
Findings of the Association for Computational Linguistics: ACL 2023, pages 5282–5297
July 9-14, 2023 ©2023 Association for Computational Linguistics

CodePrompt: Task-Agnostic Prefix Tuning for Program and Language
Generation

YunSeok Choi, Jee-Hyong Lee
College of Computing and Informatics

Sungkyunkwan University
Suwon, South Korea

{ys.choi, john}@skku.edu

Abstract

In order to solve the inefficient parameter up-
date and storage issues of fine-tuning in Natu-
ral Language Generation (NLG) tasks, prompt-
tuning methods have emerged as lightweight
alternatives. Furthermore, efforts to reduce the
gap between pre-training and fine-tuning have
shown successful results in low-resource set-
tings. As large Pre-trained Language Models
(PLMs) for Program and Language Generation
(PLG) tasks are constantly being developed,
prompt tuning methods are necessary for the
tasks. However, due to the gap between pre-
training and fine-tuning different from PLMs
for natural language, a prompt tuning method
that reflects the traits of PLM for program
language is needed. In this paper, we pro-
pose a Task-Agnostic prompt tuning method
for the PLG tasks, CodePrompt, that combines
Input-Dependent Prompt Template (to bridge
the gap between pre-training and fine-tuning of
PLMs for program and language) and Corpus-
Specific Prefix Tuning (to update the parame-
ters of PLMs for program and language effi-
ciently). Also, we propose a method to provide
richer prefix word information for limited pre-
fix lengths. We prove that our method is effec-
tive in three PLG tasks, not only in the full-data
setting but also in the low-resource setting and
cross-domain setting.

1 Introduction

As the software engineering field continues to grow,
the use of AI to increase the efficiency of devel-
opers through code intelligence is becoming in-
creasingly important. In particular, Program and
Language Generation (PLG) tasks, such as code
summarization, code generation, and code transla-
tion, are essential for developers to maximize their
productivity. Code summarization allows develop-
ers to quickly understand the structure and purpose
of a code, code generation assists by automatically
generating code given a natural language descrip-
tion, and code translation facilitates the translation

of code from one programming language to another,
such as from Java to C#, and vice versa.

The recent success of Pre-trained Language
Models (PLMs) for the PLG tasks, such as Code-
BERT (Feng et al., 2020), PLBART (Ahmad et al.,
2021), and CodeT5 (Wang et al., 2021), has been
attributed to their utilization of large-scale code
and text corpora. The "pre-training then fine-
tuning" approach has been widely used to de-
rive program language representations by self-
supervised training on large-scale unlabeled data,
which can then be transferred to multiple down-
stream tasks with limited data annotation. These
approaches have proven to be successful on code-
related downstream tasks. However, fine-tuning
large pre-trained models can be expensive and time-
consuming in terms of both updating and storing
all parameters. Furthermore, there is a discrep-
ancy between pre-training and fine-tuning in the
viewpoint of the inputs and the training objectives
(Brown et al., 2020; Wang et al., 2020). It makes
the model difficult to fully utilize the knowledge
of pre-trained models, resulting in suboptimal per-
formance on downstream tasks (Lester et al., 2021;
Gu et al., 2022; Han et al., 2022).

In order to address the issues of fine-tuning,
prompt tuning approaches have recently been pro-
posed in Natural Language Generation (NLG)
tasks. To reduce the gap between pre-training and
fine-tuning, Schick and Schütze (2021) proposed
a prompt tuning method that combined manually
crafted templates with the input. However, finding
the optimal manual prompt template for each nat-
ural language task is arduous and laborious. Fur-
thermore, due to the updating of all parameters
of the language model, it also requires updating
full model parameters for each task, similar to
fine-tuning. It can also easily lead to sub-optimal
language model parameters in low-resource set-
tings. Li and Liang (2021) proposed a lightweight
method, prefix tuning, to freeze the language model

5282

"In the mid-1970s punk rock was born in a dank little New York

nightclub called CBGB\'s. It all started when rockers like Television,

the Ramones and Patti Smith launched a frontal assault on the

monolith of corporate rock \'n roll. Now another artistic revolt,

Remodernism, is about to widen its offensive from the birthplace of

punk.“ On May 10, 2006, the Stedelijk Museum and the University

of Amsterdam staged a talk on remodernism by Daniel Birnbaum,

contributing editor of Artforum, and Alison Gingeras, Assistant

Curator, Guggenheim Museum. The summary is: In August 2006,

an online group called "The Remodernists of Deviantart" was

founded by Clay Martin. The group is composed of artists who are

active on the website deviantart.com. In 2006, artist Matt Bray said,

(a) An example of Wikipedia

def change_return_type(f):

Converts the returned value of wrapped function to the

type of the first arg or to the type specified by a kwarg key

return_type's value.

@wraps(f)

def wrapper(*args, **kwargs):

if kwargs.has_key('return_type'):

return_type = kwargs['return_type']

kwargs.pop('return_type')

return return_type(f(*args, **kwargs))

elif len(args) > 0:

return_type = type(args[0])

return return_type(f(*args, **kwargs))

else:

return f(*args, **kwargs)

return wrapper

(b) An example of CodeSearchNet (Husain et al., 2019)

Figure 1: (a) PLMs for natural language are pre-trained
using text from Wikipedia. (b) PLMs for program and
language are pre-trained using code and comment from
CodeSearchNet. The text of PLMs for program and
language is agnostic to task.

parameters and instead optimize a sequence of con-
tinuous task-specific vectors (prefix). This method
has shown performance comparable to fine-tuning
in the full data setting while updating much fewer
training parameters of a large pre-trained model.
Also, even in the low-resource setting, this method
has been proven to be effective by prefix initializa-
tion with words specific to the task.

However, those prompt tuning approaches for
most NLG tasks are difficult to apply directly to the
PLG tasks. The pre-training of PLMs for natural
language involves the use of large amounts of text
data consisting of a series of sentences. This dataset
contains task-specific natural language instructions
(templates). As shown in Figure 1a, task-specific
natural language instructions, such as "Summarize
_", "TL;DR _", and "The summary is _", appear in
data for pre-training. These templates can bridge
the gap between pre-training and fine-tuning. How-
ever, datasets of PLMs for program and language
hardly contain such task-specific textual instruc-
tions (templates). PLMs for program and language
are usually pre-trained with unimodal data (code-

only) or bimodal data (code-comment). Input is
either code or its corresponding comment, but there
are very few task-specific natural language instruc-
tions, shown in Figure 1b.

Due to the lack of task-specific instructions in
the pre-training stage, it is hard to manually select
task-dependent prompt templates for the PLG tasks
during the fine-tuning stage. Prefix tuning in the
NLG tasks improved performance by initializing
prefix embedding from task-specific words, espe-
cially in low-resource settings. However, for PLG
tasks, we can hardly adopt such initialization ap-
proaches because there are very few task-specific
words in data for PLG tasks, as mentioned. Also,
unlike NLG tasks, PLG tasks are two cross-modal
generation tasks. It is not appropriate to initial-
ize encoder and decoder prefixes with the same
words in the same language. Prefix embeddings
of encoder and decoder need to be initialized with
different words of their corresponding language.

Therefore, we propose a task-agnostic prompt
tuning method, CodePrompt, applicable to any
PLG tasks. Our method consists of three com-
ponents: input-dependent prompt template, corpus-
specific prefix tuning, and multi-word prefix ini-
tialization. First, we propose the input-dependent
prompt template by combining the template with
input to bridge the gap between pre-training and
fine-tuning in PLMs for program and language.
Input-dependent prompt template contains unified
backbone words and input-specific words, regard-
less of the task. Second, we propose the corpus-
specific prefix tuning to reduce the number of pa-
rameters for update considering the traits of two
cross-modal tasks. They can effectively transfer the
task and corpus specific information in cross-modal
tasks, especially in low-resource settings and zero-
shot settings. Third, we propose the multi-word
prefix initialization to provide richer information to
prefix embeddings while maintaining the number
of parameters within the limited prefix length. Our
CodePrompt shows great performances on three
PLG tasks in full data, low-resource, and cross-
domain settings.

2 Related Work

Pre-trained Model for Program and Language
As the pre-trained models based on the Transformer
architecture (Vaswani et al., 2017) have achieved
great success in NLG tasks, the methods on ex-
tending natural language-based methods to code

5283

4) Average K + 1 words

3) Extract K words with high cosine

similarity for each N words

1) Obtain embeddings of M

corpus common words from

embedding layer of PLM

2) Select Top-N core words
i-th core word K similar words

Input

Corpus

Prefix

Embedding

def change_return_type(f):

@wraps(f)

def wrapper(*args, **kwargs):

if kwargs.has_key('return_type'):

return_type = kwargs['return_type']

kwargs.pop('return_type')

return return_type(f(*args, **kwargs))

else:

return f(*args, **kwargs)

return wrapper

Language: Python , Function Name: change_return_type ,

Keywords: return type kwargs …

Input-Dependent Prompt Template

CodeT5 EncoderInput-Corpus

Specific Prefix

Input-Dependent Prompt Template Input [SEP] [MASK]

CodeT5 DecoderOutput-Corpus

Specific Prefix

Output

Corpus

Common

Word

Embedding

…

Input

…

Output

Corpus

Prefix

Embedding

Figure 2: Overview of our Task-Agnostic Prompt Tuning, CodePrompt.

have recently been proposed in PLG tasks. Feng
et al. (2020) proposed CodeBERT, a pretrained
language model, based on BERT (Devlin et al.,
2019). The model learns cross-modal representa-
tion both program language and natural language in
the pre-training stage. Guo et al. (2020) proposed
GraphCodeBERT to incorporate the code structure
into CodeBERT. However, such models are vulner-
able to the PLG task because they learn the PL-NL
representation with the transformer encoder only.
Ahmad et al. (2021) proposed PLBART to support
both code understanding and generation tasks us-
ing encoder-decoder model BART (Lewis et al.,
2020). Also, Wang et al. (2021) proposed CodeT5,
a pre-trained sequence-to-sequence model based
on T5 (Raffel et al., 2022), to facilitate generation
tasks for source code. We utilize the framework of
the CodeT5, the state-of-the-art pre-trained model,
in the PLG tasks for an effective prompt tuning
method of PLM for program and language.

Prompt tuning for Generation In NLG tasks,
the concept of prompt-tuning originated from in-
context learning, which was first introduced in GPT-
3 (Brown et al., 2020). Schick and Schütze (2021)
explored the use of fixed-prompt language model
(LM) tuning for few-shot text summarization using
manually created templates. Li and Liang (2021)
investigated prefix tuning, fixed-LM prompt tun-
ing, where learnable prefix tokens are prepended to
the input while the parameters in pre-trained mod-
els are frozen. Lester et al. (2021) proposed soft

prompt as a simplification of prefix tuning. Sev-
eral prompt tuning methods have been proposed for
NLG tasks, but they are not applicable to PLG tasks
because they require additional data information
for specific natural language tasks. Recently, Wang
et al. (2022) evaluated the effect of prompt tun-
ing in Program and Language Understanding and
Generation tasks. However, they used the prompt
tuning method with updating all parameters of the
pre-trained language model, not freezing the pa-
rameters. Moreover, they did not consider the gap
between pre-training and fine-tuning of PLMs for
program and language.

3 CodePrompt

In this section, we explain our prompt tuning
method, CodePrompt, in detail. Our prompt tun-
ing method aims to consider the traits of PLMs
for program and language. Figure 2 shows the ar-
chitecture of our method, which is on the basis of
the CodeT5 framework, including input-dependent
prompt template, corpus-specific prefix tuning, and
multi-word prefix initialization.

3.1 Input-dependent Prompt Template
In NLG tasks, it is common to manually craft tem-
plates specific to tasks. However, in PLG tasks, it is
hard to select task-specific templates because they
are rarely seen in the pre-training stage. Instead of
providing task-related templates, we will provide
input-dependent templates. Input-dependent tem-
plates, that are agnostic to the task, can help in un-

5284

derstanding the input by reducing the gap between
pre-training and fine-tuning. PLMs for program
and language are pre-trained using bi-modal data,
pairs of code and its comment, but provided with
unimodal data, either code or comment, in the fine-
tuning stage. If we provide additional information
that seems like comment or code, it can bridge the
gap between inputs of pre-training and fine-tuning
stages. It will help better transfer the knowledge
gained in pre-training stage to fine-tuned models.

There is a lot of information about code such as
repository (owner), path, and library information,
but we choose three easily extractable information
from code: language, function name, and keywords.
The backbone of the template is "Language _, Func-
tion Name _, Keywords _". The backbone words
are task-agnostic, fixed and unified template, and
"_" is dependent to the input. The information of
language and function name can be easily obtained,
and keywords can be extracted by various keyword
extraction methods. To prove the efficiency of our
template, we use a simple but effective keyword
extraction method, TextRank (Mihalcea and Tarau,
2004).

For example, if a code snippet is given in the
code summarization task, the following prompt for
the code will be added: "Language: Python, Func-
tion Name: simulate_request, Keywords: simulate
request wsgi ...", as shown in Figure 2. The actual
ground truth comment for the code is "simulate a
request to a wsgi application". This prompt tem-
plate can act not only as the comment for the code
in natural language, but also as a hint for summa-
rization. The pair of the template and the input
will act like a bimodal pair seen in the pre-training
stage. In the code generation task where an NL
comment is given, we also use the template with-
out the backbone word "Function Name". In this
case, the keywords from the comment will act like
a simple version of the corresponding code, be-
cause most of keywords from the comment may
also appear in the code.

3.2 Corpus-Specific Prefix Tuning

In prefix-tuning, prefix embedding initialization
is important. Initialization with task-specific pre-
fix words has been proven to be effective, espe-
cially in low-resource settings, because it can easily
transfer task-specific knowledge to the pre-trained
model. However, as mentioned above, in the pre-
training stage of PLMs for program and language,

the task-specific words were rarely seen. Instead of
task-specific words, we try to transfer task-related
knowledge to the fine-tuned model by providing
frequent words in input and output corpora. We
initialize the encoder prefix with common words
in the input corpus and the decoder prefix with
common words in the output corpus. By providing
common words of each input and output corpus, we
can indirectly provide what the model is required
to do for the given task.

For the transfer of corpus-specific information
to each encoder and decoder, we initialize using
corpus-specific prefix words corresponding to each
input and output corpus. Corpus-specific prefix
embeddings are initialized with input and output
corpus’s common words obtained from the train
data. Our encoder combines the input embedding
and input corpus prefix embedding with a bidirec-
tional language model to learn the context. If the
input corpus prefix embeddings of prefix words
are composed of words representing the input cor-
pus, the encoder can learn the global features of
the corpus of the prefix embeddings and the indi-
vidual feature of the input. Our decoder generates
output words with a left-to-right language model
through output corpus prefix embeddings. If the
output corpus prefix words are the output corpus
representative words, the output sequence is gen-
erated by considering frequently occurring words
such as frequently occurring words "return", "get",
"method", and "file".

3.3 Multi-Word Prefix Initialization

Prefix tuning has shown effective performance in
both full data and low resource settings, but only
one word is used to initialize each prefix embed-
ding. If we provide as many words as possible, it
will help to transfer more knowledge of the pre-
trained model to the fine-tuned model.

We propose a multi-word prefix initialization
method. Each prefix embedding is initialized with
multiple words within the limited prefix length.
Let N be the prefix length and M be the corpus
common words (N « M). First, we obtain the em-
bedding of the corpus common words M from the
embedding layer of a pre-trained language model.
Then, we select the top-N of the corpus common
words as the core words. For each N core word,
K words with high cosine similarity among M
words are extracted. We combine one core word
and its similar words using a feed-forward neural

5285

network (FFN). K + 1 word embeddings are aver-
aged through mean pooling in the hidden layer and
then obtained the prefix embedding of all layers, as
shown in Figure 2. Multi-word prefix initialization
can provide a rich set of prefix words while main-
taining the same number of parameters as the FFN
used for prefix tuning for stable optimization.

3.4 CodePrompt-based CodeT5 Architecture

As shown in Figure 2, we utilize our CodePrompt
to apply to the framework of CodeT5. First, we
extract common words from the input language
and output language to obtain corpus-specific pre-
fix words. Then, the prefix embeddings of our
encoder and decoder are initialized through the
multi-word prefix initialization method. When a
code or comment is given as input, we generate its
input-dependent prompt template and combine the
template with the input. Our encoder and decoder
are frozen and only the prepended prefix embed-
ding is trained.

4 Experiment Setup

4.1 Downstream Tasks & Datasets

We evaluate our CodePrompt method on three gen-
eration tasks in CodeXGLUE benchmark (Lu et al.,
2021): code summarization, code generation and
code translation. Code Summarization is the task
of generating a natural language summary from
code. The dataset consists of six programming lan-
guages, namely, Ruby, Javascript, Go, PHP, Java,
and Python. Code Generation is the task of gen-
erating code from its natural language description.
Code Translation is the task of generating a code
of target language from the code of source lan-
guage. Table 1 is detailed statistics of the datasets.

4.2 Evaluation Metrics

BLEU (Papineni et al., 2002) computes the n-gram
overlap between a generated sequence and a ref-
erence. CodeBLEU (Ren et al., 2020) is a met-
ric for measuring the quality of the code. Unlike
BLEU, CodeBLEU considers grammatical and log-
ical correctness based on the abstract syntax tree
and the data-flow structure. we refer to CodeBLEU
as C.BLEU. Exact Match (EM) measures whether
a generated sequence exactly matches the refer-
ence. #Param is the number of parameters to be
updated. For more details about the evaluation
metrics, please refer to Appendix B.

Task Language Train Valid Test

Summarization

Ruby 24K 1.4K 1.2K
Javascript 58K 3.8K 3.2K
Go 167K 7.3K 8.1K
PHP 241K 12.9K 14K
Java 164K 5.1K 10.9K
Python 251K 13.9K 14.9K

Generation NL to Java 100K 2K 2K

Translation Java to C# 10.3K 0.5K 1K
C# to Java 10.3K 0.5K 1K

Table 1: Statistics of three PLG tasks in CodeXGLUE
benchmark datasets (Lu et al., 2021).

4.3 Baseline Methods

We compare our method with the state-of-the-art
(SOTA) pre-trained models. As encoder-only mod-
els, we compare with RoBERTa (Liu et al., 2019),
CodeBERT (Feng et al., 2020), GraphCodeBERT
(Guo et al., 2020), and DOBF (Roziere et al., 2021).
For decoder-only models, we compare with GPT2
(Radford et al., 2019) and code-version GPT mod-
els, CodeGPT-2 and CodeGPTadapted. As encoder-
decoder models, we consider PLBART (Ahmad
et al., 2021) and finetuned-CodeT5 (Wang et al.,
2021). And we compare our method with CodeT5
which is trained by Prefix-tuning (Li and Liang,
2021).

4.4 Training Details

We implement our prompt method based on the
Hugging Face Transformer models1 (Wolf et al.,
2020). We use the AdamW optimizer (Loshchilov
and Hutter, 2019) and a linear learning rate sched-
uler. We follow the implementation details of
CodeT5 for all configuration settings. The default
prefix length of each task is set to 200, 250, and
100 for code summarization, code generation, and
code translation, respectively. We choose a sim-
ple but effective keyword extraction method, Tex-
tRank (Mihalcea and Tarau, 2004). The number
of language common words M is 400, the number
of similar words K is 3, and the number of key-
words in input-dependent prompt template is 10.
For detailed configurations for each task, refer to
Appendix A.

1https://github.com/huggingface/transformers

5286

Methods #Param Ruby Javascript Go PHP Java Python Overall

Fine-Tuning
RoBERTa 125M 11.17 11.90 17.72 24.02 16.47 18.14 16.57
CodeBERT 172M 12.16 14.90 18.07 25.16 17.65 19.06 17.83
PLBART 139M 14.11 15.56 18.91 23.58 18.45 19.30 18.32
CodeT5-base 222M 15.24 16.16 19.56 26.03 20.31 20.01 19.55
+Input-Dependent (ours) 222M 15.44 16.21 19.66 26.26 20.39 20.27 19.71

Prompt Tuning
Prefix-tuning 20M 14.91 15.36 19.15 25.03 19.96 19.93 19.06
CodePrompt (ours) 20M 15.71 15.78 19.43 25.43 20.13 20.25 19.46

Table 2: Smoothed BLEU-4 scores on the code summarization task.

Methods #Param NL to Java

EM BLEU C.BLEU

Fine-Tuning
GPT-2 124M 17.35 25.37 29.69
CodeGPT-2 124M 18.25 28.69 32.71
CodeGPT-adapted 124M 20.10 32.79 35.98
PLBART 139M 18.75 36.69 38.52
CodeT5-base 222M 22.30 40.73 43.20
+Input-Dependent (ours) 222M 23.05 43.13 43.24

Prompt Tuning
Prefix-tuning 20M 21.30 35.72 36.32
CodePrompt (ours) 20M 21.85 37.51 38.19

Table 3: Results on the code generation task.

Methods #Param Java to C# C# to Java

BLEU EM BLEU EM

Fine-Tuning
RoBERTa (code) 125M 77.46 56.10 71.99 57.90
CodeBERT 172M 79.92 59.00 72.14 58.80
GraphCodeBERT 172M 80.58 59.40 72.64 58.80
PLBART 139M 83.02 64.60 78.35 65.00
CodeT5-base 222M 84.03 65.90 79.87 66.90
+Input-Dependent (ours) 222M 85.23 66.60 81.60 67.20

Prompt Tuning
Prefix-tuning 20M 80.58 57.60 77.21 61.10
CodePrompt (ours) 20M 81.82 59.80 79.27 63.50

Table 4: Results on the code translation task.

5 Experiment Results

5.1 Full-Data Setting

Code Summarization Table 2 shows the results
of code summarization for six programming lan-
guages in the full-data setting.

First, to prove the effectiveness of our input-
dependent prompt template, we fine-tune the SOTA
pre-trained model, CodeT5-base, with only input-
dependent prompt template (the language model
is not frozen). The model fine-tuned with only
input-dependent prompt template shows better per-
formance than the other SOTA models. This shows
that our input-dependent prompt template effec-
tively acts as a hint for generating summary and re-
duces the gap between pre-training and fine-tuning
of PLMs for program and language. However, sim-
ply combining the template with the input is not
effective because it tuned all parameters like fine-
tuning.

In prompt tuning methods, prefix-tuning (Li and
Liang, 2021) shows a performance that is slightly
lower than the fine-tuning methods, but with a very
small number of parameters to be updated. Here,
our method, CodePrompt, shows great performance
comparable to fine-tuning, while updating a fewer
number of parameters. The number of parameters

to update is about 1/11. In the case of Ruby and
Python, the scores are higher than the fine-tuning
method, CodeT5-base, by 0.47 and 0.24, respec-
tively.

Code Completion The results of the code gen-
eration task in the full-data setting are shown in
Table 3. Among the fine-tuning methods, CodeT5
with our input-dependent prompt template has
the best performance compared to the other fine-
tuning methods. The BLEU score increased by
2.4 compared to CodeT5-base. Additionally, Code-
Prompt has much better EM, BLEU, and Code-
BLEU scores compared to prefix-tuning. In par-
ticular, our method has almost the same EM score
as CodeT5-base and even better performance than
other pre-trained models except for CodeT5 while
updating very few parameters. This shows that our
CodePrompt is very effective on PLM for programs
and languages with a small number of updates.

Code Translation Table 4 shows the results of
code translation from Java to C# and from C# to
Java in the full-data setting. As with code sum-
marization and code generation tasks, our input-
dependent prompt template with fine-tuning shows
the best performance and CodePrompt show very
effective results compared to other baselines. Espe-

5287

8 16 32 64 128 256
0

5

10

15
Ruby to NL

8 16 32 64 128 256
0

5

10

15
Javascript to NL

8 16 32 64 128 256
0

10

20
Go to NL

8 16 32 64 128 256
0

10

20

PHP to NL

8 16 32 64 128 256
0

10

20
Java to NL

8 16 32 64 128 256
0

10

20
Python to NL

Fine-Tuning Prefix Tuning CodePrompt

Figure 3: Results on the code summarization tasks in low-resource settings. The x-axis is training size and the y-axis
is the evaluation metric score (BLEU). The purple dash line is the score of CodeT5-base in the full data setting.

cially in C# to Java, CodePrompt has BLEU score
almost similar to the CodeT5 fine-tuning method
and better performance than PLBART. Compared
to PLBART (139M) and CodeT5 (222M) in the
full-data setting, Codeprompt shows almost compa-
rable performance by updating only 20M parame-
ters, proving its effectiveness in the full-data setting.
This shows that CodePrompt is very effective in
PLG tasks.

5.2 Low-Resource Setting

We evaluate our prompt method in code summa-
rization in low-resource settings. We randomly se-
lected 8, 16, 32, 64, 128, and 256 training instances
from the original data. Figure 3 shows the result
of code summarization on six program languages
in the low-resource data setting. Our method out-
performs the prefix tuning method in all few-shot
environments for all languages. In all program lan-
guages, prefix-tuning showed poor performance at
few shot instances (8 or 16 shots), but CodePrompt
can perform well even with 16 shots. In particular,
for Go, we can see that prefix tuning cannot be
learned up to 64 shots, whereas our method can be
learned from 16 shots. This shows that by initializ-
ing the prefix embedding for each language from
corpus-specific prefix words, the model can learn
the global feature of the language with little data.
Furthermore, fine-tuning is highly sub-optimal for
few-shot data, so it cannot produce general perfor-
mance. For the few-shot results for generation and
translation, please refer to Appendix C.

5.3 Cross Domain Setting

PLMs for PLG tasks should have generalization
capability on any unseen program languages. They
need to understand and process languages where
there is no existing training data in a new language.
We study the benefits of our CodePrompt in cross-
domain settings (zero-shot settings).

Table 5 presents the results of code summariza-
tion in cross-domain settings. Each of the three pro-
gram languages (Go, Java, and Python) is for train-
ing data and other three program languages (Ruby,
Javascript, and PHP) are regarded as the unseen tar-
get languages. The result shows that CodePrompt
is much more effective in cross-domain settings
than fine-tuning. Fine-tuning updates all param-
eters to provide sub-optimal performance for the
source language, but CodePrompt based on prefix-
tuning only updates prefix embeddings while keep-
ing the language model frozen. For this reason, our
CodePrompt based on prefix tuning method shows
better performance in cross-domain settings. For
the results of other languages, refer to Appendix D.

5.4 Ablation Study

We perform an ablation study on code summa-
rization task in the full data setting. As shown
in Table 6, we observe that the removal of input-
dependent prompt template significantly decreases
performance. The scores drop by 0.57, 0.15, and
0.30 for ruby, java, and python, respectively. The
result proves that our input-dependent prompt tem-
plate is effective to bridge the gap between pre-
training and fine-tuning of PLMs for program and

5288

Source Methods Target

Ruby Javascript PHP

Go Fine-tuning 11.94 12.43 18.61
CodePrompt 13.05 13.01 19.27

Java Fine-tuning 14.35 14.21 22.31
CodePrompt 15.54 14.90 23.42

Python Fine-tuning 15.13 14.47 21.56
CodePrompt 15.90 15.59 23.43

CodeT5-base 15.24 16.16 26.03

Table 5: Results on code summarization task in cross-
domain setting. The score of CodeT5-base is the result
of fine-tuning with the same language as the target.

50 100 150 200 250 300

19.5

20.0

Java to NL

50 100 150 200 250 300

20.0

20.2

Python to NL

50 100 150 200 250 300

36

37

21.4

21.6

21.8
NL to Java

50 100 150 200 250 300
80.5

81.0

81.5

58

59

Java to C#

BLEU EM

Figure 4: Results on code summarization, code genera-
tion, and code translation with different prefix lengths.
The x-axis is prefix lengths, the left y-axis (blue) is
BLEU, and the right y-asis (red) is EM (Exact Match).

language. Corpus-specific prefix tuning and multi-
word prefix initialization are helpful to improve the
performance and reduce the parameters of PLMs
for update store. For the results of other languages
and the effect of prefix module, refer to Appendix
E.

5.5 Effect of Prefix Length

We also study the impact of different lengths of pre-
fix prompts. We illustrate the performance under
different prefix prompt lengths for the three tasks.
As shown in Figure 4, prefix prompts of too short
or long lengths can degrade the model performance.
For each task and program language, the best per-
formance of prefix length varied slightly. In our
work, the prefix lengths are set as 200, 250, and
100 for code summarization, code generation, and
code translation tasks, respectively.

Methods Ruby Java Python

CodePrompt 15.71 20.13 20.25
w/o Input. 15.14 19.98 19.95
w/o Corpus. 15.46 20.04 20.06
w/o Multi-Word. 15.50 20.06 20.06

Table 6: Ablation study on code summarization task
in the full data setting. "w/o Input." refers to without
input-dependent prompt template, "w/o Corpus." means
the encoder and decoder initialization with the prefix
word of the output language, and "w/o Multi-Word."
means the initialization with single word per a prefix
embedding.

Methods # Params Ruby Java Python

Fine-Tuning
CodeT5-small 60M 14.87 19.92 20.04
CodeT5-base 222M 15.24 20.31 20.01
CodeT5-large 737M 15.58 20.74 20.57

Prompt Tuning
Prefix-tuning 52M 15.06 20.32 20.09
CodePrompt 52M 15.79 20.61 20.35

Table 7: Results of CodeT5-large on code summariza-
tion task. We compare our method with CodeT5-large
reported in (Le et al., 2022).

5.6 Expand to Large Pre-trained Model
We applied our CodePrompt to the CodeT5-large
by utilizing the very effective benefits of the param-
eters. Table 7 shows the results of applying Code-
Prompt to the CodeT5 large model. Our method
showed better performance to the CodeT5-base
model, as well as comparable performance to fine-
tuning for the codeT5-large. Especially when us-
ing CodePrompt on the large model, the number of
parameters was much less than when fine-tuning
CodeT5-base, yet it showed much better perfor-
mance. Our CodePrompt has shown to be very
effective even for models with a large number of
parameters. For more results of other languages,
please refer to Appendix F.

6 Conclusion

In this work, we proposed CodePrompt, a Task-
Agnostic prompt tuning method for Program and
Language Generation tasks. Our CodePrompt com-
bined input-dependent prompt template to bridge
the gap between pre-training and fine-tuning of
PLMs for program and language, and corpus-
specific prefix tuning to efficiently update the pa-
rameters of PLMs. Additionally, we proposed
multi-word prefix initialization method to provide
more rich prefix word information for limited pre-

5289

fix lengths. We demonstrated that our method is
effective in three PLG tasks, both in full-data and
low-resource settings, as well as in cross-domain
settings.

Limitations

In this section, we discuss some limitations and po-
tential risks of our work. (1) Our CodePrompt fo-
cused on Program and Language Generation tasks,
so it is difficult to directly apply our method to Pro-
gram and Language Understanding tasks. (2) We
designed an input-dependent prompt template with
fixed backbone words (Language, Function Name,
Keywords) for a simple and efficient template. A
more effective template can be crafted. (3) We ap-
plied only CodeT5, the most state-of-the-art model,
as the basis of the framework of our CodePrompt.

Ethics Statement

This paper proposes a task-agnostic prompt tuning
method for the PLG tasks to bridge the gap between
pre-training and fine-tuning of PLMs for program
and language and to efficiently update the param-
eters of PLMs for program and language, which
is beneficial to energy efficient Program and Lan-
guage applications. The research conducted in this
paper will not cause any ethical issues or have any
negative social effects. The data used is publicly
accessible and is commonly used by researchers as
a benchmark for program and language generation
tasks. The proposed method does not introduce any
ethical or social bias, or worsen any existing bias
in the data.

Acknowledgements

This work was supported by Institute of Infor-
mation & communications Technology Planning
& Evaluation(IITP) grant funded by the Korea
government(MSIT) (No.2019-0-00421, AI Grad-
uate School Support Program(Sungkyunkwan
University)), (No.2022-0-01045, Self-directed
Multi-modal Intelligence for solving unknown,
open domain problems), and (No.2020-0-
00990,Platform Development and Proof of High
Trust & Low Latency Processing for Hetero-
geneous·Atypical·Large Scaled Data in 5G-IoT
Environment)

References
Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and

Kai-Wei Chang. 2021. Unified pre-training for pro-
gram understanding and generation. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655–2668,
Online. Association for Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2022. PPT: Pre-trained prompt tuning for few-shot
learning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 8410–8423, Dublin,
Ireland. Association for Computational Linguistics.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
ArXiv preprint, abs/2009.08366.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and
Maosong Sun. 2022. Ptr: Prompt tuning with rules
for text classification. AI Open, 3:182–192.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. ArXiv preprint, abs/1909.09436.

5290

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2022.acl-long.576
https://doi.org/10.18653/v1/2022.acl-long.576
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2009.08366
https://www.sciencedirect.com/science/article/pii/S2666651022000183
https://www.sciencedirect.com/science/article/pii/S2666651022000183
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Sil-
vio Savarese, and Steven CH Hoi. 2022. Coderl:
Mastering code generation through pretrained mod-
els and deep reinforcement learning. ArXiv preprint,
abs/2207.01780.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv preprint, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. ArXiv
preprint, abs/2102.04664.

Rada Mihalcea and Paul Tarau. 2004. TextRank: Bring-
ing order into text. In Proceedings of the 2004 Con-
ference on Empirical Methods in Natural Language
Processing, pages 404–411, Barcelona, Spain. Asso-
ciation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2022. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. ArXiv
preprint, abs/2009.10297.

Baptiste Roziere, Marie-Anne Lachaux, Marc
Szafraniec, and Guillaume Lample. 2021. Dobf: A
deobfuscation pre-training objective for program-
ming languages. ArXiv preprint, abs/2102.07492.

Timo Schick and Hinrich Schütze. 2021. Few-shot text
generation with natural language instructions. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 390–
402, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun
Peng, Hongyu Zhang, and Michael R Lyu. 2022.
No more fine-tuning? an experimental evaluation of
prompt tuning in code intelligence. In Proceedings of
the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, pages 382–394.

Chengyi Wang, Yu Wu, Shujie Liu, Zhenglu Yang, and
Ming Zhou. 2020. Bridging the gap between pre-
training and fine-tuning for end-to-end speech trans-
lation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 9161–9168.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8696–8708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,

5291

https://arxiv.org/abs/2207.01780
https://arxiv.org/abs/2207.01780
https://arxiv.org/abs/2207.01780
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664
https://aclanthology.org/W04-3252
https://aclanthology.org/W04-3252
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2102.07492
https://arxiv.org/abs/2102.07492
https://arxiv.org/abs/2102.07492
https://doi.org/10.18653/v1/2021.emnlp-main.32
https://doi.org/10.18653/v1/2021.emnlp-main.32
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://ojs.aaai.org/index.php/AAAI/article/view/6452
https://ojs.aaai.org/index.php/AAAI/article/view/6452
https://ojs.aaai.org/index.php/AAAI/article/view/6452
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685

Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

5292

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

A Implementation Details

We set the environment for all experiments as fol-
lows: one NVIDIA 3090 GPU with 24GB graphic
memory, Ubuntu 20.04, Python 3.8, and CUDA
11.7 version. In the full data settings, the average
training time for CodePrompt takes about 2, 4, 15,
18, 14, and 20 hours on ruby, javascript, go, php,
java, and python, respectively. The average training
time for code generation and code translation takes
about 14 and 5 hours, respectively. The description
of the hyperparameter for the experiment is shown
in the tables below.

Task Hyper-parameter Value

Common
Optimizer AdamW
beam size 10

warm-up ratio 0.1

Code Summarization

train batch size 20
eval batch size 12
source length 256
target length 128

num train epoch 15
learning rate 5e-5

patience 3

Code Generation

train batch size 14
eval batch size 8
source length 320
target length 150

num train epoch 30
learning rate 1e-4

patience 3

Code Translation

train batch size 12
eval batch size 8
source length 320
target length 256

num train epoch 100
learning rate 5e-5

patience 5

Table 8: Hyper-parameter settings

B Evaluation Metrics

BLEU(Papineni et al., 2002) is a Bilingual Evalu-
ation Understudy to measure the quality of gener-
ated code summaries. The formula for computing
BLEU is as follows:

BLEU = BP · exp
N∑

n=1

ωn log pn

where pn is the geometric average of the modified
n-gram precisions, ωn is uniform weights 1/N and
BP is the brevity penalty.

CodeBLEU (Ren et al., 2020) is an automatic
evaluation of code synthesis considering infor-
mation from the n-gram, syntactic, and semantic

match. The formula for computing CodeBLEU is
as follows:

CodeBLEU = α · BLEU + β · BLEUweight (1)

+ γ · Matchast + δ · Matchdf

where BLEU is calculated by standard BLEU,
BLEUweight is the weighted n-gram match,
Matchast is the syntactic AST match, Matchdf is
the semantic dataflow match. The weighted n-
gram match and the syntactic AST match are used
to measure grammatical correctness, and the se-
mantic data-flow match is used to calculate logic
correctness. The values of α, β, γ, δ are all set as
0.25.

Exact Match (EM) evaluates whether a gener-
ated sequence exactly matches the reference. If the
characters of the sequence generated by the model
exactly match the characters of the reference, EM
= 1, otherwise EM = 0.

C Low Resource Settings

8 16 32 64 128 256
0

20

40
NL to Java (BLEU)

8 16 32 64 128 256
0

10

20

NL to Java (EM)

8 16 32 64 128 256
0

25

50

75

Java to C# (BLEU)

8 16 32 64 128 256
0

20

40

60
Java to C# (EM)

8 16 32 64 128 256
0

25

50

75
C# to Java (BLEU)

8 16 32 64 128 256
0

20

40

60

C# to Java (EM)

Prefix Tuning CodePrompt

Figure 5: Results on the code generation and code trans-
lation tasks in low-resource settings. We randomly se-
lected 8, 16, 32, 64, 128, and 256 training instances
from the original data.

5293

D Cross Domain Settings

Source Methods Target

Ruby JS Go PHP Java Python

Ruby Fine-tuning - 14.98 15.87 22.59 17.05 17.78
CodePrompt - 14.78 15.13 22.53 18.44 18.28

JS Fine-tuning 14.60 - 15.15 23.17 18.03 18.04
CodePrompt 15.68 - 15.48 23.32 18.92 18.83

Go Fine-tuning 11.94 12.43 - 18.61 15.39 13.41
CodePrompt 13.05 13.01 - 19.27 17.08 14.61

PHP Fine-tuning 15.09 15.46 14.75 - 17.23 18.35
CodePrompt 15.91 15.73 15.24 - 19.1 19.2

Java Fine-tuning 14.35 14.21 15.48 22.31 - 17.51
CodePrompt 15.54 14.90 15.72 23.42 - 18.54

Python Fine-tuning 15.13 14.47 15.36 21.56 16.85 -
CodePrompt 15.90 15.59 15.13 23.98 18.65 -

CodeT5-base 15.24 16.16 19.56 26.03 20.31 20.01

Table 9: Smoothed BLEU-4 scores on code summariza-
tion task in cross-domain setting.

E More Ablation Study

We study ablation study on code summarization
task in the full data setting.

Methods Ruby JS Go PHP Java Python

CodePrompt 15.71 15.78 19.43 25.43 20.13 20.25
w/o Input. 15.14 15.44 19.19 25.04 19.98 19.95
w/o Corpus. 15.46 15.41 19.30 25.06 20.04 20.06
w/o Multi-Word. 15.50 15.45 19.39 25.10 20.06 20.06

Table 10: Ablation study on code summarization task in
the full data setting.

We evaluated the effects of the prefix module
in the encoder and decoder on the code summa-
rization task in the full data setting. When the
encoder or decoder prefix module was removed,
the performance of the model decreased signifi-
cantly. Additionally, we observed that removing
the source prefix module caused a more critical
performance degradation than removing the target
prefix module.

Methods Ruby JS Go PHP Java Python

CodePrompt 15.71 15.78 19.43 25.43 20.13 20.25
w/o source. prefix 15.32 15.04 18.75 24.25 19.39 19.18
w/o target. prefix 15.34 15.40 19.01 24.61 19.79 20.01

Table 11: Effects of prefix module on code summariza-
tion task in the full data setting.

Table 12 and 13 present the performance com-
parison between task-specific templates and our

Methods Ruby JS Go PHP Java Python

CodeT5-base 15.24 16.16 19.56 26.03 20.31 20.01
w/ Task. 14.70 15.85 19.35 25.79 19.89 19.77
w/ Input. (ours) 15.44 16.21 19.66 26.26 20.39 20.27

Table 12: Comparison with task-specific template on
code summarization task in the full data setting. Task.
refers to task specific prompt template for summariza-
tion task proposed by Wang et al. (2022).

Methods Java to C# C# to Java

BLEU EM BLEU EM

CodeT5-base 84.03 65.90 79.87 66.90
w/ Task. 83.99 65.40 79.76 66.10
w/ Input. (ours) 85.23 66.60 81.60 67.20

Table 13: Comparison with task-specific template on
code translation task in the full data setting. Task. refers
to task-specific prompt template for translation task pro-
posed by Wang et al. (2022).

approach for the summarization and translation
tasks, respectively, in the full data setting. In the
code summarization task, we re-implemented the
method proposed in Wang et al. (2022) using the
publicly available dataset used in our work to en-
sure a fair comparison. Additionally, for the code
translation task, we presented the results as re-
ported in the paper by (Wang et al., 2022). Our
model demonstrated significantly more effective
performance.

5294

F Expand to CodeT5-large

Methods # Param Ruby JS Go PHP Java Python

Fine-Tuning
CodeT5-small 60M 14.87 15.32 19.25 25.46 19.92 20.04
CodeT5-base 222M 15.24 16.16 19.56 26.03 20.31 20.01
CodeT5-large 737M 15.58 16.17 19.69 26.49 20.74 20.57

Prompt Tuning
Prefix-tuning 52M 15.06 15.43 19.12 25.45 20.32 20.09
CodePrompt 52M 15.79 15.53 19.36 25.74 20.61 20.35

Table 14: Results of CodeT5-large on code summariza-
tion task.

5295

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations

�3 A2. Did you discuss any potential risks of your work?
Limitations

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and 1. Introduction

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
5. Experiment Results

�3 B1. Did you cite the creators of artifacts you used?
4. Experiment Setup

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
4. Experiment Setup and Appendix A

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
4. Experiment Setup

C �3 Did you run computational experiments?
5. Experiment Results and Appendix A

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
5. Experiment Results and Appendix A

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

5296

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�7 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
We used the same hyperparameter as the previous study.

�7 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
We adopted the median value among the 3 models.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
4. Experiment Setup and Appendix A, B

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

5297

