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Abstract

Prior work shows that it is possible to expand
pretrained Masked Language Models (MLMs)
to new languages by learning a new set of
embeddings, while keeping the transformer
body frozen. Despite learning a small subset
of parameters, this approach is not compute-
efficient, as training the new embeddings re-
quires a full forward and backward pass over
the entire model. We propose mini-model
adaptation, a compute-efficient alternative that
builds a shallow mini-model from a fraction
of a large model’s parameters. New language-
specific embeddings can then be efficiently
trained over the mini-model and plugged into
the aligned large model for rapid cross-lingual
transfer. We explore two approaches to learn
mini-models: MINIJOINT, which jointly pre-
trains the primary model and the mini-model
using a single transformer with a secondary
MLM head at a middle layer; and MINIPOST,
where we start from a regular pretrained model,
build a mini-model by extracting and freezing a
few layers, and learn a small number of param-
eters on top. Experiments on XNLI, MLQA
and PAWS-X show that mini-model adaptation
matches the performance of the standard ap-
proach using 2.3x less compute on average.

1 Introduction

Recent work on multilingual NLP has focused on
pretraining (masked) language models on unla-
beled corpora in multiple languages (Pires et al.,
2019; Conneau et al., 2020; Xue et al., 2021). The
resulting models can then be finetuned using la-
beled downstream data in a single language (typi-
cally English), and zero-shot transferred to the rest
of the languages. While effective, existing models
rarely cover more than a few dozen languages, and
pretraining new models from scratch to support ad-
ditional languages can be prohibitively expensive.
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Figure 1: Average speedup of mini-model adaptation
over Artetxe et al. (2020). A speedup of x means that
our approach needs x times less compute to achieve the
same performance. See §4.2 for more details.

Motivated by this, a recent line of work has ex-
plored pretraining an initial model in a few lan-
guages, and expanding it to new languages post-
hoc in a continual learning fashion (M’hamdi et al.,
2022). More concretely, Artetxe et al. (2020)
showed that it is possible to expand an English
masked language model (MLM) to new languages
by freezing the transformer body and learning a
new embedding layer using the original MLM ob-
jective. Recent work has reported improved re-
sults by using a better initialization scheme (Pfeif-
fer et al., 2021), or learning additional language-
specific parameters through adapters (Pfeiffer et al.,
2022). All these approaches are parameter-efficient,
as they only learn a small number of parameters
for each language, while the rest remain frozen.
However, learning such parameters is not compute-
efficient, as it requires a full forward and backward
pass over the entire model, including the frozen
transformer body.

We introduce mini-model adaptation, a new ap-
proach to extend MLMs to new languages that
is both parameter- and compute-efficient. Mini-
models are shallow models that are aligned with a
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Figure 2: Standard and mini-model adaptation. Trainable parameters are green, frozen parameters are gray. Lsrc
embeddings are small rectangles, Ltrg embeddings are triangles. All approaches use a four-step process for cross-
lingual transfer: (1) pretrain an MLM in Lsrc, (2) learn a new embedding layer in Ltrg via MLM with transformer
body frozen, (3) finetune the model in Lsrc with embeddings frozen, (4) zero-shot transfer to Ltrg by swapping
the embeddings. Standard adaptation (top) uses the same transformer body for all steps, while our approach
learns two aligned models in Step 1—the primary model and a shallower mini-model—and uses the mini-model
to learn Ltrg embeddings efficiently in Step 2. We explore two approaches to learn mini-models: MINIJOINT
(center) jointly pretrains the primary model and mini-model using a secondary MLM head attached at a middle
layer; MINIPOST (bottom) starts from an existing model and builds a mini-model in Step 1b by extracting/freezing
a few layers and learning a small number of parameters on top.

larger parent model. Thanks to this, one can effi-
ciently train a new embedding layer for a new lan-
guage over the mini-model, and plug it directly into
the parent for strong cross-lingual performance.

As shown in Figure 2, we explore two ap-
proaches to learn mini-models, depending on
whether we start from an existing primary model
and learn a mini-model posthoc (MINIPOST), or we
jointly learn the primary model and the mini-model
from scratch (MINIJOINT). In MINIPOST, we ex-
tract the bottom layers from the existing MLM, and
learn a small number of parameters on top to make
it a usable small MLM itself. In the MINIJOINT

variant, we pretrain an MLM from scratch includ-
ing a secondary head at a middle layer. Both heads
are optimized jointly, creating a complete, well-
aligned MLM contained within a larger MLM.

We evaluate our approach on natural language
inference (XNLI), question answering (MLQA)

and paraphrase identification (PAWS-X). As shown
in Figure 1, mini-model adaptation can match the
performance of the standard method from Artetxe
et al. (2020) using 1.6x and 2.3x less compute for
MINIPOST and MINIJOINT, respectively (averaged
over tasks), and retains >98% of performance when
trained to completion.

All in all, our work shows that it is possible to
adapt language models to new tasks (in this case,
new languages) using smaller aligned models for
training. While we focus on the problem of cross-
lingual lifelong learning to validate this idea, we
believe that this new paradigm opens exciting op-
portunities to make finetuning large language mod-
els more affordable.

2 Proposed method

2.1 Standard Adaptation
Artetxe et al. (2020) develop a four-step pipeline for
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cross-lingual transfer from a monolingual model,
visualized in Figure 2 (top). First, one trains a
monolingual MLM in the source language (Lsrc,
usually English). Second, the transformer body
is frozen, embeddings are re-initialized,1 and the
model is trained with MLM in the target language
(Ltrg). The trainable embeddings are tied with the
output projection layer in the MLM head. Third,
the Lsrc embeddings are swapped back into the
model and frozen, and the transformer body is fine-
tuned on the downstream data in Lsrc. Finally, the
Ltrg embeddings are swapped back into the fine-
tuned model for zero-shot transfer into Ltrg. We
build two baselines based on this framework: a
standard 12-layer (BL_BASE), and a smaller 4-
layer version (BL_SMALL).

2.2 Mini-Model Adaptation

Our proposed approach follows a similar four-step
training paradigm. However, we learn two aligned
models in Step 1: the primary model and a shallow
mini-model. In Step 2, the Ltrg embeddings are
learned over the mini-model, saving compute with
respect to standard adaptation. Steps 3 and 4 are
run as usual over the primary model, resulting in
a full-size Ltrg model. For Step 1, we explore the
following two alternatives depending on whether
we start from an existing Lsrc model, or we are
training one from scratch:

MINIJOINT. In this variant, we pretrain a dual-
head 12-layer Lsrc transformer from scratch, attach-
ing a secondary head to an intermediary N th layer
(Figure 2, center). The model is trained to mini-
mize the average MLM loss over the two heads. As
such, the whole model receives gradient updates
from the primary head, and the bottom layers also
get updates from the secondary head. Having done
that, we extract the bottom N layers and the sec-
ondary head to create the mini-model for Step 2.
Unless otherwise indicated, we use N = 4.

MINIPOST. Here, we start with a regular 12-
layer MLM in Lsrc (same as BL_BASE), and build
an aligned mini-model in Step 1b (Figure 2, bot-
tom). To that end, we first copy the bottom N lay-
ers into a new, shallower model, along with the em-
beddings and the MLM head. However, this does
not work out of the box, as we must bridge the gap

1Following Pfeiffer et al. (2021), we initialize the Ltrg
embeddings with overlapping tokens from Lsrc for all methods
throughout. Non-overlapping tokens are randomly initialized
using the normal distribution with µ = 0.0, σ = 0.02.

GB Language Family Word
Order

Syn.
Dist.

Phylo.
Dist.

ar 28.0 Afro-Asiatic: Semitic SVO/VSO 0.57 1.00
bg 58.0 Indo-European: Slavic SVO 0.48 0.86
de 67.0 Indo-European: Germanic SVO/SOV 0.42 0.43
el 47.0 Indo-European: Greek SVO/VSO 0.52 0.83
en 301.0 Indo-European: Germanic SVO 0.00 0.00
es 54.0 Indo-European: Romance SVO 0.40 0.90
fr 57.0 Indo-European: Romance SVO 0.46 0.90
hi 21.0 Indo-European: Indic SOV 0.59 0.90
ru 279.0 Indo-European: Slavic SVO 0.49 0.90
sw 1.7 Niger-Congo: Bantu SVO 0.57 1.00
th 72.0 Tai-Kadai: Kam-Tai SVO 0.56 1.00
tr 21.0 Altaic: Turkic SOV 0.70 1.00
ur 5.7 Indo-European: Indic SOV 0.67 0.90
vi 138.0 Austro-Asiatic: Viet-Muong SVO 0.57 1.00
zh 47.0 Sino-Tibetan: Chinese SVO 0.57 1.00

Table 1: Languages included in this study. GB: Size
of CC-100 training data in gigabytes. Syn./Phylo. Dist.:
syntactic and phylogenetic distance from English, re-
spectively, according to lang2vec (Littell et al., 2017).

between the output of the N bottom layers and the
input of the MLM head, which goes through 12−N
additional layers in the original model. To that
end, we add 2 randomly-initialized layers between
the N bottom layers and the MLM head, and train
them with the MLM objective in Lsrc while keeping
the rest of the parameters frozen. Because the new
layers are unfrozen, they update to “complete” the
MLM—bridging representations from the bottom
layers’ output to the MLM head’s input, and result-
ing in a mini-model with N + 2 layers that is fully
functional and aligned with the primary model.

3 Experimental Settings

Languages and Data. Following common prac-
tice, we use English as the source language (Lsrc),
and experiment with 14 other languages as the tar-
get (Ltrg). We use CC-100 (Conneau et al., 2020)
as our training corpus, which is a filtered version of
CommonCrawl. We report the full list of languages
along with their corpus size and linguistic details
in Table 1. Each language is preprocessed individ-
ually using SentencePiece (Kudo and Richardson,
2018) with a vocabulary size of 50,000.

Models. We use the RoBERTaBASE (Liu et al.,
2019) architecture throughout from fairseq (Ott
et al., 2019). Embeddings are tied. As said in §2,
we compare 4 systems: 2 variants of Artetxe et al.
(2020) (BL_BASE with 12 layers and BL_SMALL

with 4 layers), and 2 variants of our proposed ap-
proach where we set N = 4 (MINIJOINT, which
jointly trains a 12-layer primary model and a 4-
layer mini-model from scratch, and MINIPOST,
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which starts from a regular 12-layer model and con-
structs a 6-layer mini-model post-hoc). BL_BASE

is a performance upper-bound, as it is the orig-
inal 12-layer model that is used for adaptation.
BL_SMALL is a lower-bound, demonstrating per-
formance of the standard approach using an adap-
tation model of similar size as ours.

Models are trained for 125,000 steps with a
global batch size of 2048, sequence length of 512,
and learning rate of 7e-4 with 10,000 warmup up-
dates and linear decay, both for the original pretrain-
ing (Step 1), and cross-lingual extension into each
language (Step 2). As such, models see 131.1 bil-
lion training tokens per language. Step 1b in MINI-
POST uses the same training hyperparameters.

Evaluation. We evaluate on 3 tasks: natural lan-
guage inference in XNLI (Conneau et al., 2018),
question answering in MLQA (Lewis et al., 2020),
and adversarial paraphrase identification in PAWS-
X (Yang et al., 2019). We also report XQuAD
(Artetxe et al., 2020) results in §A.2. In all cases,
the model is finetuned using the corresponding
training data in English (Step 3), and zero-shot
transferred into the rest of languages (Step 4). We
perform 5 independent finetuning runs with differ-
ent random seeds, and report average results. Dur-
ing finetuning, we use a peak learning rate of 1e-5
for XNLI and PAWS-X, and 3e-5 for MLQA and
XQuAD. Each uses a warmup ratio of 0.06 and lin-
ear decay, and is finetuned for 3 epochs.

Estimating FLOPs. We compare training effi-
ciency of different approaches using floating point
operations (FLOPs). To calculate FLOPs, we es-
timate analytically using an adaptation of the for-
mula from Narayanan et al. (2021), detailed in
§A.1. When doing so, we exclusively consider the
cost of expanding the model to a new language
(Step 2), which is the most significant in the cross-
lingual lifelong learning setup that our work ad-
dresses.2 We also report NVIDIA V100 GPU train-
ing days as a more interpretable number, which we
estimate analytically using an estimated throughput
of 30 TFLOP/s, or 1 V100 day = 2.592 EFLOPs.

In some of our experiments, we are interested in
estimating the training FLOPs required to achieve

2While Step 1 can also be expensive, it is amortized over
time: the initial model is trained only once, but extended to
new languages many times. The cost of Step 1 is similar for
BL_BASE and MINIJOINT, as the overhead of the second
head is small (∼30.4 vs. ∼32.2 V100 days for a 12-layer
model). MINIPOST incurs extra cost from Step 1b, but this is
relatively small compared to the cost of pretraining (see §A.1).

certain performance. However, this cannot be com-
puted precisely, as we only have a limited number
of intermediate checkpoints.3 For that reason, we
identify the checkpoints immediately before and
after which the model first scores the desired per-
formance, and use linear interpolation to estimate
the step at which the exact score would have been
hit. For instance, if MINIPOST obtains an accu-
racy of 48% at the 5,000 update checkpoint (∼1.17
EFLOPs) and 52% at the 10,000 update checkpoint
(∼2.34 EFLOPs), we estimate that the accuracy of
50% was achieved at 7,500 steps (∼1.76 EFLOPs).

4 Main Results

4.1 Performance at Training Completion

Table 2 reports performance at training comple-
tion (i.e., after 125,000 updates in Step 2). As ex-
pected, BL_BASE obtains the best results, but its
training cost is also the highest. In contrast, MINI-
JOINT requires nearly one third of the compute,
while obtaining similar results. More concretely,
it is marginally better on PAWS-X, while moder-
ately (1-2 points) worse on MLQA and XNLI. Av-
eraged over tasks, MINIJOINT retains 98.7% of
BL_BASE’s performance4 at 39% of its cost. This
validates the core hypothesis of our work—learning
target language embeddings over the mini-model is
almost as effective as learning them over the origi-
nal model, while being significantly cheaper.

MINIPOST follows a similar trend, retaining
99.3% of BL_BASE’s performance at nearly half of
its cost. This shows that mini-models do not need
to be trained from scratch, but one can take any ex-
isting English model and build it’s corresponding
mini-model post-hoc.

BL_SMALL performs substantially worse than
our proposed approach. BL_SMALL has the same
training cost as MINIJOINT, but is 4.0 points worse
on XNLI, 4.8 points worse on MLQA, and 9.0
points worse on PAWS-X. This shows that our idea
of having two aligned models—a shallow one for
efficient adaptation and a deep one for best perfor-
mance at test time—is critical, as using a shallow
model both for adaptation and inference performs
considerably worse.

3We checkpoint every 5000 updates for BL_SMALL,
MINIJOINT, MINIPOST. As each step of BL_BASE is more
expensive, we checkpoint every 1000 updates for more fine-
grained estimates. We save extra checkpoints for MINIJOINT
and MINIPOST at steps 1000, 2000, 3000 and 4000 for De, Fr,
Es, and Zh, as these adapt rapidly for certain tasks.

4( 70.3
72.0

+ 56.0
56.9

+ 83.5
83.4

)/3 ≈ 0.987
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Train cost XNLI (acc)

EFLOPs days ar bg de el es fr hi ru sw th tr ur vi zh avg

Standard
BL_BASE 54.1 20.9 70.2 78.4 76.2 76.1 79.2 78.9 65.6 72.5 68.2 70.1 67.1 60.9 72.1 72.4 72.0
BL_SMALL 21.1 8.1 65.4 71.1 68.0 69.1 71.3 71.0 61.8 66.2 63.8 64.9 64.4 57.9 65.7 67.6 66.3

Proposed
MINIPOST 29.3 11.3 70.1 77.8 75.7 75.5 78.5 78.2 63.9 72.2 67.5 70.2 64.8 59.2 70.8 72.0 71.2
MINIJOINT 21.1 8.1 69.3 77.6 75.0 74.7 78.4 77.7 62.4 71.7 66.9 68.8 63.7 58.1 69.2 70.8 70.3

(a) XNLI results

Train cost MLQA (F1) PAWS-X (acc)

EFLOPs days ar de es hi vi zh avg de fr es zh avg

Standard
BL_BASE 54.1 20.9 51.2 61.0 66.6 48.5 57.3 56.8 56.9 84.7 85.8 86.0 77.3 83.4
BL_SMALL 21.1 8.1 46.0 54.6 59.8 43.1 53.2 50.8 51.2 74.2 76.4 76.6 70.8 74.5

Proposed
MINIPOST 29.3 11.3 50.8 60.4 66.7 48.9 56.6 56.7 56.7 83.8 86.2 86.3 76.0 83.1
MINIJOINT 21.1 8.1 50.8 60.1 66.0 46.4 57.2 55.6 56.0 84.4 85.1 86.7 77.9 83.5

(b) MLQA and PAWS-X results

Table 2: Performance at training completion. Both variants of our approach nearly match the performance of
BL_BASE at a substantially lower cost, while BL_SMALL significantly lags behind. days: V100 GPU days.

4.2 GPU days to Near-Maximal Performance

While we previously compared approaches at train-
ing completion, one can also apply early stopping,
sacrificing some performance to gain on efficiency.
This also allows to compare different approaches
head-to-head according to the compute they require
to achieve a given score—assuming we stop train-
ing as soon as the desired performance is hit. To
that end, we fix our target score as 95% of the per-
formance obtained by BL_BASE at the end of train-
ing, which we call near-maximal performance.5

Results are in Table 3, and average speedup of our
approach over standard adaptation is in Figure 1.6

Overall, MINIJOINT does best: when per-
language speedup is averaged across languages, we
see that it requires about half to one-third the com-
pute of BL_BASE to achieve the same performance
in all tasks. MINIPOST has more modest speedups,
but is still substantially faster than standard adap-
tation to hit the desired performance. This shows
that, if possible, it is preferable to pretrain mini-
models jointly with the primary model, but our ap-
proach can also bring substantial speedups when

5For instance, BL_BASE obtains 70.2 accuracy on Arabic
XNLI at training completion, so we set the target performance
for Arabic XNLI at 70.2 ∗ 0.95 = 66.7. Note that this is also
the target performance we use for MINIJOINT and MINIPOST,
even if their score at training completion is lower.

6Speedup is the ratio of V100 days to near-maximal per-
formance between two methods. For instance, if BL_BASE
requires 2.5 V100 days to achieve near-maximal performance
in Arabic XNLI and MINIJOINT requires 1.0, the resulting
speedup is 2.5/1.0 ≈ 2.5. Note that Figure 1 reports the av-
erage ratio across all languages, which is not the same as the
ratio of the average V100 days across all languages.

starting with an existing pretrained model.
It is also remarkable that there is a considerable

variance across tasks. In particular, all approaches
require substantially less compute to achieve the
target performance in PAWS-X when compared to
XNLI and MLQA. The relative speedup of mini-
model adaptation is also considerably higher on
PAWS-X. We also observe a high variance across
languages, which we analyze in more detail in §5.4.

5 Analysis

5.1 Training Curves

We visualize the training curves of the different ap-
proaches in Figure 3. Consistent with our previ-
ous findings, we observe that MINIJOINT is usu-
ally the leftmost curve—signifying the most rapid
adaptation—at the cost of a slightly lower final
score. In contrast, BL_BASE is by far the slowest
system approaching its peak performance, while
BL_SMALL gets stuck at a poor performance com-
pared to other approaches. Finally, we find that all
methods adapt rapidly in PAWS-X, which suggests
that this tasks might be easier than the others.

5.2 Mini-Model Depth

We recall that the mini-model in MINIJOINT has
4 layers, whereas the one in MINIPOST has 6 (the
bottom 4 taken from the primary model + 2 addi-
tional ones trained on top). We made this decision
early in the development process based on prelimi-
nary experiments. In this section, we more system-
atically study the effect of mini-model depth on ef-
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XNLI MLQA PAWS-X

ar bg de el es fr hi ru sw th tr ur vi zh avg ar de es hi vi zh avg de fr es zh avg

BL_BASE 2.5 1.2 1.1 1.5 0.8 0.8 3.2 1.8 1.4 1.8 2.3 8.3 1.0 1.7 2.1 2.6 1.1 0.8 3.4 1.2 1.8 1.8 0.7 0.6 0.6 0.7 0.6

MINIPOST 1.7 0.9 0.8 0.9 0.4 0.4 2.5 1.3 1.1 1.3 3.0 6.5 0.8 1.1 1.6 1.7 0.8 0.5 1.7 0.9 1.2 1.1 0.3 0.3 0.3 0.4 0.3
MINIJOINT 1.0 0.5 0.5 0.6 0.3 0.3 5.9 0.6 0.6 0.7 5.3 5.4 0.6 0.8 1.6 1.0 0.6 0.4 5.3 0.5 0.9 1.5 0.2 0.2 0.2 0.2 0.2

Table 3: Estimated V100 training days to achieve near-maximal performance. Near-maximal performance
is defined as 95% of the score of BL_BASE at training completion. ↓ is better. BL_SMALL never achieves near-
maximal performance, except on XNLI for Turkish (1.7 days) and Urdu (6.4 days).
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Figure 3: Training curve through the first GPU-week. We report XNLI and PAWS-X accuracy and MLQA F1.

ficiency and performance. To that end, we build
models with the same architecture as MINIJOINT,
but placing the secondary MLM head after layers
2, 6, 10, or 12.7 We experiment with Arabic, Ger-
man and Turkish due to compute constraints.

Figure 4 shows the XNLI training curve aver-
aged over 3 languages. We see more rapid adapta-
tion with shallower attachment of the second head,
at a cost to final performance. §A.3 shows curves
for PAWS-X, MLQA, and XQuAD. For PAWS-X,
high performance was rapidly achieved by all mod-
els. End-of-training results are in Table A3.

Table 4 reports estimated V100 days to achieve
near-maximal performance as defined in §4.2, and
upper and lower estimates are in §A.3. We find
that the optimal depth of the mini-model is largely
language-dependent. Specifically, Arabic and Turk-
ish never hit the target performance with 2 layers,
whereas German does so quickly. For Arabic, 4 lay-
ers provides the most rapid adaptation, while Turk-
ish requires at least 6. This suggests that it is critical
to have some minimum number of layers to achieve
good performance, which varies from language to
language. But, as long as this minimum is met, shal-
lower mini-models are generally more efficient.

7Attaching after layer 12 means that both heads are at the
final layer, making it virtually equivalent to BL_BASE.
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Figure 4: XNLI training curve for MINIJOINT with
secondary head attached at varying layers. Results
are averaged over Arabic, German and Turkish. Final
performance is in Table A3.

5.3 English Performance

While all of our results so far correspond to the
target languages, we next look into the source lan-
guage performance. As described in §2.2, MINI-
POST uses BL_BASE as the primary model, so
their English performance is exactly the same.
However, MINIJOINT jointly pretrains the primary
model and its aligned mini-model. To understand
the effect of the joint pretraining on the monolin-
gual quality of the model, we compare the full
MINIJOINT model and its corresponding mini-
model with BL_BASE and BL_SMALL. As shown
in Table 5, we find that dual-head training does not
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Layer: 2 4 6 8 10 12

XNLI 0.4 0.5 0.7 1.0 1.1 1.4
MLQA 0.7 0.6 0.6 1.1 1.0 1.4de
PAWS 0.2 0.2 0.4 0.5 0.7 1.0

XNLI ∞ 1.0 0.9 1.3 1.8 2.4ar MLQA ∞ 1.0 1.1 2.2 2.1 2.5

tr XNLI ∞ 5.3 1.5 1.5 1.5 1.6

Table 4: Estimated V100 days to near-maximal per-
formance (see §4.2) for MINIJOINT with secondary
head attached at varying layers. ↓ better. ∞: never
hit target performance.

BL_BASE 86.4
BL_SMALL 79.6
MINIJOINT (full) 86.2
MINIJOINT (mini-model) 79.2

Table 5: English XNLI accuracy. §5.3 for details.

damage performance: the full MINIJOINT model
performs on-par with the 12-layer baseline, and the
4-layer extracted mini-model performs on-par with
the 4-layer baseline.

5.4 Variance Across Languages
While we obtain strong results across the board,
there are 3 languages that prove challenging: Hindi,
Turkish and Urdu. As shown in Table 3, MINI-
JOINT takes more than 5 V100 days to achieve
near-maximal performance on XNLI for these lan-
guages, whereas the rest of the languages require at
most 1 day. As seen in §5.2 this can be mitigated by
using a deeper mini-model in the case of Turkish.
However, we observe that even BL_BASE strug-
gles with Urdu and, to a lesser extent, Hindi. This
suggests that there is something making these lan-
guages particularly challenging for cross-lingual
adaptation, affecting not only our method but also
the standard approach from Artetxe et al. (2020).

One hypothesis is that this is due to the high lin-
guistic distance between these languages and En-
glish. In Table 1, these are the languages that are
the most syntactically distant from English accord-
ing to lang2vec,8 and the only ones with a pure
SOV word order. This is also consistent with Ger-
man, Spanish and French—the 3 languages that
are the closest to English—generally obtaining the
fastest adaptation times. In the future, we would
like to explore starting with a multilingual model
covering a few diverse languages akin to Pfeiffer

8https://github.com/antonisa/lang2vec

et al. (2022), which could facilitate adapting to
languages that are distant from English but might
share features with some of the other languages.

Another potential factor is that Hindi, Turkish
and Urdu, along with Swahili, have the smallest
training corpora. However, despite having the
smallest training corpus with only 1.7GB—∼1/3
the size of Urdu and ∼1/12 of Hindi and Turkish—
Swahili exceeds the aforementioned three on both
adaptation speed and raw performance on XNLI.
Exploring the impact of corpus size was outside of
the scope of this work, but we believe that this is
an interesting question to address in future work.

6 Related Work

Multilinguality in NLP. One way to create a LM
for a particular language is to collect enough data
and train from scratch (e.g. Martin et al., 2020;
de Vries et al., 2019; Chan et al., 2020). For the ma-
jority of languages, however, not enough data ex-
ists to train a high-quality model from scratch. Al-
ternatively, one may pretrain a multilingual model
on unlabeled data from many languages, which
can then be finetuned on labeled data for zero-shot
cross-lingual transfer (e.g. Devlin et al., 2019; Con-
neau and Lample, 2019; Conneau et al., 2020).
Multilingual LMs are not without challenges; they
are large and expensive to train, suffer from the
curse of multilinguality, low-resource language per-
formance can lag due to underrepresentation in
the training corpus, and they cannot benefit from
language-specific tokenization (Conneau and Lam-
ple, 2019; Wu and Dredze, 2020; Rust et al., 2021;
Doddapaneni et al., 2021, for a survey). Further-
more, not all languages are created alike in multi-
lingual models; Muller et al. (2021) find that some
“easy” languages perform well in mBERT out-of-
the-box and others are successfully after finetun-
ing with monolingual data, some “hard” languages
perform poorly in mBERT even after tuning. Al-
ternatively, one may adapt a pretrained model by
finetuning, adding language- or domain-specific
adapters (e.g. Rebuffi et al., 2017; Houlsby et al.,
2019; Pfeiffer et al., 2022), retraining the lexical
embedding layer (Tran, 2020; Artetxe et al., 2020;
de Vries and Nissim, 2021), or translating the train,
finetuning, or test set (e.g. Wang et al., 2022).

Efficient Adaptation of Language Models.
Adapters are a parameter-efficient way to extend
LMs by training a small number of parameters
that can be swapped-in for on-the-fly adaptation at
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test time as opposed to needing to store full sep-
arate models per task or language. Pfeiffer et al.
(2020) train small stackable language- and task-
specific adapters with respect to a frozen trans-
former body that is shared between all languages
and tasks, allowing simple and quick cross-lingual
transfer at test-time. Bapna and Firat (2019) in-
ject adapter layers into a neural machine translation
(NMT) model for domain adaptation to obviate the
need for full-model finetuning, and use language-
specific adapters for high-resource languages to re-
cover from catastrophic forgetting during multilin-
gual NMT training. Alabi et al. (2022) argue that
their finetuned mBERT for 17 African languages
is parameter efficient because they maintain high-
performance with a single model rather than requir-
ing separate models per language. Like Abdaoui
et al. (2020), they reduce model size by removing
vocabulary tokens not needed for target languages.
LoRa adds small trainable matrices corresponding
to low-rank decompositions of a weight updates
within transformer attention, allowing rapid up-
dates during finetuning (Hu et al., 2022). Prefix-
tuning methods are also parameter-efficient (Li and
Liang, 2021; Liu et al., 2021).

Compute-efficient methods aim reduce the com-
putation (FLOPs or wall-time) required to train a
model. Several authors developed vocabulary adap-
tation methods which reduce the need to exten-
sively finetune a model or train from scratch (e.g.
Chronopoulou et al., 2020; Sachidananda et al.,
2021). Though Wang et al. (2020) continued-train
mBERT with an extended vocabulary for a new
language, convergence is faster than with a bilin-
gual BERT model trained from scratch. Kocmi
and Bojar (2020)’s vocabulary adaptation method
improves time-to-convergence of a NMT system
adapted to a new language. While de Vries and
Nissim (2021) learn a new lexical embedding layer
on top of GPT-2, which is computationally expen-
sive, they employ engineering strategies to decrease
training time, such as 16-bit mixed precision train-
ing, reduced window size, and maximum batch
size with gradient accumulation. Though they must
backpropogate through the entire model during em-
bedding layer relearning, training stabilizes quickly.
They adapt larger models by initializing the embed-
ding layer using transformations of embeddings de-
veloped on smaller models, noting that the better
initialization speeds training.

Variance across languages. Prior work observes
similar variation between languages in LM adapta-
tion. When adapting BERT, Tran (2020) see that
Hindi showed the slowest growth and lowest final
XNLI score of six assessed languages, acknowl-
edging word-order differences. Several authors see
performance lags on NLP benchmarks for SOV
languages when probing large multilingual mod-
els (Doddapaneni et al., 2021, for a review). Pires
et al. (2019) find that zero-shot part-of-speech tag-
ging is best when the model has been finetuned on
a language that shares word order with the target
language. Limisiewicz et al. (2020) attribute the
disparity to underrepresentation of SOV languages
in the training corpus.

7 Conclusion and Future Work

Our work shows that it is possible to extend pre-
trained models to new languages using only a frac-
tion of their parameters. We achieve this by learn-
ing a new embedding layer over a shallow mini-
model aligned with the primary model. We explore
two approaches to learn mini-models: MINIJOINT

augments a transformer with a second MLM head
during pretraining, adapting with an average 2.3x
speedup over the standard method from Artetxe
et al. (2020), and MINIPOST builds a mini-model
by extracting a small number of layers from a pre-
trained model, providing an average 1.6x speedup.

Our analysis reveals that shallower mini-models
converge faster but plateau at lower performance.
As such, one might explore combining multiple
mini-models of different depths, using the shallow-
est at the beginning of cross-lingual adaptation, and
then deeper ones as training progresses. One could
add multiple MLM heads to a MINIJOINT model
and train all simultaneously to facilitate this.

We would also like to explore applications of
mini-model adaptation beyond the multilingual sce-
nario. In particular, by adapting rapidly on models
significantly smaller than the base model used for
inference, MINIJOINT/MINIPOST might be used
to finetune large LMs on modest hardware. This
could allow for a new paradigm whereby one shares
a small model for adaptation while keeping a large
aligned model private behind an API. Clients could
then learn parameters for their task on the small
model, which are later plugged into the large model
for better performance. Shortly after us, Xiao
et al. (2023) proposed Offsite-Tuning, an adaptation
method similar to ours but motivated by privacy.
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Limitations

Our study is limited to the adaptation of MLMs
to new languages. While we believe that our pro-
posed approach could also be applied more broadly
(e.g., autoregressive models instead of MLMs, or
adapting to new downstream tasks instead of new
languages), further experiments are necessary to
empirically verify this. In addition, we observe a
considerable variance across languages (§5.4), the
reasons for which are not entirely clear. Ideally,
we would have a broader set of languages to bet-
ter study this, as our language set is limited and
skewed towards the Indo-European family. Finally,
we average results over 5 finetuning runs, but com-
putational restrictions prevented us from also aver-
aging over multiple pretraining runs. As discussed
in §A.5, we observed a non-negligible variance
over pretraining runs in a preliminary experiment,
but a more systematic exploration is necessary to
better understand its impact.
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A Appendix

A.1 Floating Point Operations (FLOPs)
We estimate total FLOPs for training using the for-
mula from Narayanan et al. (2021), amended for
RoBERTa without activation recomputation. Like
the authors, we omit calculations over biases, ac-
tivation functions, softmax, and other minor costs.
Assume hidden size h, vocabulary size V , num-
ber of layers l, token mask probability p, sequence
length s, batch size B, and total training updates
U , the total FLOPs during training are:

72UBslh2(1 +
s

6h
+

p

12l
+

pV

12hl
) (A1)

Derivation Recall that multiplying A ∈ Rm×n

by B ∈ Rn×p requires 2mnp FLOPs. Each trans-
former layer consists of a multi-head self-attention
block and a linear projection. The attention
block has four weight matrices Wq,Wk,Wv,Wo ∈
Rh×h.9 The input x ∈ Rs×h is projected with
Wq,Wk and Wv, requiring 2sh2 FLOPs each:

Q = xWq K = xWk V = xWv

Self-attention followed by output projection is:

(softmax(
QKT

√
h

)V )WO

Multiplying QKT and multiplying the result by V
both require 2hs2 FLOPs. Multiplying with WO

costs 2sh2 FLOPs. In sum, there are 8sh2 + 4hs2

FLOPs to compute the forward pass of the atten-
tion block. The output of the attention block (x ∈
Rs×h) is then passed through two linear layers:
F0 ∈ Rh×4h and F1 ∈ R4h×h. These multiplica-
tions cost 8sh2 FLOPs each, so total FLOPs per
layer is:

FLOPlayer = 24sh2 + 4hs2

The output x ∈ Rs×h passes through the MLM
head: a dense layer of size Rh×h for 2sh2 FLOPs,
and an output projection of size Rh×V that costs:

FLOPoutproj = 2shV

Only masked tokens are passed through MLM head,
so the total flops in the LM head is

FLOPlm = p(2sh2 + 2shV )

9We demonstrate the calculation over one head, as using
more heads results in the same FLOPs calculation.

In sum, the total estimated FLOPs for a forward
pass of RoBERTa with a batch size of 1 is:

l(FLOPlayer) + FLOPlm

= l(24sh2 + 4hs2) + p(2sh2 + 2shV )
(A2)

To account for the backward pass, one typically
triples the forward pass FLOPs. This is because (1)
to backpropogate the error, one calculates the par-
tial derivatives of the loss with respect to the input
(activations): ∂δ

∂a , and (2) to make a weight update,
one first must calculate the partial derivatives with
respect to the weights: ∂δ

∂w . Calculating each par-
tial derivative requires the same number of FLOPs
as the forward pass, meaning that the backward
pass is doubly as expensive.10 Tripling Equation
A2 to account for the backward pass, multiplying
by batch size and total updates, and reducing gives
Equation A1 for full pretraining.

Adaptation requires an amended equation for
the backward pass because layers are frozen (Step
2: Ltrg embedding training). The trainable embed-
dings are tied to the output projection layer in the
MLM head: thus, trainable input embeddings are
passed through frozen layers, which passes through
the MLM head consisting of a frozen dense layer
and trainable output projection. To backpropogate
the error to the embeddings, we must (1) calculate
∂δ
∂a for the entire model, requiring the same number
of FLOPs as the forward pass.11 Because the MLM
head’s output projection layer is also trainable, we
also calculate ∂δ

∂w here on the backward pass. In to-
tal, this gives the below equation for Step 2, after
multiplying for batch size and total updates:

UB(2lFLOPlayer + 2FLOPlm + pFLOPoutproj)

= 48UBslh2(1 +
s

6h
+

p

12l
+

pV

8hl
)

(A3)

Thus, adaptation with 4 layers requires
∼21.1 EFLOPs versus ∼29.3 EFLOPs during
pretraining. For 12 layers, adaptation requires
∼54.1 EFLOPs versus ∼78.8 in pretraining.

10One typically does not add in the cost of the weight up-
date, because this is relatively small.

11Some additional backward computation is required here,
but we make this simplification.

5485



MINIPOST FLOPs in Step 1b Step 1b of MINI-
POST builds small mini-model with embeddings
and first lf layers frozen. These frozen layers do
not require the backward pass. Furthermore, the
frozen LM head does not require calculating ∂δ

∂w ,
only ∂δ

∂a . Of the trainable layers, each require both
∂δ
∂a and ∂δ

∂w , except the first trainable layer which
only needs ∂δ

∂w (because it does not pass back the
error). Given trainable layers lt, the total cost for
creating the mini-model in MINIPOST is:

= UB(l(FLOPlayer) + 2FLOPlm + (2lt − 1)FLOPlayer)

= UB((l + 2lt − 1)FLOPlayer + 2FLOPlm)

= UB((l + 2lt − 1)(24sh2 + 4hs2) + 4psh2 + 4pshV )
(A4)

Concretely, the cost of training a 6-layer mini-
model in this work is ∼21.6 EFLOPs. In compari-
son, pretraining the vanilla 12-layer RoBERTa base
model requires ∼78.8 EFLOPs.

A.2 XQuAD

The Cross-lingual Question Answering Dataset
(XQuAD; Artetxe et al., 2020) covers a more ex-
tensive set of languages than MLQA. We evaluate
the same models tuned for QA in the main body of
the paper on XQuAD. Final F1 and V100 days to
achieve near-maximal performance are in Tables
A1 and A2. We also show the growth curve for F1
through the first V100-week in Figure A1.

XQuAD

ar de el es hi ru th tr vi zh avg

BL_BASE 2.3 1.1 1.7 0.8 3.3 1.9 2.1 2.2 1.2 1.5 1.8

MINIPOST 1.4 0.8 1.0 0.4 1.3 1.3 1.4 1.2 0.8 1.0 1.1
MINIJOINT 0.8 0.4 0.6 0.5 3.1 0.6 0.6 ∞ 0.5 0.6 0.9*

Table A1: Estimated V100 training days to achieve
near-maximal performance (see §4.2) on XQuAD.
∞: never hit target performance. BL_SMALL never
achieves near-maximal performance. ∗excludes Turkish,
which never hit near-maximal performance.
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52
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58
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62

64

F1

Near-Maximal Performance
BL_Base
MiniPost
MiniJoint
BL_Small

Figure A1: XQuAD performance in first GPU-week.

A.3 Mini-Model Depth: MLQA, PAWS-X,
and XQuAD

We extend the results of §5.2 to MLQA, PAWS-
X, and XQuAD, shown in Figure A2. Figure A3
shows training curves for the particularly challeng-
ing language of Turkish on XNLI and XQuAD. Ta-
ble A3 shows performance at training completion.

Figure: Fig. 4 A2(a) A2(b) A2(c) A3(a) A3(b)

N =

2 66.2 51.5 83.8 54.1 58.3 46.8
4 69.3 55.4 84.4 59.0 63.7 53.2
6 70.3 56.2 83.7 59.8 65.6 56.0
8 70.6 54.8 83.3 58.6 66.7 55.0
10 71.4 55.8 82.9 58.8 67.9 53.2
12 71.1 56.0 81.5 60.3 68.5 57.4

BL_Base 71.2 56.1 84.7 59.6 67.1 57.2

Table A3: Performance at end of training for MINI-
JOINT. Results correspond to Figures 4, A2, and A3.

Train cost XQuAD (acc)

EFLOPs days ar de el es hi ru th tr vi zh avg

Standard
BL_BASE 54.1 20.9 52.4 69.2 70.0 74.8 53.8 68.7 57.1 57.2 65.9 53.7 62.3
BL_SMALL 21.1 8.1 48.2 61.2 63.3 65.8 46.2 61.0 50.4 52.1 60.3 46.2 55.5

Proposed
MINIPOST 29.3 11.3 52.4 68.8 69.9 75.1 55.3 68.2 56.9 58.6 65.7 53.5 62.4
MINIJOINT 21.1 8.1 53.8 70.1 69.9 73.7 51.8 68.6 56.5 53.2 64.9 52.5 61.5

Table A2: XQuAD performance at training completion. Both variants of our approach nearly match the
performance of BL_BASE at a substantially lower cost, while BL_SMALL significantly lags behind.

5486



0 1 2 3 4 5 6 7
V100 Days

48

50

52

54

56

58

F1

Near-Max Perf.
BL_Base
MiniJoint (N=2)
MiniJoint (N=4)

MiniJoint (N=6)
MiniJoint (N=8)
MiniJoint (N=10)
MiniJoint (N=12)

(a) MLQA. (Arabic, German)

0 1 2 3 4 5 6 7
V100 Days

70

72

74

76

78

80

82

84

86

Ac
cu

ra
cy

Near-Max Perf.
BL_Base
MiniJoint (N=2)
MiniJoint (N=4)

MiniJoint (N=6)
MiniJoint (N=8)
MiniJoint (N=10)
MiniJoint (N=12)

(b) PAWS-X. (German only)
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(c) XQuAD. (Arabic, German, Turkish)

Figure A2: Training curves for MINIJOINT with sec-
ondary head attached at varying layers. Averaged
over languages. Final performance in Table A3.
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Figure A3: Training curves for MINIJOINT with sec-
ondary head attached at varying layers. Turkish. Fi-
nal performance in Table A3.
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Layers: 2 4 6 8 10 12

XNLI 0.4 (0.2 - 0.4) 0.5 (0.3 - 0.7) 0.7 (0.5 - 0.9) 1.0 (0.6 - 1.2) 1.1 (0.7 - 1.4) 1.4 (0.8 - 1.7)
XQUAD 0.4 (0.2 - 0.4) 0.4 (0.3 - 0.7) 0.6 (0.5 - 0.9) 0.9 (0.6 - 1.2) 0.7 (0.7 - 1.4) 1.3 (0.8 - 1.7)

MLQA 0.7 (0.6 - 0.8) 0.6 (0.3 - 0.7) 0.6 (0.5 - 0.9) 1.1 (0.6 - 1.2) 1.0 (0.7 - 1.4) 1.4 (0.8 - 1.7)de

PAWS 0.2 (0.0 - 0.2) 0.2 (0.2 - 0.3) 0.4 (0.0 - 0.5) 0.5 (0.0 - 0.6) 0.7 (0.0 - 0.7) 1.0 (0.8 - 1.7)

XNLI ∞ 1.0 (0.7 - 1.0) 0.9 (0.9 - 1.4) 1.3 (1.2 - 1.7) 1.8 (1.4 - 2.1) 2.4 (1.7 - 2.5)
XQUAD ∞ 0.8 (0.7 - 1.0) 0.9 (0.5 - 0.9) 1.6 (1.2 - 1.7) 1.8 (1.4 - 2.1) 2.4 (1.7 - 2.5)ar

MLQA ∞ 1.0 (1.0 - 1.3) 1.1 (0.9 - 1.4) 2.2 (1.7 - 2.3) 2.1 (1.4 - 2.1) 2.5 (1.7 - 2.5)

XNLI ∞ 5.3 (5.2 - 5.5) 1.5 (1.4 - 1.8) 1.5 (1.2 - 1.7) 1.5 (1.4 - 2.1) 1.6 (0.8 - 1.7)tr XQUAD ∞ ∞ 1.3 (0.9 - 1.4) 3.0 (2.9 - 3.5) ∞ 2.7 (2.5 - 3.3)

Table A4: Estimated V100 days to near-maximal performance (see §4.2) for MINIJOINT with secondary head
attached at varying layers. ↓ better. ∞: never hit target performance. (lower - upper) bounds on the estimate.

A.4 Upper/Lower estimates on Time to
Near-Maximal Performance

In §4.2, we use linear interpolation to estimate GPU
days to near-maximal performance if target perfor-
mance occurred between checkpoints. In Table A4,
we show the upper and lower estimates. Models
are checkpointed every 5000 updates, so a lower
estimate of 0.0 implies that the target score was
achieved before first checkpoint. Because MINI-
JOINT with the secondary head attached at layer 4
was part of the main experiments, it was also check-
pointed on steps 1000, 2000, 3000, and 4000. As
such, estimates lower than 0.3 from this model im-
ply that the target score was achieved hit before
step 5000 (the first checkpoint for other models).

A.5 Variance across Pretraining Runs
While we average results over 5 finetuning runs, we
always use the same pretrained model. Early in de-
velopment, we noticed that there could be a differ-
ence between different pretraining runs. While it
was not feasible to repeat all experiments with dif-
ferent pretraining seeds due to computational cost,
we performed 3 additional runs of BL_BASE for
Arabic. We see a difference up to 3 points across
runs in Table A5. This is task dependent, as the
best run on XNLI is the worst on MLQA.

XNLI MLQA

Run #1 67.7 51.4
Run #2 69.3 51.1
Run #3 68.7 52.7

Main run 69.6 49.6

Table A5: Arabic development performance for
BL_BASE with different pretraining seeds. Results
averaged over 5 finetuning runs.
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