
Findings of the Association for Computational Linguistics: ACL 2023, pages 5329–5341
July 9-14, 2023 ©2023 Association for Computational Linguistics

Cross-task Knowledge Transfer for
Extremely Weakly Supervised Text Classification

Seongmin Park Kyungho Kim Jihwa Lee
ActionPower, Seoul, Republic of Korea

{seongmin.park, kyungho.kim, jihwa.lee}@actionpower.kr

Abstract

Text classification with extremely weak super-
vision (EWS) imposes stricter supervision con-
straints compared to regular weakly supervised
classification. Absolutely no labeled training
samples or hand-crafted rules specific to the
evaluation data are allowed. Such restrictions
limit state-of-the-art EWS classification meth-
ods to indirect weak labeling techniques that
assign unnatural label uncertainty estimates.
We present PLAT, a framework that creates
weak labels by leveraging recent developments
in zero-shot text classification. PLAT employs
models trained for sub-tasks other than classi-
fication to label documents. Most importantly,
PLAT refrains from assigning overly confident
weak labels and improves soft-label training
performance for downstream classifiers. Clas-
sifiers trained with PLAT significantly outper-
form those trained on weak labels generated
by the previous state-of-the-art in extremely
weakly supervised text classification.

1 Introduction

We undertake the low-resource task of categorizing
an unlabeled set of documents using just candidate
category labels. The task is a stricter subtask of
weakly supervised text classification – weak labels
cannot be obtained even through utilizing a small
training set or hand-crafted rules based on domain
knowledge. Such task formulation mimics a realis-
tic and practical scenario where one has to classify
a set of documents into a label from a pre-defined
label set, using only class names. Following Wang
et al. (2021) we call this task classification with
extremely weak supervision (EWS).

Due to such additional constraints on sources
of supervision, models under EWS cannot triv-
ially adapt recent state-of-the-art approaches under
regular weak supervision. Best-performing meth-
ods for classification under EWS usually involve
mining a set of category-indicative keywords from
pre-trained language models (Meng et al., 2018;

Mekala and Shang, 2020; Türker et al., 2020; Meng
et al., 2020; Zeng et al., 2022). At evaluation time,
each document is compared to the keyword set of
each label. The weak label for a document is the
label with the keyword set most similar to words
that constitute the document. This divorcement of
feature extraction and label assignment introduces
additional noise during weak labeling, causing un-
natural assignment of label confidence and over-
sensitivity to training size (Wang et al., 2021).

We overcome such limitations in EWS by lever-
aging pre-trained language models to create weak
labels in an end-to-end fashion. Most importantly,
we eliminate the keyword-collection step in cur-
rently popular EWS approaches. We employ lan-
guage models trained on non-classification tasks
(textual entailment, next sentence prediction, and
multiple-choice question-answering) as weak label-
ers for classification. Our research bridges weakly-
supervised noisy-label training with recent devel-
opments in prompt-based low-shot text classifica-
tion (Yin et al., 2019; Keskar et al., 2019). Our
framework realizes both the robustness of noisy-
label training and the label efficiency of prompting.
We use publicly available, off-the-shelf models for
each source task in our experiments.

Our contributions are as follows:

• We analyze the limitations of popular existing
methods in EWS, especially in their unnatural
assignment of pseudo-label confidence.

• We present PLAT1, a framework that utilizes
models trained in subtasks other than classifi-
cation to create weak labels for classification.
Downstream classifiers trained with our weak
labels significantly outperform the previous
state-of-the-art in difficult EWS datasets.

• We analyze how cross-task weak labels act
as better pseudo-labels, with roots in existing

1Pseudo-Labeling Across Tasks
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research in knowledge distillation.

2 Background

2.1 Weakly supervised text classification

Broadly, two lines of research exist in weakly-
supervised text classification: obtaining better weak
labels (Hancock et al., 2018; Chatterjee et al.,
2020a; Rao et al., 2021; Zhang et al., 2021a, 2022a),
and streamlining the training of downstream classi-
fiers with the obtained noisy labels (Onoe and Dur-
rett, 2019; Ren et al., 2020; Mekala et al., 2022; Yu
et al., 2022; Kuang et al., 2022). PLAT focuses on
improving the former by creating weak labels via
knowledge transfer from models trained on tasks
other than classification.

Weak labels were traditionally assigned using
manually written rules (Cachay et al., 2021; Zhang
et al., 2022a). Since rule-based labeling necessi-
tates domain knowledge and hand-crafted rules
specific to each dataset, much research efforts fo-
cused on automatic rule generation. However, even
automatically generated rules cannot be used in
situations that require EWS because the process ei-
ther necessitates a small labeled dataset of the same
classification task (Varma and Ré, 2018; Baner-
jee et al., 2019; Sukumaran et al., 2022), or hu-
man feedback is required in the iterative learning
process (Zhang et al., 2022b). Under EWS, we
require a method that fully automates the weak-
labeling process, without any classification datasets
or dataset-specific domain knowledge.

PLAT employs cross-task knowledge transfer
to achieve completely automated weak-labeling
without any labeled classification data.

2.2 Cross-task knowledge transfer

In cross-task knowledge transfer, a model trained
for a specific source task solves a different target
task. Cross-task knowledge transfer is useful when
labeled training data is scarce for the target task
but is abundant or unnecessary for the source task
(Egonmwan et al., 2019; Lin et al., 2021). Such
preconditions make cross-task knowledge transfer
naturally suitable for pseudo-labeling in weakly
supervised training. In Egonmwan et al. (2019), for
instance, question-answering models are used to
create weak summary labels.

Because data efficacy of weak labelers is a pre-
requisite under weak supervision, recently popular
zero-shot classification methods based on prompt-
ing (Brown et al., 2020; Liu et al., 2021; Sanh

et al., 2022) are appealing approaches to automatic
label creation. In the EWS setup, only cross-task
zero-shot labelers can be used, because the task pro-
hibits any labeled data for classification. Although
cross-task knowledge transfer with a classification
target task is extensively researched (Hancock et al.,
2018; Wang et al., 2019; Khodorchenko, 2019; Rao
et al., 2021; Chatterjee et al., 2020a), we are the
first to explore prompt-based, cross-task distillation
for weak-labeling in text classification.

Zhang et al. (2021a) also uses language model
prompting for weak label generation, but its weak-
labeler is a text classification model and thus is
not a cross-task setup. In concurrent work, Smith
et al. (2022) also prompts language models for
zero-shot weak label generation. The research
leverages multi-task models trained with multi-
ple source tasks, either with extremely large scale
(GPT-3) or already on text classification source
tasks (T0++). In contrast, our work focuses on
cross-task knowledge distillation capabilities of
data-efficient, single-task models, each trained for
a different non-classification source task. Smith
et al. (2022) focuses on zero-shot capabilities that
emerge from extreme-scale text generation models,
while our work explores methods to handle vari-
ous model output types (open-ended, binary, and
multiple-choice) for weak labeling. We further pro-
vide qualitative analysis on the confidence assigned
to each weak label.

2.3 Common approaches to text classification
under EWS

Popular methods under the EWS constraint employ
a keyword-set matching scheme for weak labeling.
Keywords for each label are auto-generated by min-
ing pre-trained language models. Throughout this
paper, we call these methods keyword-based EWS.

WeSTClass (Meng et al., 2018) augments train-
ing data by creating pseudo-documents from
seed words for each class. ConWea (Mekala and
Shang, 2020) uses masked language models to dis-
cern overlapping keywords with context. Context-
infused keyword set for each class is matched with
documents for weak labeling. WESSTEC (Türker
et al., 2020) queries a knowledge base for infor-
mation about each label and calculates the simi-
larity between a document’s vector representation
to each label knowledge embedding. LOTClass
(Meng et al., 2020) enriches each label’s keyword
set by collecting possible replacement words for
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Figure 1: Weak label confidence assigned to correct and wrong predictions on AGNews. Soft label training cannot
take advantage of drastic confidence distributions from keyword-based EWS (LOTClass and X-Class). Precursory
analysis of weak label confidence distributions helps in avoiding overconfident weak labelers.

every label from masked language models. X-Class
(Wang et al., 2021) force-aligns document rep-
resentations to label embeddings for weak label-
ing and achieves state-of-the-art results in EWS.
All aforementioned methods train a downstream
classifier such as BERT (Devlin et al., 2019) or
RoBERTa (Liu et al., 2019) as the second step
in their pipelines. In succeeding work, ClassKG
(Zhang et al., 2021b) posits EWS as a keyword-
subgraph annotation task and takes keyword corre-
lation into account.

PLAT departs from existing conventions by elim-
inating the keyword collection process from the
EWS pipeline. We directly mine weak predictions
instead of keywords from trained language models.

In a similar and concurrent work as ours, WDDC
(Zeng et al., 2022) also uses zero-shot prompting in
pre-trained language models to create weak labels.
WDDC uses cloze prompts to extract keyword sets
(to be compared against document words, as in
most aforementioned works), which is significantly
different from PLAT that assigns classification la-
bels directly with the prompts.

We choose LOTClass and X-Class as baselines
in our experiments, for their state-of-the-art results
and reproducibility.

3 Problems with keyword-matching EWS

Compared to simple supervised classification,
EWS methods mentioned in Section 2.3 introduce
two additional steps to the training pipeline: build-
ing category-indicative keyword sets and assigning
weak labels to unlabeled documents using the built
keyword sets. Our investigations show that the dis-
joint nature of such approaches leads to unwanted

Figure 2: Number of weak labels on AGNews above
each label confidence threshold. In keyword-based
EWS, it is not straightforward to choose a confidence
cut-off for downstream classifier training.

side effects that degrade weak-label quality.

3.1 Uninformative label confidence

Accurate estimates of label uncertainty are impor-
tant in noisy training scenarios commonly used
in weakly-supervised classification (Meng et al.,
2020; Yuan et al., 2020). The keyword-matching
process used in state-of-the-art EWS forces weak
labelers to gauge weak label confidence indirectly.
We find that weak labels obtained this way are of-
ten coupled with unreliable label confidence that
is sensitive to hyperparameters such as the size
of the keyword set or evaluation set. In X-Class,
measuring the distance of a document’s embed-
ding from its label cluster center is the only way to
measure label uncertainty. In LOTClass, prediction
confidence is the number of keywords a document
contains in its pseudo-label keyword set.
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Even though PLAT uses non-classification mod-
els for weak labeling, much more natural confi-
dence is assigned to its weak labels. Label confi-
dence of correct predictions are higher on average
compared to those of wrong predictions (Figure 1).
In contrast, LOTClass and X-Class assigns similar
confidence to both. Weak labels created by LOT-
Class and X-Class show drastic drops in pseudo-
label count as the label confidence threshold in-
creases (Figure 2). Such overconfidence in label
quality estimates can hinder downstream classifier
performance (Wei et al., 2022; Jiang et al., 2021).

3.2 Inability to handle complex class names
Keyword-based EWS relies on mining words
within documents in the evaluation set and ex-
tracting category-indicative words for each class.
Therefore, even state-of-the-art methods require
class names to be either lexically or contextually
descriptive. In clickbait classification, for exam-
ple, the word “clickbait” does not exist among
news headlines the model has to classify. In such
cases, keyword-based EWS methods have no an-
chor within the documents to extract category-
indicative keywords for the word "clickbait”. Wang
et al. (2021) shows existing EWS methods falter
when the label names do not appear in documents
to be weakly labeled.

We observe the same phenomenon even with
keyword-based EWS methods that consider lan-
guage context. Robustness further deteriorates
when label names are more complex, such as con-
sisting of multiple tokens. Most keyword-based
EWS use masked language models for context-
aware keyword search, and it is not straightforward
to consolidate sequence vectors as a single, contex-
tual vector to be used in clustering algorithms in
keyword-based EWS. Our method sidesteps such
limitations by flexibly handling any label name
through language model prompting.

3.3 Sensitivity to dataset size
Weak-label quality of keyword-based EWS also re-
lies heavily on the size of the test set. While EWS
methods require no labeled documents for train-
ing, existing methods still require a sizable count
of unlabeled data to perform well. At their core,
most keyword-based EWS methods aim to gener-
ate cluster-centers for each class by leveraging tex-
tual information in unlabeled documents. A smaller
evaluation set will naturally result in lower-quality
cluster boundaries. To overcome such reliance on

Figure 3: Macro-F1 of weak labels on AGNews while
varying dataset size. Zero-shot capabilities of PLAT
make the framework robust to data count.

dataset size, we propose a way to weakly label each
document in a zero-shot manner. We confirm this
intuition by comparing F1 scores of weak labels
created by keyword-based EWS (X-Class) and with
PLAT (Figure 3) at varying confidence thresholds.

4 PLAT

PLAT draws inspiration from recent findings in
zero-shot language model prompting (Yin et al.,
2019; Keskar et al., 2019; Ma et al., 2021) to obtain
weak labels for unlabeled documents. In the EWS
setting, PLAT leverages source models trained on a
single non-classification task to solve classification
tasks.

PLAT follows the typical two-step weakly-
supervised classification pipeline. In the first phase,
PLAT creates weak labels for classification. In the
second phase, a final classifier is trained using the
obtained weak labels. The novelty of PLAT lies in
improving the weak labeling phase with cross-task
knowledge distillation. We aim to keep the PLAT
framework source-model-agnostic and make the
weak labelers hot-swappable, taking advantage of
parallel advances in zero-shot NLP.

4.1 Cross-task weak labeling

We test three different models for weak label-
ing, each trained on a single task: entailment
(PLATENT), next sentence prediction (PLATNSP),
and multiple-choice question answering (PLATQA).
Although each task and corresponding model have
different input and output formats, adding appro-
priate prompts can reduce all tasks into indirect
classification tasks.
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Dataset Type # of Classes Dataset size Average word count per sample

AGNews News topic 4 7,600 37.72
Yahoo News topic 10 60,000 10.70
DBpedia Article topic 14 70,000 46.14
Clickbait Clickbait detection 2 16,000 9.09

Table 1: Datasets to benchmark PLAT against keyword-based EWS.

Let X = {x0, . . . , xm} be a set of unlabeled
documents to be classified. A weak labeler must
categorize xi as a single class from the set of all
possible classes C = {c0, ..., cn}.

For every xi ∈ X , PLAT’s pseudo-labelers gen-
erate two kinds of labels: a hard label Hi ∈ C,
which is the single most likely class that xi belongs
to, and a soft label Si, which is a categorical distri-
bution over C expressing the class probability of xi.
We train separate downstream classifiers using hard
and soft labels, to compare how taking label uncer-
tainty into account can help in weakly-supervised
classification.

4.1.1 Entailment (PLATENT)
Yin et al. (2019) explores zero-shot text classifica-
tion through entailment. Similarly, we pose classifi-
cation as an entailment task by ranking entailment
probabilities of xi and each verbalized class. A
verbalized class (Schick and Schütze, 2021) is the
every class name in the form of a sentence, adapted
to appear as an input to the entailment model.

Verbalizers can be adapted for each classification
task. For topic classification, the verbalizer could
be “This text is about <class name>.” For spam
detection, the verbalizer to represent the spam class
could be “This is an ad". The full set of verbalizers
used is detailed in the Experiments section.
VENT is a set of all verbalized class names:

VENT = {verbalizer(c) | c ∈ C}. (1)

For every xi ∈ X , we construct a set of all pairs of
xi and each verbalized label v ∈ VENT , between
all of which we calculate textual entailment:

PairsiENT = {(xi, v) | v ∈ VENT }. (2)

Entailment model MENT is a model that takes a
sentence pair (s1, s2) and calculates the probabili-
ties that sentence s1 entails, contradicts, or has no
relation to sentence s2. In this work, we only use
entailment probabilities.

We use MENT to calculate the entailment prob-
ability of every (xi, v) ∈ PairsiENT .

ProbsiENT =

{MENT (xi, v) | (xi, v) ∈ PairsiENT }. (3)

The hard label Hi for xi is argmax(ProbsiENT ),
and the soft label Si is softmax(ProbsiENT ).

4.1.2 Next sentence prediction (PLATNSP)
Ma et al. (2021) finds that next sentence prediction
(NSP) and reverse NSP models perform on par with
entailment in zero-shot text classification. In our
experiments, NSP and reverse NSP weak labelers
had a negligible difference in final classifier perfor-
mance. We choose reverse NSP for higher reported
classification scores in Ma et al. (2021).

We use the same verbalizers (VNSP = VENT ) as
in entailment-based weak labeling in the preceding
section. For every xi ∈ X , we construct a set of
all pairs of xi and each verbalized label v ∈ VNSP ,
similar to PairsiENT in 4.1.1:

PairsiNSP = {(xi, v) | v ∈ VNSP }. (4)

For all v ∈ V , we calculate probabilities that xi
appears after each v. NSP Model MNSP takes a
sentence pair (s1, s2) and calculates the probability
that s2 appears after s1.

ProbsiNSP =

{MNSP (v, xi) | (xi, v) ∈ PairsiNSP }. (5)

The hard label Hi for xi is argmax(ProbsiNSP ),
and the soft label Si is softmax(ProbsiNSP ).

4.1.3 Multiple-choice question-answering
(PLATQA)

A multiple-choice question-answering (QA) model
MQA takes a context, a question, and answer
choices, and returns the distribution of answer pos-
sibility over the answer choices. To pose QA as a
classification task, we set the context as each xi,
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Model AGNews Yahoo DBpedia Clickbait

Supervised 93.97 / 93.97 72.11 / 72.64 99.11 / 99.11 98.57 / 98.58

LOTClass
Hard label 25.63 / 19.47 9.93 / 5.37 6.89 / 6.29 44.17 / 43.18
Final classifier 25.00 / 10.00 10.00 / 1.82 0.80 / 0.17 50.00 / 33.33

X-Class
Hard label 61.82 / 57.81 40.35 / 42.53 88.17 / 87.91 23.79 / 23.72
Final classifier 62.87 / 58.81 41.76 / 43.86 88.52 / 88.21 21.22 / 20.81

PLATENT
Hard label 64.88 / 60.07 54.17 / 54.91 81.78 / 80.84 51.35 / 36.48
Final classifier 64.86 / 57.73 55.29 / 56.45 82.62 / 81.43 50.00 / 33.33

PLATNSP
Hard label 64.79 / 61.90 49.45 / 47.39 39.90 / 44.18 77.23 / 77.03
Final classifier 60.87 / 56.63 52.46 / 50.04 41.32 / 44.97 79.68 / 79.50

PLATQA
Hard label 80.86 / 80.67 41.44 / 44.59 83.32 / 82.54 83.87 / 83.80
Final classifier 81.72 / 81.57 43.83 / 46.88 84.91 / 84.00 87.44 / 87.40

Table 2: Classification performance of weak labels ("Hard label") and final classifier trained with the weak labels
("Final classifier"). All reported scores are in the form micro-F1 / macro-F1. PLAT outperforms baselines in all
datasets except in DBpedia, a dataset in which keyword-based EWS methods have the most opportunity to mine
keyword sets.

the question as a dataset-specific prompt p, and
the answer choices as verbalized versions of all
classes. The question forces the model to select
one verbalized element of C as an answer.

The full set of prompts and verbalizers used
in PLATQA is detailed in the experiments section.
Even though prompt p is dataset-specific, its con-
struction does not require domain knowledge, and
instead depends on the type of classification (I.e.
topic classification, location classification, etc.).

Formally defined,

ProbsiQA = MQA(xi, p, VQA), (6)

where

VQA = {verbalizer(c) | c ∈ C}. (7)

The hard label Hi for xi is argmax(ProbsiQA)

and the soft label Si is softmax(ProbsiQA).

4.2 Final classifier training
A separate text classifier is trained with obtained
weak labels. We use BERT in all our experiments.
The final classifier is the output model of PLAT.

4.2.1 Training with hard labels
Given a set of hard labels {H0, ...,Hi} created by
a weak-label generator, we train a downstream clas-
sifier B by maximizing the likelihood of predicting

the weak label given the document. The loss func-
tion is a standard cross-entropy objective:

Lhard = −
m∑

i=0

∑

j∈C
y(Hi) log(B(xi)j), (8)

where y(Hi) is 1 only if j = Hi and 0 otherwise.
B(xi)j is the prediction confidence of classifier for
class cj ∈ C on document xi.

4.2.2 Training with soft labels
We adopt a similar objective function when train-
ing with confidence-aware soft labels. The final
classifier is trained to minimize the divergence be-
tween the one-hot model prediction and the soft
confidence distribution from the weak labeler over
the set of all possible class names. The classifier’s
objective function becomes:

Lsoft = −
m∑

i=0

∑

j∈C
Sj
i log(B(xi)j), (9)

where Sj
i is the weak label confidence of specific

class j ∈ C from overall confidence distribution
assigned to xi.

5 Experiments and Results

We qualitatively analyze PLAT in two aspects: ac-
curacy of generated weak labels, and prediction
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Model AGNews Yahoo DBpedia Clickbait

Supervised 93.97 / 93.97 72.11 / 72.64 99.11 / 99.11 98.57 / 98.58

LOTClass 25.00 (+0.00) / 10.00 (+0.00) 10.00 (+0.00) / 1.82 (+0.00) 3.39 (+2.59) / 0.54 (+0.37) 50.00 (+0.00) / 33.33 (+0.00)
X-Class 60.61 (-2.26) / 52.84 (-5.96) 41.07 (-0.69) / 43.16 (-0.70) 88.70 (+0.18) / 88.38 (+0.17) 20.38 (-0.84) / 20.20 (-0.61)
PLATENT 66.41 (+1.55) / 60.01 (+2.28) 55.39 (+0.10) / 56.20 (-0.24) 82.99 (+0.36) / 82.16 (+0.73) 50.59 (+0.59) / 34.77 (+1.44)
PLATNSP 67.68 (+6.82) / 64.19 (+7.56) 52.30 (-0.16) / 50.34 (+0.30) 40.20 (-1.12) / 43.23 (-1.74) 81.22 (+1.54) / 81.07 (+1.57)
PLATQA 81.99 (+0.26) / 81.83 (+0.26) 43.32 (-0.50) / 46.53 (-0.35) 86.38 (+1.46) / 85.74 (+1.74) 88.38 (+0.94) / 88.37 (+0.97)

Table 3: Final classifier performance on 4 classification benchmarks after training with soft labels. Numbers in
parenthesis indicate absolute increase in F1 scores compared to hard label results in Table 2.

Figure 4: Final classifier performance after training with only labels above certain confidence threshold. We observe
a trade-off between weak label count and minimum label confidence. Dotted lines indicate soft-label training.

classification performance of the final classifier
trained with the weak labels. For the latter, we mea-
sure classifier performance in both hard- and soft-
label (confidence-aware) training. The same con-
figuration for training the final classifier is applied
to all variants of PLAT and baseline weak labelers.
Classifier performance is measured in macro- and
micro-F1 scores.

5.1 Datasets
We test PLAT on topic and clickbait classification
datasets. For topic classification, we use AGNews
(Zhang et al., 2015), Yahoo Topics (Zhang et al.,
2015), and DBpedia (Zhang et al., 2015). We use
Clickbait Detection (Chakraborty et al., 2016) for
clickbait classification. Table 1 provides a detailed
description of each benchmark dataset.

For topic classification datasets, we use the ver-
balizer "This text is about <class name>" for all
models and the prompt "What is this text about?"
for PLATQA. For clickbait classification, we use the
verbalizers "This is <news/spam>" and the prompt
"Is this news or spam?" for PLATQA.

5.2 Source models for weak-labeling
We use publicly available cross-task labelers in all
variants of PLAT. For PLATENT, we use BART2

(Lewis et al., 2020) trained on MNLI (Williams
et al., 2018). For PLATNSP, we use BERT3 trained

2https://huggingface.co/facebook/bart-large-mnli
3https://huggingface.co/bert-large-cased

with standard token unmasking and NSP objectives.
For PLATQA, we use RoBERTa4 model trained on
RACE (Lai et al., 2017).

To train the final classifier with weak labels gen-
erated by aforementioned models, we fine-tune a
pre-trained BERT model5 with a constant learn-
ing rate of 5e−5. We use an AdamW optimizer
(Loshchilov and Hutter, 2018) with β1 = 0.9, β2 =
0.999, eps = 1e−6, and no weight decay.

5.3 Hard label training results

Classification performance of the final classifier
for baseline weak-labelers and variants of PLAT
is detailed in Table 2. Weak labels generated with
PLAT yield notably higher F1 scores compared
to those generated by baselines, except on DBpe-
dia. The high performance of X-Class on DBpe-
dia can be attributed to longer average document
length and greater test set size. Compared to other
datasets, DBpedia provides a greater amount of
raw text from which keyword-based baselines can
mine category-indicative keywords. In such set-
tings, PLAT’s zero-shot capability does not pro-
vide an advantage as great in scenarios with fewer
resources.

4https://huggingface.co/LIAMF-USP/roberta-large-
finetuned-race

5https://huggingface.co/bert-base-cased
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Figure 5: Confidence distribution and accuracy of pseudo labels according to question difficulty. Weak labelers with
more granular label confidence tend to produce more accurate weak labels.

5.4 Confidence-aware training results

Classification performance after confidence-aware
training is detailed in Table 3. PLAT also notably
outperforms baselines with soft labels, taking better
advantage of confidence-aware training. Our results
confirm past research in knowledge distillation that
accurate estimates of label uncertainty lead to better
model calibration (Chatterjee et al., 2020b; Rizve
et al., 2021).

Earlier works in EWS try retaining only labels
with confidence over a certain threshold δ. In a
noisy-training scenario, a trade-off exists between
retaining a large number of training examples and
average label confidence. Our work confirms find-
ings in Wang et al. (2021) that excessively high la-
bel δ degrades final classifier performance (Figure
4). While tuning the threshold parameter results in
a higher increase in F1 scores for PLAT, we report
scores at δ = 0 for a fair comparison with previous
work and to eliminate δ as a hyperparameter.

5.5 Classification difficulty analysis

We analyze how the performance of each weak
labeler changes according to the classification dif-
ficulty of each sample. Classification difficulty of
a sample is defined as the number of weak label-
ers that made wrong predictions. Since we com-
pare 5 models, the maximum difficulty is 5. PLAT

assigns a much more “natural” confidence distri-
bution, where the model is confident about low-
difficulty questions while comparatively uncertain
about high-difficulty questions (Figure 5). Models
that fail to show such graduality tend to make in-
accurate predictions (LOTClass in AGNews and
Yahoo, X-Class in Clickbait, and PLATNSP in DB-
pedia), especially on more difficult samples.

6 Conclusion

We present three variants of PLAT, a framework for
text classification under extremely weak supervi-
sion. By eliminating keyword-based weak labeling,
PLAT sidesteps the brittle dependence on evalua-
tion set size and hyperparameters found in previous
state-of-the art methods. PLAT is a flexible frame-
work that leverages prompting to generate weak
labels with more natural confidence estimates.

PLAT makes no assumptions about the training
dynamics of its source models. Therefore, evolu-
tions of source models are completely orthogonal
to developments in PLAT. The black-box treatment
of its weak labeler models enables the usage of
completely unsupervised weak labelers – a poten-
tial already demonstrated by PLATNSP. We expect
future developments in unsupervised solutions to
enable even more resource-efficient classification
under PLAT.
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Limitations

We identify the following limitations of PLAT and
strategies to overcome such drawbacks:

• Performance of the final classifier is depen-
dent on the black-box source weak labeler. We
believe this limitation can be worked around
in a real-word setting by ensembling source
models to vote on a likely weak label for prac-
tical accuracy gains.

• Best-performing source models might differ
for different tasks. The dataless nature of
EWS prevents precursory accuracy evalua-
tions while choosing the source weak labeler
model. However, quality of candidate weak
labelers can be gauged indirectly. Users can
examine confidence distributions of weak la-
bels (as in Figure 1 and Figure 2) as an indi-
cator of pseudo-label "naturalness". They can
also perform difficulty analysis (as shown in
Figure 5(a)) that does not require any labeled
data. In a real-world scenario, ensemble weak
labelers will be used, eliminating the need to
choose a single best source model.
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