
Findings of the Association for Computational Linguistics: ACL 2023, pages 5358–5370
July 9-14, 2023 ©2023 Association for Computational Linguistics

A Sequence-to-Sequence&Set Model for Text-to-Table Generation

Tong Li1,2∗ Zhihao Wang1,2∗ Liangying Shao1 Xuling Zheng1,2†

Xiaoli Wang1 Jinsong Su1,2†

1School of Informatics, Xiamen University, China
2Key Laboratory of Digital Protection and Intelligent Processing of Intangible Cultural Heritage

of Fujian and Taiwan (Xiamen University), Ministry of Culture and Tourism, China
{litong, zhwang, liangyingshao}@stu.xmu.edu.cn {xlzheng, xlwang, jssu}@xmu.edu.cn

Abstract

Recently, the text-to-table generation task has
attracted increasing attention due to its wide ap-
plications. In this aspect, the dominant model
(Wu et al., 2022) formalizes this task as a
sequence-to-sequence generation task and se-
rializes each table into a token sequence dur-
ing training by concatenating all rows in a top-
down order. However, it suffers from two seri-
ous defects: 1) the predefined order introduces
a wrong bias during training, which highly pe-
nalizes shifts in the order between rows; 2)
the error propagation problem becomes seri-
ous when the model outputs a long token se-
quence. In this paper, we first conduct a pre-
liminary study to demonstrate the generation
of most rows is order-insensitive. Furthermore,
we propose a novel sequence-to-sequence&set
text-to-table generation model. Specifically, in
addition to a text encoder encoding the input
text, our model is equipped with a table header
generator to first output a table header, i.e., the
first row of the table, in the manner of sequence
generation. Then we use a table body generator
with learnable row embeddings and column em-
beddings to generate a set of table body rows in
parallel. Particularly, to deal with the issue that
there is no correspondence between each gen-
erated table body row and target during train-
ing, we propose a target assignment strategy
based on the bipartite matching between the
first cells of generated table body rows and tar-
gets. Experiment results show that our model
significantly surpasses the baselines, achiev-
ing state-of-the-art performance on commonly-
used datasets.1

1 Introduction

Text-to-table generation is a task that aims to gen-
erate a tabular description of important information

1We release the code at https://github.com/
DeepLearnXMU/seq2seqset

*Equal contribution.
†Corresponding author.

The Golden State Warriors defeated the Los Angeles
Clippers … Stephen Curry was unconscious, as he tallied 43
points, nine rebounds and six assists in three quarters of
action. Kevin Durant was second on the team, as he accrued
23 points, four rebounds and seven assists. …

Assists Points
Total

Rebounds

Stephen Curry 6 43 9

Klay Thompson 16

Kevin Durant 7 23 4

Blake Griffin 2 20 4

⟨s⟩ ⟨ ⟩ ⟨s⟩ Assists ⟨s⟩ Points ⟨s⟩ Total Rebounds ⟨s⟩ ⟨n⟩ ⟨s⟩
Stephen Curry ⟨s⟩ 6 ⟨s⟩ 43 ⟨s⟩ 9 ⟨s⟩ ⟨n⟩ Klay Thompson ⟨s⟩ ⟨ ⟩
⟨s⟩ 16 ⟨s⟩ ⟨ ⟩ ⟨s⟩ ⟨n⟩ Kevin Durant ⟨s⟩ 7 ⟨s⟩ 23 ⟨s⟩ 4 ⟨s⟩ ⟨n⟩
Blake Griffin ⟨s⟩ 2 ⟨s⟩ 20 ⟨s⟩ 4 ⟨s⟩ ⟨EOS⟩

Text:

Table:

Sequence:

Table
header

Table
body rows

Data cellsThe first column

Figure 1: An example of text-to-table task. The input
text is a report of a basketball game. In the existing
dominant model (Wu et al., 2022), the output table is
serialized into a token sequence during training by con-
catenating all rows in a top-down order. Here, ⟨s⟩ token
is used to separate the cells of each row, ⟨n⟩ token is
utilized to separate rows, and ⟨ ⟩ token means an empty
cell. Unlike Wu et al. (2022), in this work, we model
the generation of each table as a table header and then
a set of table body rows. Note that these rows can be
further decomposed into the first column and data cells
wrapped in the red box.

for a given text. As shown in Figure 1, the in-
put text is a post-game summary of a basketball
game, and the output is a table containing statis-
tics about players. Usually, this task can be widely
used to extract important structured information,
such as restaurant reviews (Novikova et al., 2017),
team and player statistics (Wiseman et al., 2017),
Wikipedia infoboxes (Bao et al., 2018) and biogra-
phies (Lebret et al., 2016), benefiting humans un-
derstand the input text more intuitively.

In this aspect, Wu et al. (2022) first propose
sequence-to-sequence (seq2seq) text-to-table gen-
eration models. They first serialize each table to a

5358

https://github.com/DeepLearnXMU/seq2seqset
https://github.com/DeepLearnXMU/seq2seqset

token sequence by concatenating all rows in a top-
down order. Back to Figure 1, they represent each
table row as a cell sequence, and then represent
the entire table by concatenating all rows. Then,
they train seq2seq models fine-tuned from BART
(Lewis et al., 2020). During inference, the model
generates a table in a token-by-token manner and
the generated sequence is eventually split by ⟨s⟩
and ⟨n⟩ to obtain the structured table.

Despite some success, the above-mentioned se-
quence generation manner leads to two defects in
the model. First, imposing the above-mentioned
predefined order on generating rows in the dataset
may bring wrong bias to the model training (Ye
et al., 2021; Lu et al., 2022a). Here, we still take
Figure 1 as an example. Each row represents the
statistics of a basketball player, and there is no
obvious dependency between the statistics of dif-
ferent players. Thus, when considering the order
of generating rows, the inconsistent order between
generated rows and targets will cause a large train-
ing loss, even if the generated rows and targets are
exactly the same. Second, as the number of gener-
ated rows increases, the outputted token sequence
becomes longer, which makes the seq2seq models
encounter the serious error propagation problem
(Ye et al., 2021; Tan et al., 2021). Besides, the
seq2seq model generates a table autoregressively,
of which time complexity is the number of rows
times the number of columns, resulting in ineffi-
cient GPU acceleration.

In this paper, we first conduct a preliminary
study to inspect the effect of row generation or-
der on seq2seq models. Specifically, we randomly
reorder table body rows to construct different train-
ing datasets. Then, we use these datasets to train
seq2seq models, of which performance is com-
pared on the same dataset. Experimental results
show that these models exhibit similar performance,
proving that the generation of most table body rows
is order-insensitive.

Moreover, we propose a novel sequence-to-
sequence&set (Seq2Seq&set) text-to-table genera-
tion model which decomposes the table generation
into two steps: generating a table header, i.e., the
first row of the table, and then a set of table body
rows. As shown in Figure 2, our model mainly
consists of three modules: 1) Text Encoder. It is
a vanilla Transformer encoder, encoding the input
document into hidden states; 2) Table Header Gen-
erator that produces the table header as a token

sequence; 3) Table Body Generator generating dif-
ferent table body rows in parallel, where each row
is generated token by token. To generate different
rows from the same text, we equip the generators
with a set of learnable Row Embeddings. Besides,
we add a set of learnable Column Embeddings to
enhance the semantic consistency between cells in
the same column.

During the model training, we need to determine
the correspondence between the generated table
body rows and targets, so as to achieve the order-
independent generation of table body rows. To
this end, we propose to use the model to gener-
ate the first cells of table body rows. Then, we
efficiently determine target assignments according
to the matching results between these first cells
and those of targets, which can be modeled as a
bipartite matching problem and solved by the Hun-
garian algorithm (Kuhn, 1955). Afterwards, we
calculate the training loss based on the one-to-one
alignments between the generated table body rows
and targets. Besides, during the model inference,
we force table body generator to output the same
number of cells with the previously-generated gen-
erated table header.

Compared with the seq2seq models (Wu et al.,
2022), our model has the following advantages: 1)
our model is able to not only alleviate the order
bias caused by the sequence generation but also
reduce the effect of error propagation on the gen-
eration of long sequences; 2) our model achieves
faster generation speed since table body rows can
be efficiently generated in parallel.

Experiment results show that our model sig-
nificantly improves the quality of the generated
table, achieving state-of-the-art performance on
commonly-used datasets.

2 Related Work

Information Extraction (IE) refers to the auto-
matic extraction of structured information such
as entities, relationships between entities, and
attributes describing entities from unstructured
sources (Sarawagi et al., 2008). The common IE
tasks include named entity recognition (NER), re-
lation extraction (RE), event extraction (EE), etc.

To achieve high-quality IE, researchers have pro-
posed various task-specific IE methods. With the
development of deep learning, researchers mainly
focus on neural network based generation models,
which are often seq2seq pre-trained models gener-

5359

ating serialized structured information. Compared
with traditional IE methods, these methods have
achieved comparable or even superior results in
RE (Zeng et al., 2018; Nayak and Ng, 2020), NER
(Chen and Moschitti, 2018; Yan et al., 2021), EE
(Li et al., 2021; Lu et al., 2021). Along this line,
researchers resort to unified models (Paolini et al.,
2021; Lu et al., 2022b) that model multiple IE tasks
as the generation of sequences in a uniform format.

In this work, we mainly focus on text-to-table
generation that aims to generate structured tables
from natural language descriptions. Note that text-
to-table generation can be considered as the dual
task of table-to-text generation, which intends to
generate a textual description conditioned on the in-
put structured data. Usually, these structured data
are represented as tables (Wiseman et al., 2017;
Thomson et al., 2020; Chen et al., 2020) or sets of
table cells (Bao et al., 2018; Parikh et al., 2020).
Compared with traditional IE tasks, this task does
not rely on predefined schemas. In this regard, Wu
et al. (2022) first explore this task as a seq2seq gen-
eration task by fine-tuning a BART model (Lewis
et al., 2020) for generation. By contrast, we model
the generation of each table as a table header and
then a set of table body rows. To this end, we
propose a Seq2Seq&set text-to-table model, which
can alleviate the defects caused by the sequence
generation in the conventional seq2seq models.

3 Preliminary Study

We first conduct a preliminary study to inspect
the effect of row generation order on the Seq2Seq
model (Wu et al., 2022). Since the table header is
the first row of a table containing column names
which should be generated first, so we only ran-
domly reorder table body rows to construct differ-
ent training datasets. Then, we individually train
the Seq2Seq models using these datasets with the
same setting as the original model, and compare
their performance on the same dataset (Wiseman
et al., 2017).

From Table 1, we can observe that the origi-
nal model and their variants exhibit similar perfor-
mance. Besides, we calculate the sample standard
deviation of model performance and find that all
standard deviations are no more than 0.1. These
results strongly demonstrate that the generation or-

2Notice that in (Wu et al., 2022), they use row header
F1, column header F1 and non-header cells F1. Here, we
individually rename these to the first column F1, table header
F1 and data cell F1, so as to avoid ambiguity in descriptions.

Subset Model The first Table Data
column F1 header F1 cell F1

Team

Origin 94.71 86.07 82.97
Random1 94.57 85.93 82.83
Random2 94.76 86.01 83.00
Random3 94.66 85.91 82.84

STeam 0.08 0.07 0.09

Player

Origin 92.16 87.82 81.96
Random1 92.23 87.66 81.79
Random2 92.33 87.69 81.84
Random3 92.13 87.85 81.99

SPlayer 0.09 0.07 0.10

Table 1: Results of preliminary study on the Team
and Player subsets in the Rotowire dataset. We cal-
culate exact match F1 scores on three table parts respec-
tively. “Origin” means the Seq2Seq model trained using
the original dataset, and “Random1-3” denote models
trained on three datasets with different table body row
orders, respectively. S∗ means the sample standard de-
viation of the model performance. 2

ders of table body rows have a negligible effect
on the model performance. In other words, the
generation of table body rows is order-insensitive.

4 Our Model

In this section, we describe our model in detail.
As shown in Figure 2, our model is composed of
three modules: Text Encoder, Table Header Gener-
ator and Table Body Generator. Then, we give a
detailed description of the model training.

4.1 Text Encoder

Our text encoder is used to encode input docu-
ments. It is identical to the BART (Lewis et al.,
2020) encoder, consisting of Le Transformer en-
coder layers. The input document is first tokenized
into X=x1, x2, ..., x|X| using a byte-level Byte-Pair
Encoding (Wang et al., 2020) tokenizer.

Then, text encoder iteratively updates the hidden
states in the following way:

A(l)
e = MultiHead(H(l)

e ,H(l)
e ,H(l)

e), (1)

H(l+1)
e = FFN(A(l)

e), (2)

where H
(l)
e ∈R|X|×d is the hidden states at the l-th

layer, and d is the dimension of embeddings and
hidden states. MultiHead(·) is a multi-head atten-
tion function and FFN(·) refers to a feed-forward
network. We initialize H(0)

e as the sum of Word(X)
and Pos(X), where Word(·) is a word embedding

5360

T
ext

E
n

cod
er

T
ab

le H
ead

er
G

en
erator

T
ab

le B
od

y
G

en
erator

The Golden State
Warriors defeated the
Los Angeles Clippers …
Blake Griffin did all he
could for Los Angeles,
as he led the team with
20 points, four rebounds
and two assists …
Stephen Curry was
unconscious, as he
tallied 43 points, nine
rebounds and six assists
in three quarters of
action . Kevin Durant
was second on the team,
as he accrued 23 points,
four rebounds and seven
assists. Klay Thompson
was the only other starter
in double figures, as he
dropped 16 points …

⟨s⟩ ⟨ ⟩ ⟨s⟩ Assists ⟨s⟩ Points ⟨s⟩ Total Rebounds ⟨s⟩ ⟨EOS⟩

⟨∅⟩ ⟨EOS⟩

⟨s⟩ Stephen Curry ⟨s⟩ 6 ⟨s⟩ 43 ⟨s⟩ 9 ⟨s⟩ ⟨EOS⟩

⟨s⟩ Klay Thompson ⟨s⟩ ⟨ ⟩ ⟨s⟩ 16 ⟨s⟩ ⟨ ⟩ ⟨s⟩ ⟨EOS⟩

⟨s⟩ Stephen Curry ⟨s⟩ 2 ⟨s⟩ 20 ⟨s⟩ 4 ⟨s⟩ ⟨EOS⟩

⟨s⟩ Kevin Durant ⟨s⟩ 7 ⟨s⟩ 23 ⟨s⟩ 4 ⟨s⟩ ⟨EOS⟩

⟨s⟩ Blake Griffin ⟨s⟩ 2 ⟨s⟩ 20 ⟨s⟩ 4 ⟨s⟩ ⟨EOS⟩

0

1

2

3

4

5

6

Row Embeddings

0 0 0 1 1 2 2 3 3 4

Column Embeddings

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Figure 2: The architecture of our model. It mainly consists of three modules: text encoder encoding input text, table
header generator producing a table header as a sequence, and table body generator that generates a set of table body
rows in parallel. Note that we have two kinds of learnable embeddings: row embeddings (green squares) enabling
table body generator to produce different table body rows, and column embeddings (blue squares) used to enhance
the semantic consistency between cells in the same column.

function and Pos(·) is a learnable position embed-
ding function. Note that we omit the descriptions
of layer normalization and residual connection in
each sublayer. Please refer to (Vaswani et al., 2017;
Lewis et al., 2020) for more details.

The above process iterates Le times. Finally, we
obtain the hidden states H

(Le)
e of the input docu-

ment, which will provide useful information for
both table header generator and table body genera-
tor via attention mechanisms.

4.2 Table Header Generator
As mentioned previously, our model is designed to
generate a table as a table header and a set of table
body rows. To this end, we follow previous studies
(Zhang et al., 2018; Su et al., 2019) to decomposes
the table generation into two steps. We first pro-
pose table header generator, which is the same as
the BART decoder and generates the table header
Y0=y01, y

0
2, ..., y

0
|Y0| as a token sequence.

Given the encoder hidden states H
(Le)
e , our

generator produces the table header in an auto-
regressive manner:

A
(l)
d0 = MultiHead(H

(l)
d0 ,H

(l)
d0 ,H

(l)
d0), (3)

A
(l)
d0 = MultiHead(A

(l)
d0 ,H

(Le)
e ,H(Le)

e), (4)

H
(l+1)
d0 = FFN(A

(l)
d0), (5)

where H
(l)
d0 ∈ R|Y0|×d is the hidden states at the

l-th layer. In the first layer, we initialize the j-th de-
coder input as the sum of Word(y0j−1), Pos(y

0
j−1),

Row(y0j−1) and Col(y0j−1), where Word(·) and
Pos(·) share parameters with text encoder, row em-
beddings Row(·) and column embeddings Col(·)
will be described in the next subsection.

Finally, after iterating the above process for
Ld times, we obtain the last-layer hidden states
H

(Ld)
d0 = {H(Ld)

d0,j }1≤j≤|Y0|, where H
(Ld)
d0,j is used to

output the j-th target token:

y0j = argmax(WoH
(Ld)
d0,j), (6)

where Wo ∈ R|V|×d is a learnable parameter ma-
trix, and V is the target vocabulary.

4.3 Table Body Generator

To generate a set of table body rows in paral-
lel, we propose a novel semi-autoregression ta-
ble body generator. It is also stacked with Ld

layers, each of which consists of self-attention,
cross-attention and feed-forward network sublay-
ers. Particularly, it shares parameters with table
header generator, so that it can directly exploit the
hidden states of table header generator via self-
attention. This generator produces M table body
rows {Ym}1≤m≤M in parallel, under the semantic
guidence of H(Le)

e and {H(l)
d0}1≤l≤Ld

. Particularly,
we use a special ⟨∅⟩ token to represent “no cor-
responding row”. Formally, the m-th table body
row, Ym = ym1 , ym2 , ..., ym|Ym| is generated in an

5361

auto-regressive way:

H
(l)
dm = [H

(l)
d0 ;H

(l)
dm], (7)

A
(l)
dm = MultiHead(H

(l)
dm,H

(l)
dm,H

(l)
dm), (8)

A
(l)
dm = MultiHead(A

(l)
dm,H(Le)

e ,H(Le)
e), (9)

H
(l+1)
dm = FFN(A

(l)
dm), (10)

where H(l)
dm ∈ R|Ym|×d is the hidden states for gen-

erating Ym. Note that our generator exploits both
hidden states of table header and previous tokens
in the same row to produce a table body row.

Taking the sum of word embeddings and po-
sitional embeddings as inputs, the vanilla Trans-
former decoder can only generate a sequence but
not a set. To generate a set of table body rows in
parallel, we introduce M additional learnable em-
beddings called Row Embeddings (See the green
squares in Figure 2) into inputs, guiding table body
generator to produce different rows. Here, M is a
predefined parameter that is usually larger than the
maximum number of rows in training data. Further-
more, to enhance the semantic consistency between
cells in the same column, we add another learnable
embeddings named Column Embeddings (See the
blue squares in Figure 2) into inputs. Column em-
beddings are similar to positional embeddings but
are defined at the cell level. By doing so, tokens of
cells in the same column are equipped with identi-
cal column embeddings.

Formally, with row and column embeddings, the
initial hidden state of our generator becomes

H
(0)
dm,k = Word(ymk−1) + Pos(ymk−1)

+ Row(ymk−1) + Col(ymk−1),
(11)

where ymk−1 is the (k−1)-th output token at the m-
th table body row, and Row(·) and Col(·) are row
and column embedding functions, respectively.

Through Ld times of hidden state updates, we
obtain the last-layer hidden states {H(Ld)

dm }1≤m≤M .
Finally, based on H

(Ld)
dm,k, we obtain the token with

maximum probability as the output:

ymk = argmax(WoH
(Ld)
dm,k). (12)

In order to maintain an equal number of cells in
every row, table body generator keeps generating
a row until the number of ⟨s⟩ matches that in the
header.

4.4 Training
Training Loss As mentioned above, we decom-
pose the generation of a table into two steps. Cor-
respondingly, we define the training loss as:

L = λLh + (1− λ)Lb, (13)

where λ is a hyper-parameter to balance the effect
of the table header generation loss Lh and the table
body generation loss Lb.

As for Lh, we follow common practice to define
Lh as a cross-entropy loss between the predictive
distributions of the generated table header and the
target one:

Lh = −
|Y0|∑

j=1

logp̂0j (y
0
j), (14)

where p̂0j (·) is the predictive probability of the j-th
token in the table header Y0 using teacher forcing.

Target Assignments Based on the First Cells
We also define Lb as a cross-entropy loss between
the predictive distributions of the generated table
body rows and targets. However, there is no corre-
spondence between each generated table body row
and target during training, and hence we can not
directly calculate Lb. To deal with this issue, we
learn from the recent studies on set generation (Car-
ion et al., 2020; Ye et al., 2021; Xie et al., 2022) and
propose to efficiently determine target row assign-
ments according to the matching results between
the first cells of generated table body rows and
those of targets. Here, we use the first cell to rep-
resent the whole row, because it is usually unique
and often contains the important information of a
table such as a name and a primary key.

Concretely, we first use our model to generate
the first cells of all table body rows. During this
process, we obtain generation probability distribu-
tions {Pm}1≤m≤M , where Pm = {pmk }1≤k≤|Pm|
and pmk is the predictive distribution at the k-th
timestep for the m-th table body row. Particularly,
we pad the set of target table body rows to size
M with ⟨∅⟩. Afterwards, we determine the target
assignments via the bipartite matching between the
generated table body rows and targets:

f̂ = argmin
f∈F(M)

M∑

m=1

C(Yf(m),Pm), (15)

where F(M) denotes the set of all M ! one-to-one
mapping functions and f(·) is a function aligning

5362

⟨Ø⟩

Stephen Curry

Klay Thompson

Stephen Curry

Kevin Durant

Blake Griffin

Blake Griffin

Kevin Durant

Klay Thompson

Stephen Curry

⟨Ø⟩

⟨Ø⟩

The first cells of generated
table body rows

The first cells of target
table body rows

1

2

3

4

5

6

Assignment

𝑓(6)

𝑓(5)

𝑓(3)

𝑓(2)

𝑓(1)

𝑓(4)

Figure 3: The bipartite matching between generated
table body rows and targets. We use the first cell to
represent each table body row, and determine target
assignments according to the optimal bipartite matching
between the generated first cells and those of targets.
The function f̂(·) maps the index of the input generated
table body row to the corresponding target one.

the m-th generated table body row to the f(m)-
th target one. The optimal matching can be effi-
ciently determined with the Hungarian algorithm
(Kuhn, 1955). More specifically, the matching cost
C(·) takes into account the token level probability,
which is defined as follows:

C(Yf(m),Pm) = −
N∑

k=1

1{Y ̸=∅}p
m
k (y

f(m)
k),

(16)
where N is the length of the first cell in Yf(m) and
pmk (y

f(m)
k) is the predictive probability of the k-th

target token y
f(m)
k of the m-th table body row. We

ignore the score from matching predictions with
⟨∅⟩, so as to ensure that each generated row can be
aligned with a non-empty target as possible.

For example, in Figure 3, our model generates
the first cells of six table body rows, where the first
one is ⟨∅⟩ token and the others are player names.
Then we assign each generated table body row to
a target one according to the above-mentioned bi-
partite matching. In this example, we can find an
optimal matching, with a mapping function f̂ satis-
fying that f̂(1) = 5, f̂(2) = 4, ..., f̂(6) = 1. Note
that there are two “Stephen Curry” occurring in
row 2 and row 4, but are aligned to different targets
due to the one-to-one matching. In this way, we
can guarantee that supervision signal for generat-
ing each table body row is unique, alleviating the
generation of duplicate rows.

Finally, through the above target row assign-
ments, we can calculate Lb as follows:

Lb = −
M∑

m=1

|Yf̂(m)|∑

k=1

logp̂mk (y
f̂(m)
k), (17)

where p̂mk (·) is the predictive distribution of the
m-th generated table body row at the timestep k,

and y
f̂(m)
k is the k-th token in the assigned target

row.
Particularly, inspired by the recent studies (Car-

ion et al., 2020; Ye et al., 2021; Xie et al., 2022),
when y

f̂(m)
k = ⟨∅⟩, we multiply its token-level loss

with a predefined factor to down-weight its effect,
so as to reduce the negative effect of excessive ⟨∅⟩
tokens.

5 Experiments

5.1 Setup

Datasets Following the previous work (Wu et al.,
2022), we conduct experiment on four commonly-
used datasets for table-to-text generation: Rotowire
(Wiseman et al., 2017), E2E (Novikova et al.,
2017), WikiTableText (Bao et al., 2018), and Wik-
iBio (Lebret et al., 2016). As the main dataset of
our experiments, Rotowire has two types of tables
named Team and Player. In Rotowire, each in-
stance has multiple columns while the other three
datasets have only two columns. We use the pro-
cessed datasets from (Wu et al., 2022). The dataset
statistics are listed in Appendix A.

Implementation Details We initialize our model
with the pre-trained BART-base (Lewis et al.,
2020), which consists of 6 encoder layers and 6
decoder layers. The number of multi-head atten-
tion is 12, the dimension of embedding and hidden
state is 768, and the dimension of feed-forward
network is 3,072. We reuse the vocabulary from
the pre-trained BART-base model, whose size is
51,200. We use the Adam (Kingma and Ba, 2015)
optimization algorithm with a fixed maximum num-
ber of tokens as 4,096. For different datasets, we
set different numbers of row embeddings according
to the maximum row numbers in training sets. We
train a separate model on each dataset and select
the model with the lowest validation loss. Hyper-
parameter settings are shown in Appendix B.

Baselines We compare our model with the fol-
lowing baselines mentioned in (Wu et al., 2022):

• Sent-level RE This model uses an existing
method of relation extraction (RE) (Zhong and
Chen, 2021) to extract information based on
predefined schemas. It takes the first column
and data cells as entities and the types of table
header cells as relations.

• Doc-level RE It applies the same RE method,

5363

Subset Model The first column F1 Table header F1 Data cell F1 Error
Exact Chrf BERT Exact Chrf BERT Exact Chrf BERT rate

Team

Sent-level RE 85.28 87.12 93.65 85.54 87.99 87.53 77.17 79.10 87.48 0.00
Doc-level RE 84.90 86.73 93.44 85.46 88.09 87.99 75.66 77.89 87.82 0.00
Seq2Seq 94.71 94.93 97.35 86.07 89.18 88.90 82.97 84.43 90.62 0.49
Seq2Seq-c 94.97 95.20 97.51 86.02 89.24 89.05 83.36 84.76 90.80 0.00
Seq2Seq&set 96.80‡ 97.10‡ 98.45‡ 86.00 89.48 93.11‡ 84.33‡ 85.68‡ 91.30‡ 0.00

Player

Sent-level RE 89.05 93.00 90.98 86.36 89.38 93.07 79.59 83.42 85.35 0.00
Doc-level RE 89.26 93.28 91.19 87.35 90.22 97.30 80.76 84.64 86.50 0.00
Seq2Seq 92.16 93.89 93.60 87.82 91.28 94.44 81.96 84.19 88.66 7.40
Seq2Seq-c 92.31 94.00 93.71 87.78 91.26 94.41 82.53 84.74 88.97 0.00
Seq2Seq&set 92.83† 94.48† 96.43‡ 88.02 91.60† 95.08† 83.51‡ 85.75‡ 90.93‡ 0.00

Table 2: Results of baselines and our Seq2Seq&set model on Rotowire. We show the F1 score based on exact match
(Exact), chrf score (Chrf), and BERTScore (BERT). †/‡ indicates significant at p<0.05/0.01 over Seq2Seq-c with
1000 bootstrap tests (Efron and Tibshirani, 1994).

except that it predicts the relations between
entities within multiple sentences.

• NER It is a BERT-based (Devlin et al., 2019)
entity extraction method that considers data
cells in each table as entities and its first col-
umn cells as entity types.

• Seq2Seq (Wu et al., 2022) It is a Transformer
based seq2seq model that models the genera-
tion of a table as a sequence.

• Seq2Seq-c (Wu et al., 2022) This model is
a Seq2Seq variant, where the cell number of
each table body row is limited to the same as
that of table header.

Evaluation We use the same evaluation script
from (Wu et al., 2022). We adopt the F1 score as
the evaluation measure, which is calculated in the
following way: the precision and recall are first
computed to get table-specific F1 scores, which
are then averaged to obtain the final score. Here,
precision is defined as the percentage of correctly
predicted cells among the generated cells, and re-
call is defined as the percentage of correctly pre-
dicted cells among target cells. Particularly, the F1
score is calculated in three ways: exact match that
matches two cells exactly, chrf score that calculates
character-level n-gram similarity, and BERTscore
that calculates the similarity between BERT em-
beddings of two cells.

For Rotowire, we report the F1 scores of the first
column, table header and data cells, which refer to
row header F1, column header F1 and non-header
cells F1 in (Wu et al., 2022). For the other three
datasets, there are only fixed two columns, so the
F1 score of table header is not calculated. For data
cells, we use not only the content but also the table
header/the first column cells to ensure that the cell

Model # Sentences per second (speedup)

Team Player E2E

Seq2Seq 1.24 (1.00×) 0.32 (1.00×) 1.66 (1.00×)
Seq2Seq-c 1.22 (0.98×) 0.30 (0.94×) 1.62 (0.98×)
Seq2Seq&set 1.84 (1.48×) 1.09 (3.41×) 5.96 (3.59×)

Table 3: Inference efficiency comparison among dif-
ferent models. Here, we conduct experiments on an
NVIDIA RTX 3090 GPU.

is on the right column/row. Note that these metrics
are insensitive to the orders of rows and columns.
Besides, we calculate the error rate to represent the
percentage of erroneous format tables.

5.2 Main Results
Table 2 reports the results on the Team and Player
subsets of Rotowire. We observe that our model
consistently outperforms all baselines in terms of
three kinds of F1 scores. Particularly, in terms of
data cell F1, which is the most difficult of the three
kinds of F1 scores, ours achieves significant im-
provements. Besides, note that both Seq2Seq-c and
our model enforce the number of cells in each table
body row to be the same as that of table header, so
their error rates are 0. Table 4 shows the results on
E2E, WikiTableText and WikiBio. Likewise, our
model outperforms almost all baselines.

We also provide a case in Appendix C to visually
show the effectiveness of our model.

5.3 Inference Efficiency
We compare the inference efficiency of different
models. From Table 3, we observe that ours is
significantly more efficient than baselines, due to
its advantage in the parallel generation of table
body rows.

5364

Dataset Model The first column F1 Data cell F1 Error
Exact Chrf BERT Exact Chrf BERT rate

E2E

NER 91.23 92.40 95.34 90.80 90.97 92.20 0.00
Seq2Seq 99.62 99.69 99.88 97.87 97.99 98.56 0.00
Seq2Seq-c 99.63 99.69 99.88 97.88 98.00 98.57 0.00
Seq2Seq&set 99.62 99.69 99.83 98.65‡ 98.70‡ 99.08‡ 0.00

WikiTableText

NER 59.72 70.98 94.36 52.23 59.62 73.40 0.00
Seq2Seq 78.15 84.00 95.60 59.26 69.12 80.69 0.41
Seq2Seq-c 78.16 83.96 95.68 59.14 68.95 80.74 0.00
Seq2Seq&set 78.67‡ 84.21‡ 95.88 59.94‡ 69.59‡ 81.67‡ 0.00

WikiBio

NER 63.99 71.19 81.03 56.51 62.52 61.95 0.00
Seq2Seq 80.53 84.98 92.61 68.98 77.16 76.54 0.00
Seq2Seq-c 80.52 84.96 92.60 69.02 77.16 76.56 0.00
Seq2Seq&set 81.03† 85.44† 93.02† 69.51‡ 77.53‡ 77.13‡ 0.00

Table 4: Results of baselines and our Seq2Seq&set model on E2E, WikiTableText and WikiBio.

[0, 1) [1, 2) [2, 3) [3, 4)

Row-to-Column Ratio

3.0

3.5

4.0

4.5

5.0

Sp
ee

du
p

Figure 4: Speedup of Seq2Seq-c to Seq2Seq&set with
different row-to-column ratios.

To investigate the effect of speedup on different
types of tables, we carry out experiments on the
Rotowire Player dataset. We define row-to-column
ratio as the row number divided by the column
number and measure the speedup with different
row-to-column ratios. The results depicted in Fig-
ure 4 demonstrate that our model exhibits a linear
improvement as the row-to-column ratio increases.

5.4 Error Propagation Analysis

As analyzed in Introduction, our model is able to
better alleviate the error propagation issue than
previous models. To verify this, we conduct exper-
iments on the longest dataset Rotowire Player, and
then compare the performance of our model and
Seq2Seq-c. From Figure 5, we observe that ours
always outperforms the baseline model. Particu-
larly, with the number of table tokens increasing,
our model exhibits more significant performance
advantages over Seq2Seq-c.

[0, 100) [100, 200) [200, 300) [300, 400) [400, 500) [500, 600)

Token Number of Table

0.65

0.70

0.75

0.80

0.85

D
at

a
ce

lls
 F

1
(e

xa
ct

 m
at

ch
)

Seq2Seq&set
Seq2Seq-c

Figure 5: Performance comparison between Seq2Seq-c
and Seq2Seq&set on the tables with different numbers
of tokens.

Subset Model The first Table Data
column F1 header F1 cell F1

Team

Seq2Seq&set 96.80 86.00 84.33
w/o row embed. 66.91 85.73 57.25
w/o col. embed. 96.75 86.04 83.32
w/o tgt. assign. 92.87 85.87 79.43
w/o header gen. 95.34 85.23 59.02

Player

Seq2Seq&set 92.83 88.02 83.51
w/o row embed. 31.13 87.83 26.20
w/o col. embed. 90.06 87.47 80.18
w/o tgt. assign. 67.71 87.99 60.22
w/o header gen. 92.45 86.83 58.39

Table 5: Results of ablation study. Here, the F1 scores
are calculated in the way of exact match.

5.5 Ablation Study

We conduct an ablation study on Rotowire to verify
the effectiveness of different components of our
model. The results are shown in Table 5, involving
four variants:

w/o Row Embeddings. We remove row embed-

5365

dings in this variant. From lines 3 and 8, we ob-
serve that this variant is completely collapsed. This
is reasonable that without row embeddings, the
row-specific inputs of table body generator become
exactly the same, resulting in the generator failing
to generate distinct rows.

w/o Column Embeddings. We remove column
embeddings in this variant. From lines 4 and 9, we
observe that the data cell F1 decreases a lot. Thus,
we also confirm that column embeddings are in-
deed useful in enhancing the semantic consistency
between cells in the same column. The other two
scores changed very little, which we believe is due
to the fact that table headers and the first columns
have no need to refer to the other rows.

w/o Target Assignments. In this variant, we dis-
card the target assignments based on the first cells
during training, which makes our model learn to
generate table body rows in the original order of
targets. As shown in lines 5 and 10, our model
exhibits a significant performance drop.

w/o Table Header Generator. In this variant,
we simultaneously generate table header and table
body rows in parallel. Consequently, the variant
can not leverage the information of generated table
header during the process of generating table body
rows, and thus exhibits worse performance than
the original model. This result proves that it is
reasonable to distinguish the generation of table
header and table body rows.

6 Conclusion

In this paper, we propose a Seq2Seq&set model for
text-to-table generation, which first outputs a table
header, and then table body rows. Most impor-
tantly, unlike the previous study (Wu et al., 2022),
we model the generation of table body rows as a
set generation task, which is able to alleviate not
only the wrong bias caused by the predefined or-
der during training, but also the problem of error
propagation during inference. Experimental results
show that our model gains significant performance
improvements over the existing SOTA.

Limitations

Our model is currently suitable for generating ordi-
nary tables with attribute names and records, but it
may struggle with more complex table formats that
involve merged cells. To improve the flexibility of
our model, we plan to investigate more versatile
forms of table representation.

Another limitation of our model is that our model
training involves longer training time, compared
with seq2seq baselines. This may be due to the
inherent instability of target assignments. In the
future, we will explore refining the model training
by reducing the target assignment instability.

The existing datasets for this task is relatively
simple, and in the future we will conduct experi-
ments on more complex datasets that require rea-
soning, such as WebNLG (Gardent et al., 2017).

Ethics Statement

This paper proposes a Seq2Seq&set model for text-
to-table generation. We take ethical considerations
seriously and ensure that the research and meth-
ods used in this study are conducted in an ethical
and responsible manner. The datasets used in this
paper are publicly available and have been widely
adopted by researchers for testing the performance
of text-to-table generation. This study does not in-
volve any data collection or release, and thus there
exist no privacy issues. We also take steps to ensure
that the findings and conclusions of this study are
reported accurately and objectively.

Acknowledgement

The project was supported by National Natural Sci-
ence Foundation of China (No. 62276219), Natural
Science Foundation of Fujian Province of China
(No. 2020J06001), Youth Innovation Fund of Xi-
amen (No. 3502Z20206059). We also thank the
reviewers for their insightful comments.

References
Junwei Bao, Duyu Tang, Nan Duan, Zhao Yan, Yuanhua

Lv, Ming Zhou, and Tiejun Zhao. 2018. Table-to-
text: Describing table region with natural language.
In Proc. of AAAI.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with
transformers. In Proc. of ECCV.

Lingzhen Chen and Alessandro Moschitti. 2018. Learn-
ing to progressively recognize new named entities
with sequence to sequence models. In Proc. of COL-
ING.

Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, and
William Yang Wang. 2020. Logical natural language
generation from open-domain tables. In Proc. of
ACL.

5366

https://doi.org/10.1609/aaai.v32i1.11944
https://doi.org/10.1609/aaai.v32i1.11944
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2005.12872
https://aclanthology.org/C18-1185
https://aclanthology.org/C18-1185
https://aclanthology.org/C18-1185
https://doi.org/10.18653/v1/2020.acl-main.708
https://doi.org/10.18653/v1/2020.acl-main.708

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proc. of NAACL-HLT.

Bradley Efron and Robert J Tibshirani. 1994. An intro-
duction to the bootstrap. CRC press.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In Proc.
of ICNLG.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In Proc. of
ICCV.

Harold W Kuhn. 1955. The hungarian method for the
assignment problem. Naval research logistics quar-
terly, 2(1-2):83–97.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with
application to the biography domain. In Proc. of
EMNLP.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proc. of ACL.

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-level
event argument extraction by conditional generation.
In Proc. of NAACL-HLT.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022a. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proc. of ACL.

Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong
Tang, Annan Li, Le Sun, Meng Liao, and Shaoyi
Chen. 2021. Text2Event: Controllable sequence-to-
structure generation for end-to-end event extraction.
In Proc. of ACL.

Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu
Lin, Xianpei Han, Le Sun, and Hua Wu. 2022b. Uni-
fied structure generation for universal information
extraction. In Proc. of ACL.

Tapas Nayak and Hwee Tou Ng. 2020. Effective mod-
eling of encoder-decoder architecture for joint entity
and relation extraction. In Proc. of AAAI.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The E2E dataset: New challenges for end-to-
end generation. In Proc. of SIGDIAL.

Giovanni Paolini, Ben Athiwaratkun, Jason Krone, Jie
Ma, Alessandro Achille, RISHITA ANUBHAI, Ci-
cero Nogueira dos Santos, Bing Xiang, and Stefano
Soatto. 2021. Structured prediction as translation
between augmented natural languages. In Proc. of
ICLR.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Man-
aal Faruqui, Bhuwan Dhingra, Diyi Yang, and Dipan-
jan Das. 2020. ToTTo: A controlled table-to-text
generation dataset. In Proc. of EMNLP.

Sunita Sarawagi et al. 2008. Information extraction.
Foundations and Trends® in Databases, 1(3):261–
377.

Jinsong Su, Xiangwen Zhang, Qian Lin, Yue Qin, Jun-
feng Yao, and Yang Liu. 2019. Exploiting reverse
target-side contexts for neural machine translation
via asynchronous bidirectional decoding. Artificial
Intelligence, 277:103168.

Zeqi Tan, Yongliang Shen, Shuai Zhang, Weiming Lu,
and Yueting Zhuang. 2021. A sequence-to-set net-
work for nested named entity recognition. In Proc.
of IJCAI.

Craig Thomson, Ehud Reiter, and Somayajulu Sripada.
2020. SportSett:basketball - a robust and maintain-
able data-set for natural language generation. In Proc.
of the Workshop on IntelLanG.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. of NeurIPS.

Changhan Wang, Kyunghyun Cho, and Jiatao Gu. 2020.
Neural machine translation with byte-level subwords.
In Proc. of AAAI.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proc. of EMNLP.

Xueqing Wu, Jiacheng Zhang, and Hang Li. 2022. Text-
to-table: A new way of information extraction. In
Proc. of ACL.

Binbin Xie, Xiangpeng Wei, Baosong Yang, Huan Lin,
Jun Xie, Xiaoli Wang, Min Zhang, and Jinsong
Su. 2022. WR-One2Set: Towards well-calibrated
keyphrase generation. In Proc. of EMNLP.

Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng
Zhang, and Xipeng Qiu. 2021. A unified generative
framework for various NER subtasks. In Proc. of
ACL.

Jiacheng Ye, Tao Gui, Yichao Luo, Yige Xu, and
Qi Zhang. 2021. One2Set: Generating diverse
keyphrases as a set. In Proc. of ACL.

Xiangrong Zeng, Daojian Zeng, Shizhu He, Kang Liu,
and Jun Zhao. 2018. Extracting relational facts by an
end-to-end neural model with copy mechanism. In
Proc. of ACL.

Xiangwen Zhang, Jinsong Su, Yue Qin, Yang Liu, Ron-
grong Ji, and Hongji Wang. 2018. Asynchronous
bidirectional decoding for neural machine translation.
In Proc. of AAAI.

5367

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.18653/v1/W17-3518
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2021.acl-long.217
https://doi.org/10.18653/v1/2021.acl-long.217
https://doi.org/10.18653/v1/2022.acl-long.395
https://doi.org/10.18653/v1/2022.acl-long.395
https://doi.org/10.18653/v1/2022.acl-long.395
https://doi.org/10.1609/aaai.v34i05.6374
https://doi.org/10.1609/aaai.v34i05.6374
https://doi.org/10.1609/aaai.v34i05.6374
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://openreview.net/forum?id=US-TP-xnXI
https://openreview.net/forum?id=US-TP-xnXI
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/https://doi.org/10.1016/j.artint.2019.103168
https://doi.org/https://doi.org/10.1016/j.artint.2019.103168
https://doi.org/https://doi.org/10.1016/j.artint.2019.103168
https://doi.org/10.24963/ijcai.2021/542
https://doi.org/10.24963/ijcai.2021/542
https://aclanthology.org/2020.intellang-1.4
https://aclanthology.org/2020.intellang-1.4
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1609/aaai.v34i05.6451
https://doi.org/10.18653/v1/D17-1239
https://doi.org/10.18653/v1/2022.acl-long.180
https://doi.org/10.18653/v1/2022.acl-long.180
https://aclanthology.org/2022.emnlp-main.491
https://aclanthology.org/2022.emnlp-main.491
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.354
https://doi.org/10.18653/v1/2021.acl-long.354
https://doi.org/10.18653/v1/P18-1047
https://doi.org/10.18653/v1/P18-1047
https://doi.org/10.1609/aaai.v32i1.11984
https://doi.org/10.1609/aaai.v32i1.11984

Zexuan Zhong and Danqi Chen. 2021. A frustratingly
easy approach for entity and relation extraction. In
Proc. of NAACL-HLT.

A Dataset Statistics

Table 6 shows the statistics of the datasets we used.
We list the numbers of instances in training, val-
idation, and test sets and the average number of
BPE tokens per instance. We also give the average
numbers of rows and columns per instance.

B Hyper-parameter Settings

Table 7 shows the hyper-parameter settings in our
experiments. We set the hyper-parameters by refer-
ring to the existing work and choosing values that
result in the best performance (measured in data
cell F1) on the validation sets.

C Case Study

Figure 6 shows a case comparison between
Seq2Seq-c and our Seq2Seq&set. Although the
first three table body rows generated by Seq2Seq-c
are almost correct, the others are duplicated, which
also frequently occurs in other text generation tasks.
In contrast, our model can handle this case correctly
because ours generates table body rows in parallel
and thus is not affected by other rows.

Dataset Train Valid Test Avg. # of tokens Avg. # of rows Avg. # of columns

Rotowire-Team 3.4k 727 728 351.05 2.71 4.84
Rotowire-Player 3.4k 727 728 351.05 7.26 8.75
E2E 42.1k 4.7k 4.7k 24.90 4.58 2.00
WikiTableText 10.0k 1.3k 2.0k 19.59 4.26 2.00
WikiBio 582.7k 72.8k 72.7k 122.30 4.20 2.00

Table 6: Statistics of Rotowire, E2E, WikiTableText and WikiBio datasets, including the number of instances in
training, validation and test sets, the average number of BPE tokens per instance, and the average number of rows
and columns per instance.

Dataset M λ ⟨∅⟩ scale batch size lr warmup ratio

Rotowire-Team 10 1 0.2 4,096 1e-04 0.01
Rotowire-Player 20 1 0.4 2,048 1e-04 0.01
E2E 10 - 0.2 4,096 1e-05 0.1
WikiTableText 10 - 0.4 4,096 1e-04 0.1
WikiBio 25 - 0.1 2,048 1e-04 0.1

Table 7: The hyper-parameter settings in our experiments.

Assists
Field goals
attempted

Field goals
made

Points
Total

rebounds

Matt Barnes 14 9

Zaza Pachulia 11 12

Ian Clark 21 15 36 5

Kyle Anderson 6 13 8

Patty Mills 4 21 2

Pau Gasol 3 10 7

Davis Bertans 13

Assists
Field goals
attempted

Field goals
made

Points
Total

rebounds

Davis Bertans 13

Matt Barnes 5 14 9

Ian Clark 21 15 36 5

Zaza Pachulia 11 12

Kyle Anderson 6 13 8

Patty Mills 4 21 2

Pau Gasol 3 10 7

Assists
Field goals
attempted

Field goals
made

Points
Total

rebounds

Matt Barnes 5 14 9

Zaza Pachulia 11 12

Ian Clark 21 15 36 5

Matt Barnes 5 14 9

Zaza Pachulia 11 12

Ian Clark 21 15 36 5

Ground-truth table

The table generated by Seq2Seq&set

The table generated by Seq2Seq-c

Figure 6: A case study of Seq2Seq-c and our
Seq2Seq&set model. Incorretly-generated texts are
marked in red.

5368

https://doi.org/10.18653/v1/2021.naacl-main.5
https://doi.org/10.18653/v1/2021.naacl-main.5

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

7

�3 A2. Did you discuss any potential risks of your work?
8

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
5

�3 B1. Did you cite the creators of artifacts you used?
5

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
5

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
5

�3 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
8

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
5

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
10

C �3 Did you run computational experiments?
5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
5

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

5369

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
5

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
5

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
5

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

5370

