or miss
major content (e.g., missing the mention of a drug
to be predicted). The language model we measure
against is the BERT-base model, fine-tuned via the
ADAPET method on the 500 training instances.
An example of a prompt input to BERT is as
follows:

([MASK]) If you are taking @DRUG$ or
other potent CYP3A4 inhibitors such as
other azole antifungals (eg, itraconazole,
@DRUG$) or macrolide antibiotics (eg,
erythromycin, clarithromycin) or
cyclosporine or vinblastine, the
recommended dose of DETROL LA is
2 mg daily.

Table 2 shows the test F1 scores on both the orig-
inal test sentences and their GPT-3 paraphrases. As
shown by the last two rows, the 208 valid para-
phrases obtain an F1 score of 55.7%, which is
46.7% higher than the 208 original sentences which
obtain an F1 score of 9.0%.

More importantly, for the 208 drug pairs with
valid paraphrases, we show in Table 3 that the ∆
is 84.4%, and if we focus on highly toned-down
paraphrases in FFEP range [0.99, 1.00), the con-
ditional probability reaches 98.7%, showing that
framing an original drug-drug interaction descrip-
tion into a toned-down paraphrase helps to improve
relation extraction. These results suggest that ton-
ing down the input text in a prompt can elicit a bias
in predictions qualitatively similar to the framing
effect.

Furthermore, we illustrate the original sentences
and their framed paraphrases through some test
pairs in Figure 2. In Example 1, the correct re-
lation “effect” is identified given the paraphrase
input, while no interaction is detected given the
original sentence input. Compared to the original
text which uses the word “produce” to describe side
effects, the words “can cause ” used in the para-
phrase are more toned-down. In Example 2, the
correct relation is no interaction, which is identi-
fied correctly using the paraphrase input, while the
wrong prediction “effect” is made using the origi-
nal sentence. In the original sentence, “requires” is
used for the list of drugs, while “may require” is
used in the paraphrase, toning down the expression.

5 Discussion

Few-shot Training vs. the Availability Bias. We
have seen from Table 1 that at 10-shot, the avail-
ability bias towards Negative is not as obvious and
the scores are more similar among the five classes.
This is in contrast to the other few-shot learning
cases with more training instances, where the avail-
ability bias becomes more obvious for the negative
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Figure 2: Examples of GPT-3 generated paraphrases of the test instances. FFEP (toned-down paraphrasing scores)
from top to bottom: 0.994, 0.988.

class as the number of training instances increases.
It does not suggest that training on more instances
will worsen the availability bias, but more class-
biased training prompts will amplify the availabil-
ity bias. That is, since more negative class instances
are drawn for a larger number of training instances,
the majority class has been seen by the model more
frequently, causing biased predictions due to this
increased availability. Prompt-based learning is
not immune to imbalanced class distribution even
under few-shot settings, as it is sometimes hard to
obtain real class-balanced few-shot instances (this
is elaborated in Appendix A).

6 Conclusion

In this work, we identify and quantify two bias
modes in BERT’s prompt-based predictions, lever-
aging the availability bias and the framing effect on
biomedical drug-drug interaction extraction. The
error mode of the availability bias suggests that the
label for a prompt still matters for prompt-based
learning, as shown by a large availability bias score
towards the majority class, which is 52% on a scale
of 0 to 80%. We also find that a toning-down trans-
formation of the drug-drug description in a prompt
can elicit a bias similar to the framing effect, since
when we tone down the input description, 84.4%
of drug pairs that are wrongly classified with the
original text are now correctly predicted with their
toned-down paraphrases. For highly toned-down
paraphrases (as measured by FFEP above 0.99),
this conditional probability reaches 98.7%. The
magnitude of these biases suggests that language
model users need to be aware of the imprecision of
their prompting results.

7 Limitations

The limitations are that our use of GPT-3 some-
times generates hallucinated texts, thus reducing

the effectiveness in generating valid paraphrases.
The dictionary of toned-down words could include
more semantic rules or could be built automatically,
which will be left as future work.
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Appendix

A The Majority Label in Training

Since the availability bias arises from the major-
ity label in training, where the majority label is
typically defined by class size, one may argue that
there should not be an availability bias with an
equal number of class instances. However, we con-
structed a balanced training data set of equal class
size for fine-tuning (by sampling 2,000 instances
from each of the five classes, and all four positive
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classes include duplicate instances since their class
sizes are less than 2,000). Interestingly, we still ob-
serve that the predictions for the positive classes are
biased towards the negative class on the test set, as
shown by the confusion matrix in Figure 3. Except
Int, wrong predictions most frequently fall into the
negative class for all other positive classes Effect,
Mechanism, Advice. This does not contradict our
conclusion that the availability bias exists, and it
further suggests that the majority label should not
be solely defined by class size, but the class with
the highest input variance.

Figure 3: Test confusion matrix for class-balanced train-
ing data (2,000 instances per class). Balanced training
data does not alleviate the availability bias at inference
time. For positive classes except Int, wrong predictions
most frequently fall into the negative class.

Figure 4: Number of dummy test prompts for availabil-
ity bias measurement.

B Number of Dummy Test Prompts for
Availability Bias Measurement

We increase the number of dummy test prompts N
to show the stability of our availability bias metric,
where N ranges from 100 to 1000 with a step size
of 100. We repeat our experiments three times
for each N and calculate the mean and standard
deviation. When creating dummy test prompts,
if the number of dummy templates that need to
be drawn from a class exceeds the class size, we
enable upsampling of duplicate templates from that
class. Figure 4 shows that the availability bias
measurement is stable for N ≥ 100, suggesting
that our proposed metric can be used with as few
as 100 dummy test prompts.
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