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Abstract

Semi-supervised domain adaptation (SSDA)
adopts a model trained from a label-rich source
domain to a new but related domain with a
few labels of target data. It is shown that, in
an SSDA setting, a simple combination of do-
main adaptation (DA) with semi-supervised
learning (SSL) techniques often fails to effec-
tively utilize the target supervision and cannot
address distribution shifts across different do-
mains due to the training data bias toward the
source-labeled samples. In this paper, inspired
by the co-learning of multiple classifiers for the
computer vision tasks, we propose to decom-
pose the SSDA framework for emotion-related
tasks into two subcomponents of unsupervised
domain adaptation (UDA) from the source to
the target domain and semi-supervised learning
(SSL) in the target domain where the two mod-
els iteratively teach each other by interchanging
their high confident predictions. We further pro-
pose a novel data cartography-based regulariza-
tion technique for pseudo-label denoising that
employs training dynamics to further hone our
models’ performance. We release our code.1

1 Introduction

Large pre-trained language models (Devlin et al.,
2019; Liu et al., 2019) have significantly improved
many natural language processing (NLP) task per-
formances with the help of large quantities of la-
beled training data and have become the de facto
model for NLP applications. However, obtaining
vast troves of annotated data for training in many
real-world scenarios is costly and challenging. For
example, reliable large annotated emotion or em-
pathy data might not exist in a computer-assisted
therapy session (Hosseini and Caragea, 2021a,b,
2023). On top of that, it is shown that a shift in
data distribution can substantially affect the per-
formance of such text classification models (Ngo
et al., 2022; Blitzer et al., 2006); a model trained

1https://github.com/Mahhos/CotrainingTrainingDynamics

on a source domain does not perform well on a
dataset from another domain. This deficiency is
due to the domain shift across the datasets (Tzeng
et al., 2017), which is a problem that is commonly
encountered in NLP. To relieve the unsupervised
domain adaptation (UDA) bottleneck for textual
tasks, recent works attempt to align distributions
between source and target domains by extracting
the domain-invariant representations (Ganin et al.,
2016). However, despite the recent progress, the
UDA methods are still impractical as they may
yield different new domain-sensitive particularities
for large-scale language models.

Recent works showed that the presence of few
labeled samples from the target domain in a semi-
supervised domain adaption (SSDA) setup can
positively impact and significantly boost the per-
formance of the neural models (Qin et al., 2020;
Kim and Kim, 2020; Saito et al., 2019). There ex-
ists prior work on supervised domain adaptation
(Daumé III, 2007) and multi-task learning (Sun
et al., 2011) for natural language processing (NLP)
tasks. However, despite the importance of semi-
supervised domain adaption, in NLP, only a few
studies have focused on this problem (Daumé III
et al., 2010; Cheng and Pan, 2014). Daumé III
et al. (2010) expanded an existing fully supervised
domain adaptation technique (Daumé III, 2007) to
semi-supervised domain adaptation settings using
co-regularization, which originated in the context
of multi-view learning (Rosenberg and Bartlett,
2007; Sindhwani and Rosenberg, 2008). Cheng
and Pan (2014) also framed the semi-supervised
domain adaptation problem as learning with a trans-
formation function and a prediction model under
manifold constraints.

Given a large number of labeled data provided
in the source domain and only a few target labeled
data with the inherent distributional difference, it
is shown that in an SSDA setting, a single classi-
fier may likely be dominated by the source domain
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(Yang et al., 2021). In this paper, we extend the
co-training strategy (Blum and Mitchell, 1998), a
semi-supervised learning approach for multi-view
data, to a single-view setting for NLP tasks to ef-
fectively use unlabeled target data. Co-training
trains two classifiers from each view and employs
the most confident predictions of the unlabeled
data for the two classifiers to teach each other. In-
spired by co-training, we propose to decompose the
SSDA framework and learn two distinct classifiers
to teach each other so that both classifiers can excel
in the target domain. Particularly, we employ an
unsupervised domain adaptation setup where we
leverage the labeled source data and the unlabeled
target data to learn one classifier. Furthermore, we
employ a semi-supervised learning setup where we
learn another classifier using the labeled target data
together with the unlabeled target data. We further
propose a novel data cartography-based regular-
ization technique for pseudo-label denoising that
employs training dynamics (Swayamdipta et al.,
2020) to further hone our models’ performance.

Our preliminary results on three emotion-related
NLP tasks show that transferring knowledge be-
tween the two classifiers and incorporating training
dynamics to help denoising the generated pseudo-
labels can effectively improve the performance on
the target domain.

2 Approach

2.1 Co-training with Task Decomposition

Co-training (Blum and Mitchell, 1998) is a well-
known semi-supervised learning (SSL) technique
that employs two different views of an example
(e.g., audio and video) and learns two predictive
models that are trained separately on each view.
Assuming that each view is sufficient for correct
classification, co-training confers the models the
capability to teach each other by adding the highly
confident predictions of one model (on new un-
labeled examples) to the training set of the other.
In this way, co-training helps boost a learning al-
gorithm’s performance when only a small set of
labeled examples is available. Recently, Chen et al.
(2011) and Qiao et al. (2018) proposed techniques
to perform co-training using single-view data, but
they still need additional tasks or objective func-
tions to apply co-training. Along these lines, Yang
et al. (2021) proposed to use only single-view data
(i.e., only images) to perform co-training in a semi-
supervised domain adaptation setup for computer

vision tasks, where they leverage the supervision of
the labeled data from the source and target domains
and combine them with the unlabeled samples from
the target domain.

Here we propose our co-training with task de-
composition and cartography-based mixup ap-
proach, which greatly benefits the text-based
emotion-related classification tasks in the few-
shot setting. Task decomposition in a co-training
paradigm has been initially introduced for com-
puter vision tasks by Yang et al. (2021) to enhance
the performance of image classification models.
With that, our work is greatly inspired by Yang
et al. (2021).

Task Setup. Given the labeled data from the
source DS = {(si, yi)}NS

i=1 and the target DT =

{(ti, yi)}NT
i=1 domains such that |DS | ≫ |DT | and

|DT | = K × |y|2 in the few-shot setting, and
the unlabeled data from the target domain DU =
{(ui)}NU

i=1, we first construct two sub-tasks in the
semi-supervised domain adaptation setup: one us-
ing our DS and DU to train an unsupervised do-
main adaptation (UDA) model θuda, and one using
our DT and DU to train a semi-supervised learn-
ing (SSL) model θssl. We conduct our tasks using
mini-batch SGD to update the models’ weights in
our experiments. In each iteration, we make pre-
dictions on U = {ub}Bb=1 (which is sampled from
our unlabeled set DU with mini-batch size B) using
our two models θuda and θssl, and generate pseudo-
label sets Ussl and Uuda that will be filtered based
on a threshold τ to update θssl and θuda:

Ussl
= {(ub, y

′
b = argmax

c
p(c|ub; θ

uda
));

if max
c

p(c|ub; θ
uda

)) > τ}
Uuda

= {(ub, y
′
b = argmax

c
p(c|ub; θ

ssl
));

if max
c

p(c|ub; θ
ssl

)) > τ}

where p(c|ub; .) is the predicted probability of the
unlabeled sample ub ∈ U for a class c. In essence,
if the prediction confidence of one model (e.g., θssl)
on ub is greater than our pseudo-label selection
threshold τ ,3 it would be added to the Uuda to train
the other model θuda. In other words, a model
imparts the other model with confident pseudo-
labels to learn from and uses the other model’s
confident pseudo-labels to learn from.

2|y| represents the number of classes in y.
3We experiment with a range (i.e., [0.5, 0.6, 0.7]) for the

pseudo-label selection threshold and select τ = 0.7 as our
final confidence threshold.

5403



2.2 Data Cartography-based Regularization
for Pseudo-label Denoising

It is inevitable to obtain noisy pseudo-labels from
each model. First due to the domain shift (in our
UDA component), and second given that only a
few labeled samples (i.e., K = [4, 8, 16] per class)
are available from the target domain (in our SSL
component), which in turn impacts the supervision
process. To mitigate noise in the generated pseudo-
labels and hone our models’ performance, we pro-
pose a cartography-based mixup strategy that helps
to effectively denoise an incorrect pseudo-label.

Mixup Training. Mixup augments the training
data by linearly interpolating training samples and
their corresponding labels, based on a simple rule
proposed by Zhang et al. (2018):

(x̃ij , ỹij) := (λxi + (1− λ)xj , λyi + (1− λ)yj) (1)

where λ is a mixing ratio sampled from a Beta(α,
α) distribution with a hyper-parameter α and
(xi, yi) and (xj , yj) are two input examples that
are randomly drawn from the training set.

Proposed Approach. Few-shot learning meth-
ods generally assume that the training sets always
include accurately labeled samples. However, this
assumption can sometimes be unrealistic. No mat-
ter how small, training sets can still contain misla-
beled samples (Liang et al., 2022). In other words,
it could not be guaranteed that the few-shot train-
ing sets were carefully selected to represent their
class. In fact, even carefully annotated and selected
datasets often hold mislabeled samples (Northcutt
et al., 2021; Yang et al., 2020) due to several rea-
sons like ambiguity, automated weakly supervised
annotation, or human error. Here, we propose to
use a novel Mixup data augmentation technique
on the target training data and the pseudo-labels
generated by the source domain that is informed
by training dynamics to further surpass the noisy
data bottleneck and improve the target domain per-
formance in few-shot setting. Our proposed mixup
creates vicinal distribution steered by the data maps
(Swayamdipta et al., 2020) as described below.

We first characterize each training sample of our
few-shot target domain training set DT into three
groups of easy-to-learn, ambiguous, and hard-to-
learn, based on how they contribute to the model
learning (i.e., training dynamics). We then sample
examples with specific characteristics (emanated
from the previous step) to interpolate with the gen-
erated pseudo-labels by the source domain Ussl

during our cartography-based mixup process. In
our experiments, we measure the statistics using
a RoBERTa-base model. Sample (xi, yi) training
dynamics are measured as statistics called con-
fidence and variability computed across the E
epochs (Swayamdipta et al., 2020). Confidence
is computed as the mean model probability of the

true label yi across epochs, µ̂i = 1
E

E∑

e=1

pθe(yi|xi);

where θ indicates the model parameters and pθe de-
notes the model’s probability at the end of the eth
epoch. Variability is measured as the standard de-
viation of the ground-truth probabilities pθe(yi|xi)
across different epochs, σ̂i =

√∑E
e=1(pθe (yi|xi)−µ̂i)

E
.

Intuitively, samples to which the model confi-
dently (i.e., high confidence) and constantly (i.e.,
low variability) assigns the true, and the same la-
bel corresponds to easy-to-learn examples (for the
model). On the other hand, samples with low con-
fidence and low variability resemble hard-to-learn
examples (for the model), which usually are re-
ferred to as mislabeled samples, and examples with
high variability that the model is uncertain about
during training are ambiguous (to the model). Us-
ing these statistics, we select the easy-to-learn sam-
ples (i.e., samples that the model consistently pre-
dicts correctly across epochs) to interpolate with
the pseudo-labels generated by the source domain.
By employing such particularities, our goal is to
ensure that we effectively denoise an incorrect
pseudo-label by mixing it with the most informa-
tive data samples (Swayamdipta et al., 2020), sam-
ples with high confidence and low variability which
are detected to be actually correct. Our mixup ap-
proach combines samples at the level of the hidden
state representations generated by the task-specific
layer on top of the pre-trained language model.

3 Experiments

3.1 Datasets

We perform evaluations on three text classifica-
tion tasks of emotion detection, sentiment analysis,
and empathy detection. We analyze tasks with
challenging domain shifts where out-of-domain
performance is considerably lower. Furthermore,
it is shown that detecting empathy or emotions
from text without visual or acoustic information
is challenging due to the subjective nature of the
annotations (Hosseini and Caragea, 2021b), which
makes it difficult to accurately label and interpret
the emotions or empathy expressed. Additionally,
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Model News to Health Reddit to TV Series Yelp to IMDB

K = 4 K = 8 K = 16 K = 4 K = 8 K = 16 K = 4 K = 8 K = 16

Source-Only ** 66.63∗∗ 24.51∗∗ 52.12∗∗

Target-Only 42.39 44.66 46.00 16.69 18.09 19.96 48.98 50.69 51.55

UDA ** 45.26∗∗ 21.15∗∗ 51.69∗∗

SSL 44.59 47.85 49.22 18.90 21.08 21.75 50.16 53.24 54.50

SSL + MixText (Chen et al., 2020) 46.67 50.19 53.36 19.82 22.38 23.16 51.10 55.38 55.78

SSL + FliText (Liu et al., 2021) 44.61 46.37 50.23 19.16 19.87 20.67 50.26 55.10 54.92

Unsupervised Data Augmentation (Xie et al., 2020) 47.05 50.10 55.64 20.92 23.75 23.67 52.19 56.07 55.89

Co-training with TD 64.85 67.02 71.00 22.10 24.45 25.87 52.26 57.47 59.53

Co-training with TD + Mixup (Yang et al., 2021) 67.65 70.56 73.63 21.46 22.71 24.53 53.06 57.76 58.10

Co-training with TD + Ours 69.33 72.66 77.33 25.83 27.54 28.85 55.67 61.44 63.66

Supervised Learning-Source ** 68.27∗∗ 68.55∗∗ 95.78∗∗

Supervised Learning-Target (full)** 84.33∗∗ 63.02∗∗ 92.12∗∗

Table 1: Accuracy on empathy (i.e., News to Health), emotion (i.e., Reddit to TV Series) and sentiment (i.e., Yelp to
IMDB) (%) for K = [4, 8, 16] few-shot samples per class, using BERT; TD refers to task decomposition; UDA and
SSL refer to the unsupervised data augmentation, and semi-supervised learning, respectively; ** means that the
result is the same for all our three settings.

most datasets, particularly in empathy detection,
are limited in size, with only a few exceptions.
However, given the significance of these tasks and
the profound impact emotions have on our behav-
ior and daily lives, our objective is to enhance the
performance of such tasks and achieve improved
detection of emotion-related information from text.
We explain our source and target domains datasets
below.
Empathy Detection. NewsEmp is a dataset of
empathic reactions to news stories, including empa-
thy binary labels released by Buechel et al. (2018)
which we use as our source domain dataset. Twit-
tEmp Dataset (Hosseini and Caragea, 2021a) con-
tains perceived empathy annotated by empathy di-
rection (seeking vs. providing) in the health do-
main, which we use as our target domain dataset.

Emotion Detection. GoEmotions is an emotion
detection dataset from Reddit comments where we
use the six basic emotions (joy, anger, fear, sadness,
disgust, and surprise) and neutral as our source do-
main dataset. Meld (Poria et al., 2019) contains
dialogues from the popular Friends TV series an-
notated with the same set of emotion labels, which
we use as the target domain dataset.

Sentiment Analysis. Yelp (Zhang et al., 2015) is
a dataset for binary sentiment classification, con-
sisting of reviews from Yelp, which is used as our
source domain. Our target domain dataset is IMDB
movie reviews (Maas et al., 2011), containing sen-
tences of movie reviews and their sentiment.

3.2 Baseline Methods

The details of the experiments are as follows. We
use the BERT-base model and K = [4, 8, 16] in

all the experiments.4 We contrast our proposed
approach on emotion, empathy, and sentiment clas-
sification tasks with the following baselines: (1)
Source-Only, which uses the source domain for
fine-tuning BERT (the training portion) and the
target domain for the evaluation (the test portion),
which is the same for all our three settings; (2)
Target-Only, uses the target domain for both train-
ing and evaluation of BERT with few-shot data;
(3) UDA unsupervised domain adaptation where
source domain training set is used to train a model
and make predictions on unlabeled data from the
target domain. Then, the generated pseudo-labels
are added to the source domain training set iter-
atively based on the selection threshold; (4) SSL
semi-supervised learning, where the target domain
training set is used to train a model and make pre-
dictions on unlabeled data from the target domain.
Then, the generated pseudo-labels are added to
the target domain training set iteratively based on
the selection threshold; (5) MixText (Chen et al.,
2020) which guesses low-entropy labels for unla-
beled target data and uses Mixup to interpolate
labeled and unlabeled samples; (6) FliText lever-
ages convolution networks to achieve faster and
lighter semi-supervised text classification; (7) Un-
supervised data augmentation enhances training by
augmenting unlabeled data and promoting consis-
tency between augmented versions; (8) Co-training
with task decomposition where the SSDA is decom-
posed to two components of UDA and SSL; (9) Co-
training with task decomposition and mixup (Yang
et al., 2021) where the generated pseudo-labels
with the source domain classifier are interpolated

4BERT-base yields the best results in our experiments, so
we only report the results using this model.
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Domain Sample Label
Health Yes. I lost my first wife to cancer at 31 and was wrecked with guilt that I didn’t do enough to

help her. After a while, I finally realized that we all have a time and when it’s up, no one or
nothing can change that.

not empa-
thetic

TV Series Will you marry me? Fear
IMDB This solid little horror film is actually one of Renny Harlin’s best. The story is pretty routine

stuff, but the atmosphere is what really makes it come alive; in fact, the ghost story is almost
an afterthought. The real horror comes from the prison setting itself, and Renny H. spares no
detail in showing us how bad the conditions are inside that crumbling, leaking, rat-infested
old hellhole (with a sadistic warden, too!) Viggo Mortensen is excellent as usual in the lead
role, supported by some very authentic-looking prisoners (there are no pretty boys in this
cast.) Horror fans should check this one out.

Negative

Table 2: Samples with label errors.

with the target training data; and (10) Standard su-
pervised learning with the full training and test sets
of the domains separately (as an upper bound of
performance).

3.3 Results

Table 1 compares our proposed approach and base-
line methods on our classification tasks for different
few-shot settings. We report the average perfor-
mance on 3 distinct randomly sampled training and
development splits with three random seeds to pro-
vide a robust measure of our few-shot performance.
We make a few remarks below.

As we can see from Table 1, our proposed
method achieves higher accuracy on all the few-
shot settings than any baseline using task decom-
position and cartography-based mixup. The re-
sults suggest that incorporating cartography-based
mixup to effectively denoise the generated pseudo-
labels (see Ours in the tables) results in constant
improvement over all the few-shot settings. For
example, on empathy (i.e., News to Health) with
K = 4, our proposed approach increased the per-
formance by a factor of 1.63% compared to the
Target-Only and by 1.55% compared to the SSL.
Interestingly, we also observe that our proposed
approach outperforms standard mixup (i.e., Co-
training with TD + Mixup), which signifies the
importance and effectiveness of our proposed strat-
egy in using training dynamics to characterize data
and identify the correctly-labeled samples (easy-to-
learn samples) for denoising the generated pseudo-
labels through the mixup process. In the standard
mixup, the interpolation process occurs between
the generated pseudo-labels and all examples in
the target labeled set, where it is possible for some
of these examples to have incorrect labels. Table
2 shows examples with erroneous labels from all
of our few-shot target labeled sets. Erroneous la-
bels can occur due to human errors in annotations,

even with small datasets when using crowdsourc-
ing techniques or relying on human annotators. It
is apparent from the table that the standard super-
vised learning using the full training and test sets
from the respective domains results in an increase
in performance.

4 Conclusion
In this work, we extend the co-training strategy
as a semi-supervised learning approach for multi-
view data to a single-view setting for NLP tasks
and propose to decompose the SSDA framework
and learn two distinct classifiers (one in an semi-
supervised setup and another one in a domain adap-
tation setup) to teach each other so that both clas-
sifiers can excel in the target domain. We further
propose a novel data cartography-based regulariza-
tion technique for pseudo-label denoising that em-
ploys training dynamics to further hone our models’
performance. Our preliminary results show that de-
noising the pseudo-labels of unlabeled target data
using high-quality labeled target data within a co-
training framework yields improvements in perfor-
mance over multiple baselines.

5 Limitations

One potential limitation of our method is that it in-
duces an extra cost of estimating training dynamic
statistics of the data samples to characterize them
(e.g., easy-to-learn or ambiguous) based on how
they incorporate into the model’s learning. This
may be more expensive for tasks and datasets with
a large number of classes. In the future, we will
focus on approaches to characterize the training
examples on the fly.
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