
Findings of the Association for Computational Linguistics: ACL 2023, pages 5682–5700
July 9-14, 2023 ©2023 Association for Computational Linguistics

The Whole Truth and Nothing But the Truth:
Faithful and Controllable Dialogue Response Generation
with Dataflow Transduction and Constrained Decoding

Hao Fang∗ Anusha Balakrishnan∗ Harsh Jhamtani∗
John Bufe Jean Crawford Jayant Krishnamurthy

Adam Pauls Jason Eisner Jacob Andreas Dan Klein
Microsoft Semantic Machines <sminfo@microsoft.com>

Abstract

In a real-world dialogue system, generated text
must be truthful and informative while remain-
ing fluent and adhering to a prescribed style.
Satisfying these constraints simultaneously is
difficult for the two predominant paradigms in
language generation: neural language model-
ing and rule-based generation. We describe a
hybrid architecture for dialogue response gen-
eration that combines the strengths of both
paradigms. The first component of this archi-
tecture is a rule-based content selection model
defined using a new formal framework called
dataflow transduction, which uses declara-
tive rules to transduce a dialogue agent’s ac-
tions and their results (represented as dataflow
graphs) into context-free grammars represent-
ing the space of contextually acceptable re-
sponses. The second component is a con-
strained decoding procedure that uses these
grammars to constrain the output of a neu-
ral language model, which selects fluent utter-
ances. Our experiments show that this system
outperforms both rule-based and learned ap-
proaches in human evaluations of fluency, rel-
evance, and truthfulness.

1 Introduction

In a task-oriented dialogue system, response gen-
eration is naturally posed as a conditional lan-
guage modeling problem: dialogue agents must
produce a contextually appropriate natural lan-
guage string conditioned on the history of the user
and agent interaction. But unlike many language
generation problems, a good dialogue response
generation model is not (just) a model of typical
human utterances in context. Instead, effective di-
alogue agents must balance fluent generation with
a set of much stricter constraints.

Consider the dialogue shown in Fig. 1. In turn
(1) of this dialogue, the user makes a request,
which the dialogue agent correctly translates into

∗Equal contribution.

User: How many events are on my calendar today?

size(findEventsOnDate(today()))

findEventsOnDate size

List([Event(…), …])

Agent: You have three events. ✘

(1)

5

User: Can you schedule a meeting with Sarah  
          Smith?
createEvent(
  attendee=queryPerson(name=“Tara Smith”))

Agent: OK, I’ve booked it. ✘
(2)

(b)

(c)Agent: OK, I’ve booked a meeting with Tara  
            Smith at 2pm today. ✔

(a)

Date(2022, 1, 3)

today

Agent: You have five events. ✔

Figure 1: Interaction between a user and a dialogue
agent. Once the user’s request is translated into an
agent action—expressible as a program or dataflow
graph (a)—the agent must generate a response. Agent
responses might simply state the result of the agent’s
action, but must do so truthfully (b). Often responses
should describe both the action and the result, e.g., to
help users identify when the agent has misunderstood
their request (c). These responses should be straight-
forward for system designers to inspect and modify.

a computation—here represented as a dataflow
graph (Fig. 1a) in the style of Semantic Machines
et al. (2020). The agent now needs to accurately
describe this computation’s return value (namely,
5). The wrong answer in Fig. 1b shows it instead
describing a different value that happens to appear
elsewhere in the dataflow graph. Turn (2) illus-
trates a more subtle risk: due to a speech recog-
nition error, the agent has mistakenly created a
meeting with Tara Smith rather than Sarah Smith.
The wrong answer in Fig. 1c shows it describing
this result too briefly, which might lead the user to
assume that their request was completed success-
fully. To avoid confusion, a system designer might
wish to ensure that the agent instead echoes back
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to the user the details of the agent’s action.
This example highlights challenges in building

real-world dialogue response generation systems.
First, response generation is not simply a prob-

lem of describing the result of a computation in
natural language. In some cases, response gener-
ators may also usefully describe the provenance
of that result—the computation itself and its in-
termediate values. In many human-to-human con-
versations, a response as detailed as Fig. 1c would
be over-informative, violating Grice’s maxim of
quantity (1975). But for a speaker that is prone
to mistakes, such as an AI agent, describing its
own understanding can increase user trust when
the understanding is accurate and provides an op-
portunity for correction when it is not.

Second, dialogue response generation systems
must guarantee truthfulness: since the user of-
ten has no way to check the responses, even occa-
sional errors could have disastrous consequences
and would greatly undermine trust. Yet truthful ut-
terances might be low-probability under a domain-
general language model (LM), particularly when
they reflect errors in language understanding (as
in Fig. 1c).

Finally, response generation systems must sup-
port declarative specification of agent behavior.
When confusing or infelicitous responses are dis-
covered, it should be possible to easily and pre-
cisely modify them without changing the dialogue
agent’s behavior in other contexts.

In recent years, the main focus of academic di-
alogue research has been on “end-to-end” learned
models for response generation, especially neural
sequence models (Vinyals and Le, 2015; Zhang
et al., 2020b). But while such models excel at pro-
ducing fluent and coherent output, research con-
tinues to find that they struggle in maintaining
faithfulness (Wiseman et al., 2017; Maynez et al.,
2020; Raunak et al., 2021; Liu et al., 2023; Zhang
et al., 2023). Perhaps more fundamentally, be-
cause the behavior of such systems is encoded im-
plicitly in their training data, designing a dialogue
system requires system builders to write and edit
a large number of training examples whose final
effect may be difficult to predict.

As a result, many dialogue systems in the real
world remain rule-based: system builders hand-
write rules (e.g., in the form of a synchronous
grammar) for transforming dialogue states into
text, and these rules are applied directly during de-

ployment. But such rule-based systems are also
notoriously difficult to build and maintain (Walker
et al., 2002; Reiter, 2022). They require designers
to anticipate every low-level question about sur-
face realization, and to encode these in the same
grammar that is responsible for enforcing high-
level properties like truthfulness.

Given the many strengths of modern LMs, is
there a way to leverage them while satisfying the
numerous other demands on dialogue response
generation systems? In this paper, we describe a
hybrid approach that combines the advantages of
end-to-end and rule-based approaches. This ap-
proach has two components:

• A dataflow transduction procedure (§3)
that maps any computation by the agent
(represented as a dataflow graph) to a small
context-free grammar (CFG) that defines the
space of natural language descriptions or
responses allowed for the given computation.
The mapping is defined by declarative rules.
This formal framework makes it possible
to write rules to precisely and truthfully
describe both data and its provenance,
while performing supplementary computa-
tion where needed to produce informative
responses.

• A constrained decoding procedure (§4) that
uses beam search to identify strings that are
both grammatical under the CFG and prob-
able under a given language model (LM). In
effect, this intersects the CFG with the LM.

This makes it possible to decompose language
generation into a content selection model (imple-
mented by the dataflow transducer) and a separate
fluency model (implemented by the LM). Hybrid
generation systems of this kind have a long his-
tory in NLP, dating back to Knight and Hatzivas-
siloglou (1995) and Langkilde and Knight (1998).
They mapped an abstract meaning representation
(AMR) to an acyclic finite-state automaton (FSA)
and scored its paths with an n-gram LM.We re-
place AMR with dataflow, replace their mapping
rules with dataflow transduction rules, upgrade
their FSA to a CFG, and upgrade their n-gram LM
to a neural LM. In this way, we respectively sup-
port computation graphs, arbitrary tests and trans-
ductions, nested syntactically typed generation
templates (already present in Knight and Hatzivas-
siloglou, 1995), and modern language models.
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Together, dataflow transduction and constrained
decoding allow a compact generation system to
faithfully and fluently describe a complex and
open-ended space of actions. We built such a
hybrid system for calendar event queries in the
SMCalFlow domain (Semantic Machines et al.,
2020). When evaluated on a subset of an-
notated dialogues, it was consistently rated as
more truthful, relevant, and fluent than either a
rule-based or end-to-end neural system (§5.2).
Results were similar on MultiWOZ dialogues
(Budzianowski et al., 2018; Eric et al., 2020)
(§5.4). Code, data, and trained models used in
our experiments are released at https://github.
com/microsoft/dataflow2text.

2 Problem Formulation

We study the problem of response generation for
task-oriented dialogue. A dialogue, like the one
in Fig. 1, consists of a sequence of turns k, each
consisting of a user utterance xk, one or more ac-
tions ak, and an agent response yk. The job of a
dialogue agent is to predict an appropriate action
and response from a dialogue history, i.e., , to map
from (x1, a1, y1, x2, a2, y2, . . . , xn) 7→ (an, yn).

How is this done? Typically, a language un-
derstanding module maps the user utterance xk
(in context) to a formal meaning representation.
The agent reasons about this meaning representa-
tion to determine its own actions ak. Finally, a re-
sponse generation module maps these actions or
their results (in context) to the agent utterance yk.

The focus of this paper is the response gener-
ator. We assume that the formal meaning repre-
sentation takes the form of an executable program,
as is common in the semantic parsing literature—
and that the actions are produced by evaluating
this program, possibly with side effects. As de-
scribed by Semantic Machines et al. (2020), the
program may be viewed as a dataflow graph
in which each node is labeled with a function,
constructor, or primitive value, as well as a re-
turn value once the node is executed. We aim
to implement a response generator that, when ap-
plied to an evaluated dataflow graph, satisfies the
three properties outlined in §1: description of data
and its provenance, guaranteed truthfulness, and
declarative specification. In practice, for guidance
when developing our generator, we refer to a de-
velopment set of dialogues annotated with gold-
standard dataflow graphs and agent responses.

3 Dataflow Transduction

Given a dataflow graph G (e.g., Fig. 1a) rooted at a
node vroot (the return value of the program repre-
sented by the dataflow graph), our task is to gener-
ate a string that describes vroot and its provenance.
To achieve this, we propose a new formal frame-
work for generation based on dataflow transduc-
tion. At a high level, the formalism uses declara-
tive rules that describe how to transform a dataflow
graph into a small graph-specific grammar (specif-
ically a quasi-synchronous context-free gram-
mar, or QCFG) that defines the space of allowed
responses. These rules walk along the graph, in-
troduce new computations (dataflow subgraphs) as
needed, and add rules to the grammar.

Formally, a dataflow transducer S is defined by
a 4-tuple (T ,Σ,R, tstart) where T is a set of non-
terminal types,1 Σ is the set of terminals (word
types), R is a set of dataflow transduction rules
(see §3.1), and tstart ∈ T is the start nonterminal.
When applied to G, the dataflow transducer pro-
duces a QCFG. As a side effect, it may extend the
graph with new computations. We use Ḡ to denote
the extended graph.

A QCFG (Smith and Eisner, 2006) is a spe-
cialized CFG whose nonterminals include align-
ments to the nodes V (Ḡ) of Ḡ. Where an ordi-
nary CFG might specify ways to generate an NP
(noun phrase) or a DATE, a QCFG would spec-
ify ways to generate an NP or DATE that describes
the result and provenance of v, for each appro-
priately typed node v ∈ V (Ḡ). A QCFG re-
sulting from dataflow transduction is a 4-tuple
(T ×V (Ḡ),Σ,P, (tstart, vroot)) where T ×V (Ḡ)
is the QCFG’s set of nonterminals and P is its
set of productions. A QCFG production has the
form α → β1β2 · · ·βN where the left-hand-side
α = (t, v) ∈ T × V (Ḡ) is a QCFG nonterminal,
and each βi can be either a nonterminal (ti, vi) or a
terminal in Σ. The vi of a right-hand-side nonter-
minal βi may have appeared in the original G, or
may have been added to Ḡ by the dataflow trans-
ducer. These production rules then derive a set of
strings just as in any CFG.

3.1 Dataflow Transduction Rules

A dataflow transduction rule is applied to a node
v ∈ V (Ḡ) (if v has appropriate properties) to cre-

1In practice, nonterminal types might correspond to di-
alogue acts, syntactic categories, semantic categories, etc.
This is up to the system designer.
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Response Template:

Head: S

 match computation: 
   case findEventsOnDate(date): 
     num = size(computation) 
     event = head(computation) 
     return {"num": num, "event": event, "date": date}

I found {LEX <num>} event {PP <date>}. It’s {EVENT <event>}.

Body:

Figure 2: A dataflow transduction rule with head S, a
body (expressed in Python), and a response template
(which queries the dictionary returned by the body).

ate a single QCFG production (t, v) → · · · that
could be used to describe v. An example rule is
shown in Fig. 2. A rule has three components:
(1) a head, namely the nonterminal type t ∈ T ;
(2) a body, which is a piece of code that deter-
mines whether the rule can apply to v, and which
may look up or create nodes that are related to v;
and (3) a response template, which specifies the
right-hand side of the QCFG production in terms
of the related nodes that identified in the body.

Rule Head. This nonterminal type character-
izes the type of node that the transduction rule is
able to describe and the type of description that it
will produce.1 When a rule with head t is success-
fully applied to the node v, the resulting QCFG
production has left-hand-side (t, v).

Rule Body. The rule body tests whether the
rule can be applied by examining the dataflow
graph Ḡv rooted at v. It also binds vari-
ables to other nodes of Ḡ that are to be de-
scribed recursively.2 For example, the rule
body in Fig. 2 checks whether Ḡv has the form
findEventsOnDate(date). If so, it binds the
variable date accordingly, and introduces new
nodes into Ḡ, bound to the variables num and
event, which compute the number of events and
the first event. All three of these variables will be
referenced in the response template.

Response Template. The response template
says how to create the right-hand side of the
QCFG rule—a sequence β1 · · ·βN of terminals
and nonterminals. Each QCFG nonterminal βi =
(ti, vi) specifies a related node vi ∈ V (Ḡ) to de-
scribe, along with a dataflow nonterminal ti that
says how to describe it. The possible descriptions
of vi will thus emerge from applying transducer
rules with head ti to node vi. In our template syn-

2These nodes may already exist in Ḡv , or may represent
new computations that take existing nodes of Ḡv as input.

tax, the notation {EVENT <event>} would con-
struct the QCFG nonterminal (EVENT, v), if the
rule body has bound the variable event to the node
v. This syntax is illustrated in Fig. 2, whose re-
sponse template constructs a right-hand side that
intersperses terminal symbols with three QCFG
nonterminals, which pair types LEX, PP, and EVENT
with nodes that were identified by the rule body.

Our actual template format is more flexible than
shown here. It allows choices within the template
in order to specify variant phrasings.3 This ad-
vanced feature is described in Appendix A. Details
and examples of dataflow transduction rules used
in our experiments are provided in Appendix B.

3.2 Dataflow Transduction Procedure

Given a dataflow transducer S and a dataflow
graph G rooted at node vroot, we can transduce
the graph into a QCFG as follows. The system
starts out by creating QCFG productions that can
expand the start nonterminal (tstart, vroot). For
each transduction rule in R whose head is tstart,
it executes the body, which checks any additional
conditions for whether the rule can be applied to
vroot, binds variables, and uses the response tem-
plate to create a QCFG production. If these pro-
ductions mention new nonterminals, the system
recursively creates further QCFG productions, in
the same way, that can expand those nonterminals.
As a special case, to expand a nonterminal of the
form (LEX, v), the system creates a QCFG produc-
tion whose right-hand side gives the value of v, as
rendered into natural language using a lexicaliza-
tion function rather than a template; e.g., a value
Integer(42) would be rendered as “42”.

The recursive process continues until produc-
tions have been created for every nonterminal that
appears in the QCFG. The resulting QCFG com-
pactly represents a combinatorial space of possible
responses. It will generally include multiple pro-
ductions aligned to the same node v, created by
different dataflow transduction rules.

This mechanism can be used to copy simple val-
ues like strings and numbers from the dataflow
graph, as well as to create more complex recur-
sive descriptions. Note that (1) transduction rules
are selected via their head but also condition on
the dataflow graph through their body, and (2) all
QCFG nonterminals are grounded in the dataflow

3This is equivalent to specifying multiple rules with the
same head and body, but more concise.
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tomorrow findEventsOnDate nonEmpty

head getSubjectsize

v0v2 v1

v5v3

EXPANDED DATAFLOW GRAPH G

(S,  v0)  (UH, v0) , (S, v1) 
(UH, v0)  Yes
(S,  v1)  I found (LEX, v3) event (PP, v2) . It’s  
                        (EVENT, v4) .
...

→
→
→

QCFG PRODUCTIONS

DATAFLOW 
TRANSDUCTION

OUTPUTS WITH CONSTRAINED DECODING

Yes, I found one event on Sept 14, 2022. It’s 
“Show and Tell”.

Yes, I found one event on Thursday. It's "Show 
and Tell" from 11:00 am to 11:30 am.

LANGUAGE 
MODEL

1 “Show and Tell”

DATAFLOW GRAPH G

tomorrow findEventsOnDate nonEmpty

v0v2 v1

DATAFLOW TRANSDUCER

Body:
S

S

. . .

UH

Template:

Head:
...
{UH <answer>}, {S <query>}

CONSTRAINED 
DECODING

Do I have any 
meetings tomorrow ?

UTTERANCE

Body:
Template:

Head:
...
Yes

Body:

Template:

Head:
match computation: 
  case findEventsOnDate(date):   
    num = size(computation) 
    event = head(computation) 
    return {...}
I found {LEX <num>} event {PP <date>}.  
It’s {EVENT <event>}.

Event(…) v4

Figure 3: The hybrid response generation approach using dataflow transduction and constrained decoding. Given
a computation nonEmpty(findEventsOnDate(tomorrow())) for the user utterance “Do I have any meetings
tomorrow”, we first derive QCFG productions by applying the dataflow transducer to the dataflow graph G using
the procedure described in §3.2. This procedure also expands the dataflow graph into Ḡ: for example, the nodes
v3 and v4 were added by the third transducer rule. Then we extract candidate responses from a LM, constrained
by the QCFG. The varying descriptions of the date v2 and the event v4 are permitted because the QCFG offers a
choice of productions that can be used to expand the (PP, v2) and (EVENT, v4) nonterminals. (Those productions
and the transducer rules that created them are not shown in the figure. The nodes added by those transducer rules
and used by those productions are also not shown, except for v5.)

graph. Together, this provides a means to ensure
truthfulness when generating responses.

Note there may be multiple transduction rules
for each QCFG nonterminal βi and the QCFG
may admit combinatorially many derivation trees.
Each of these derivation trees derives a truthful re-
sponse. However, since different trees use differ-
ent rules, the responses may vary in their informa-
tion content, presentation order, linguistic style,
and choice of terminals. The amount of varia-
tion can be controlled by the author of the dataflow
transducer. In this paper, we use a neural LM with
constrained decoding to select a fluent and appro-
priate response from all these truthful responses,
as described in the next section (§4).

4 Constrained Decoding

In this section, we describe how to integrate the
formal framework above with a general LM to per-
form response generation, as illustrated in Fig. 3.
Given a derived QCFG of the kind described in
§3.2, we will perform constrained decoding as in
(Shin et al., 2021; Roy et al., 2022), generating re-

sponse candidates from a pretrained LM.
The QCFG resulting from dataflow transduction

implicitly represents a set of possible derivation
trees and the agent responses they yield. As long
as transduction rules faithfully describe the nodes
they apply to, every derivation in this set will cor-
respond to a truthful agent utterance. But these
utterances may not always be grammatical or nat-
ural. For example, the response template in Fig. 2
may be realized as “I found 2 event on Monday”
since the rule body does not check whether the
value of num is 1. Similarly, the response template{

EVENT ⟨event⟩
}

starts on
{
DATE ⟨date⟩

}
.

may be realized as The product meeting on Mon-
day starts on Monday, if the grammar permits
identifying events by their dates. With carefully
engineered and highly specialized rules (e.g., us-
ing extremely fine-grained nonterminal types), it
would be possible to ensure that the responses are
always fluent and even that there is always a single
possible outcome from the top-down search proce-
dure. However, this would usually require much a
more complicated set of rules, which creates a bur-
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den for system development and maintenance.
Our proposed approach instead uses a large-

scale pretrained LM (preferably fine-tuned) to se-
lect among truthful utterances produced by the
QCFG.4 One option is to use the LM to re-rank
all strings that can be produced by the QCFG,
but that would be very computationally expensive
even when that set is finite. Instead, we follow
Shin et al. (2021) and Roy et al. (2022), who de-
code sentences from a given LM under the con-
straint that they must be valid under a given CFG.
In contrast to these prior papers, which used a
static CFG, we derive a new CFG each time the
dialogue agent needs to generate a response, by
applying the dataflow transducer to the current
dataflow graph.

The constrained decoding process is a special
case of beam search. For each ℓ = 0, 1, . . ., it
maintains up to K prefixes of the same length
ℓ and tries to extend each in all legal ways to
length ℓ + 1, pruning back to the K most prob-
able extensions. For each prefix y1y2 . . . yℓ and
each terminal symbol yℓ+1 ∈ T , the extension
y1y2 . . . yℓ+1 is only legal if it is a prefix of some
legal complete response—i.e., some string that is
grammatical under the QCFG. This check can be
efficiently performed via an incremental context-
free parsing algorithm (Earley, 1970) using the
parsing state of the prefix y1y2 . . . yℓ. In other
words, constrained decoding only considers a pre-
fix if it could be extended into at least one legal
complete response. Note that the combinatorially
many legal responses are never enumerated indi-
vidually. Rather, the set is compactly represented
by the set of QCFG productions.

5 Experiments

To evaluate the proposed approach, we conducted
a set of detailed experiments (§5.1–§5.3) on a sub-
set of the SMCalFlow dataset (Semantic Machines
et al., 2020), and a brief study (§5.4) applying our
approach to the MultiWOZ dataset (Budzianowski
et al., 2018).

5.1 Data and Evaluation Metrics

SMCalFlow is a large-scale task-oriented dialogue
dataset, in which each user utterance is annotated

4Of course, decisions deferred to the LM could be en-
coded in the grammar instead. While this is rarely necessary
to ensure grammaticality or fluency, system designers might
choose to encode some pragmatic decisions, like how much
detail to provide, in the grammar rather than in the LM.

with a correct dataflow program (i.e., computa-
tion) and a “gold” response that would be desir-
able for the agent to produce.5 We use the v2.0
release processed by Platanios et al. (2021). We
focus on a subset of SMCalFlow involving cal-
endar event queries. This subset contains 8938
training examples and 1041 validation examples.
We found that 187 transduction rules, written by
some of us in a matter of hours, were sufficient
to cover all gold system responses in these exam-
ples.6 We package the annotated examples, trans-
duction rules, and necessary meta information for
executing the dataflow programs as a new dataset,
SMCalFlow2Text.

Automatic Metrics. For automatic evaluation,
we use several reference-based metrics: BLEU-
4 (Papineni et al., 2002) and ROUGE-L (Lin,
2004) are computed using GEM-metrics,7 and
BERTScore-F1 is computed using HuggingFace
Evaluate.8 Following the recommendation of
Zhang et al. (2020a), we use the re-scaled version
of BERTScore, which is easier to interpret. We ad-
ditionally consider exact match scores, i.e., R@K,
which measure whether one of the top K response
candidates exactly matches the reference. Both
R@1 and R@5 scores are reported. We lowercase
all the strings and remove any extra spaces in the
predictions and references before computing the
evaluation metrics.

Human Evaluation. It is well-known that pop-
ular automatic evaluation metrics may not always
reflect the true quality of the generated responses
(Celikyilmaz et al., 2021). Thus, we further carry
out human evaluation on 297 examples randomly
sampled from the validation data. Specifically,
for each generated response, we collect human
judgments on three questions: grammaticality
(“has the virtual assistant made any grammar er-
rors?”), relevance (“has the virtual assistant mis-
understood the user’s request?”), and truthful-
ness (“has the virtual assistant provided any in-
correct information as judged using the database
and timestamp?”). Three judgments are collected

5The “gold” responses were generated from an earlier sys-
tem, but were manually validated by human experts. Like
ours, the earlier system also contained rules and constraints.

6Some of our rule bodies chose to expand the dataflow
graph by calling functions, so we also had to implement those
functions. In an end-to-end dialogue system, most of those
functions would already have been implemented to support
agent actions, not just natural language responses.

7https://github.com/GEM-benchmark/GEM-metrics
8https://github.com/huggingface/evaluate
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System Automatic Metrics Human Evaluation (%)

BLEU ROUGE BERTSc. R@1 R@5 Grammatical Relevant Truthful

QCFG Random Sampling .35 .58 .50 .02 .06 62.3 90.9 92.3
Unconstrained Decoding .77 .87 .87 .47 .66 98.7 93.3 82.2
QCFG-Constrained Decoding .80 .86 .85 .56 .78 99.0 96.6 91.6

Gold 1.0 1.0 1.0 1.0 1.0 99.0 98.0 92.3

Table 1: Evaluation results on SMCalFlow2Text. Automatic metrics are calculated against the gold responses on
the full validation set. Human evaluation is conducted on 297 randomly sampled validation examples. We boldface
the best result in each Human Evaluation column, along with results that are not significantly worse (p < 10−4,
McNemar’s test).

for each question, and we report the percentage
of examples where “no” is the majority-voted an-
swer. Higher percentages are better. Crowdwork-
ers are recruited from Amazon Mechanical Turk
with qualification requirements such as having a
work approval rate higher than 80% and having
performed a minimum of 100 annotations. They
are paid at the rate of $0.15 per judgment. For re-
sponses generated by the constrained decoding ap-
proach, annotators generally agree with each other
on the three questions, i.e., the percentage of ex-
amples where all three workers choose the same
answer are around 90%, 78% and 76%, respec-
tively. More details are provided in Appendix C.

5.2 Main Results
Table 1 shows our main evaluation results on SM-
CalFlow2Text. The first baseline we considered
is to randomly sample responses from the gener-
ated QCFG. The other baseline is unconstrained
LM decoding without using dataflow transduction.
Model outputs are compared to “gold” agent ut-
terances. For both unconstrained and constrained
decoding, the text used to prompt the LM is a
string representation of the computation graph (in
the format released in SMCalFlow v2.0), followed
by its execution result rendered as a JSON string.
In both cases, we decode using beam search with
beam size K = 5. The LM is initialized from
CodeT5-base (Wang et al., 2021) and fine-tuned
on all training examples. See Appendix D for
more details.

As expected, the QCFG random sampling base-
line struggles on all the automatic metrics, since
dataflow transduction rules are written with an em-
phasis on truthfulness rather than fluency. This is
reflected in the grammaticality score from the hu-
man evaluation as well. However, the truthfulness
score matches that of the gold responses (92.3%):
this baseline rarely generates incorrect responses.

Its responses are sometimes generic and omit in-
formation that would be relevant to the user—its
relevance score is the lowest among all compared
approaches—although this behavior contributes to
the high truthfulness score.

In contrast, unconstrained decoding LM with-
out dataflow transduction achieves impressive
scores on automatic evaluation. Human evalua-
tion also suggests that the generated responses are
grammatically correct and relevant to the user’s re-
quest in most cases. However, unconstrained de-
coding scores low on truthfulness, making false
statements in about one-fifth of the generated re-
sponses. This high rate of factual errors from neu-
ral LMs is consistent with findings in prior work
(Wiseman et al., 2017; Maynez et al., 2020; Rau-
nak et al., 2021; Liu et al., 2023; Zhang et al.,
2023). It is usually unacceptable in real-world ap-
plications.

Compared with unconstrained decoding, our
proposed QCFG-constrained decoding achieves
significantly better scores on exact match, truthful-
ness, and even relevance, while maintaining sim-
ilar scores on BLEU, ROUGE, BERTScore and
grammaticality. In particular, human evaluation
results indicate that the quality of generated re-
sponses is very close to that of the gold responses.
Table 2 shows some example predictions. We
share some qualitative analysis in Appendix E.

Since even the gold responses did not achieve
100% on human evaluation scores, we manually
inspected those problematic examples. There are
4 examples for which the majority-voted answer to
the ungrammaticality question is “yes but under-
standable,” and others are all rated as not contain-
ing any grammar errors. For the relevance ques-
tion, 4 examples are due to arguably bad data and
2 examples receive tied votes. For the truthfulness
question, 9 examples are due to arguably bad data,
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User Utterance Gold QCFG-Constrained
Decoding

Unconstrained Decoding

A. Do I have any events
scheduled on Sunday the
3rd?

No, I didn’t find any
event on March 3rd.

No, I didn’t find any
event on March 3rd.

No, I didn’t find any event
on May 3rd.

B. Does Pikachu fly in to-
morrow?

Yes, I found one event
matching “flying in”
with Pikachu tomorrow.
It’s “fly in” from 4:00
to 4:30 PM.

Yes, I found one event
matching “flying in”
with Pikachu tomorrow.
It’s from 4:00 to 4:30
PM.

Yes, I found one event
matching “flying in” with
Pikachu tomorrow. It’s “Fly
in” from 5:00 to 5:30 PM.

C. Can you find me any
events during last March?

Yes, I found one event
last March. It was
“Dancing in Athenny”
on March 17, 2019 from
4:00 to 4:30 PM.

Looks like it. Yes, I found one event last
March. It was “Erin Go
Bragh” on March 17, 2019
from 5:00 to 5:30 PM.

Table 2: Example predictions from QCFG-constrained decoding and with unconstrained decoding. In all the
examples shown, outputs from unconstrained decoding are untruthful to the database due to content hallucination
even though the model has access to the correct execution results as part of the prompt. We observe that in a few
cases, the constrained model prefers truthful but pragmatically unhelpful omissions like such as “Looks like it” (in
Example C) compared to a more specific response.

BLEU ROUGE BERTSc. R@1 R@5

1. LM without fine-tuning

✗ .00 .03 −.47 .00 .00
✓ .04 .28 .05 .02 .02

2. LM fine-tuned on 3% training data

✗ .68 .81 .80 .26 .40
✓ .73 .83 .80 .39 .62

3. LM fine-tuned on full training data

✗ .77 .87 .87 .47 .66
✓ .80 .86 .85 .56 .78

4. LM prompted without execution results

✗ .58 .70 .72 .27 .42
✓ .78 .85 .84 .54 .77

5. LM prompted with user utterance

✗ .77 .87 .87 .48 .65
✓ .79 .86 .84 .57 .78

Table 3: SMCalFlow ablation results, varying the
amount of fine-tuning data (groups 1–3) and the con-
text used in the prompt (groups 4–5). ✗ and ✓ on the
first column use unconstrained and QCFG-constrained
decoding, respectively.

8 examples are due to to crowd worker mistakes,
and 6 examples receive tied votes.

5.3 Ablation Study

We next analyze how the amount of fine-tuning
data and the context used in the prompt impact the
quality of generated responses. Results are sum-
marized in Table 3.
Impact of fine-tuning: Without fine-tuning the

LM, neither unconstrained nor constrained decod-
ing works well. This is likely due to the mis-
match between the pre-training tasks and the re-
sponse generation task. However, after fine-tuning
on only a random 3% of the training data, both ap-
proaches achieve significantly better scores, with
larger gains on QCFG-constrained decoding. This
suggests that QCFG-constrained decoding is much
more data-efficient in the low-data regime (268
examples). Indeed, QCFG-constrained decoding
using 3% of the training data is on par with un-
constrained decoding using 100% of the training
data, indicating that several expert hours spent
on creating dataflow transduction rules hold al-
most equivalent value to a large volume of train-
ing data. While gaps between unconstrained and
QCFG-constrained decoding on automated met-
rics are small in the full-data setting (Table 1), un-
constrained decoding still performs poorly on the
truthfulness evaluation. Thus, truthfulness failures
from unconstrained decoding are not straightfor-
wardly solved by scaling up training data; QCFG-
constrained decoding offers an easier path to faith-
ful response generation.

Impact of context: Results in groups 3–5 in Ta-
ble 3 all use 100% of the training examples to
fine-tune the LM. The difference is in the context
used in the LM prompt (during both training and
inference). For group 3, the text used to prompt
the LM is the computation concatenated with the
execution result, which is the same setup used in
§5.2. For group 4, we omit the execution results
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from the LM prompt (but not from the decoder
constraints), whereas for group 5, we add the user
utterance (prefixed to the computation). Compar-
ing group 3 and group 4, omitting execution re-
sults significantly harms the performance of un-
constrained decoding. In contrast, dataflow trans-
duction rules can execute the computation inter-
nally, and do not require the LM to condition on
it. Comparing group 3 and group 5, adding the
user utterance to the LM prompt does not benefit
both approaches much.

5.4 Experiments with MultiWOZ Dataset

To demonstrate the general applicability of our
approach for response generation, we carry out
a brief study on the widely used MultiWOZ 2.1
dataset (Budzianowski et al., 2018; Eric et al.,
2020). We automatically convert the agent action
annotations to dataflow computations and write
14 transduction rules. For generating responses,
we use the predicted agent actions from the MT-
TOD system (Lee, 2021). Similar to our experi-
ments on SMCalFlow, we fine-tune CodeT5-base
on all training examples, using the ground-truth
belief state and predicted action as the text used to
prompt the LM. For evaluation, we randomly sam-
ple 100 examples from the test split, and two au-
thors manually rate the generated responses from
our QCFG-constrained decoding system and the
MTTOD system. The inter-annotator agreement is
100%. Almost all generated responses are gram-
matically correct and relevant to the user utter-
ance. To rate truthfulness, we use the predicted
actions as the references. Our QCFG-constrained
decoding approach produces truthful responses for
all 100 examples, whereas only 89 responses from
the MTTOD system are truthful with respect to the
predicted actions. Among the 11 remaining exam-
ples, 7 of them are due to imperfect delexicaliza-
tion and 4 are due to hallucination.

6 Related Work

One line of response generation research focuses
on generating fluent and coherent responses di-
rectly from user utterances without any interme-
diate structured representation. This paradigm is
mostly used for chatbots, as in early rule-based
systems (Weizenbaum, 1966; Wallace, 2009), neu-
ral conversation models (Vinyals and Le, 2015;
Shang et al., 2015; Sordoni et al., 2015; Li et al.,
2016; Serban et al., 2016), and recent large-

scale pretrained LMs like DialoGPT (Zhang et al.,
2020b) and GPT-3 (Brown et al., 2020).

Another line focuses on generating text from
structured data, with applications beyond dia-
logue response generation. For example, the
WebNLG challenge (Gardent et al., 2017) gen-
erates natural language descriptions from relation
tuples, and Lebret et al. (2016) generate a biog-
raphy from a structured “infobox” record. Many
recent dialogue response generation tasks adopt
dialogue-act-based meaning representations, in-
cluding the MultiWOZ dataset (Budzianowski
et al., 2018), the Schema-Guided dialogue dataset
(Rastogi et al., 2020), and the E2E NLG challenge
(Dusek et al., 2020). In contrast, our response gen-
eration task uses computations as the input, which
do not directly encode the dialogue acts of the re-
sponses. This is a more challenging task, as the
system needs to perform extra reasoning to obtain
the derived information. In this sense, our task is
similar to the one in CoSQL (Yu et al., 2019) and
Logic2Text (Chen et al., 2020).

Constrained decoding techniques for neural
LMs have been developed for text generation with
different types of constraints (Balakrishnan et al.,
2019; Dathathri et al., 2020; Lu et al., 2021, 2022).
As §4 noted, we follow Shin et al. (2021) but
choose our grammar constraints dynamically for
each response.

7 Conclusion

We have described a hybrid approach for build-
ing dialogue response generation systems. Our ap-
proach introduces a new formalism for transduc-
ing a dataflow graph into a QCFG, which is then
used in a constrained decoder that intersects the
QCFG with a neural LM. This formal framework
makes it possible to write rules to precisely and
truthfully describe data and its provenance while
deferring surface realization decisions to a flexible
language model.

This new approach outperforms unconstrained
conditional language modeling in both automatic
and human evaluations, especially on truthfulness.
Moreover, using 3% of the training data, the con-
strained decoding approach is on par with the un-
constrained decoding approach when it uses 100%
of the training data, indicating that several expert
hours spent on authoring rules hold almost equiv-
alent value to a large volume of training data.
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8 Limitations and Future Directions

Authoring transduction rules is relatively easy but
may still be labor-intensive for complex domains.
Future work might explore (semi-)automatically
deriving transduction rules from data, learning to
synthesize them from domain specifications, or
curating a collection of domain-general transduc-
tion rules that can be imported into new domains.

Our experiments in this paper generated text
only in English. It would be interesting to ap-
ply the framework to datasets in other languages,
e.g., GlobalWoZ (Ding et al., 2022). While our
framework is intended to be agnostic to the out-
put language, our notation for response templates
might need to be slightly extended (along the lines
of Appendix A) to be more convenient to use with
morphologically complex languages or free-word-
order languages. In these settings, presumably, the
QCFG should systematically generate many in-
flections or orderings for the LM to choose among.

To support multilingual dialogue systems, fu-
ture work could consider automatically trans-
lating the response templates into additional
languages—perhaps by working backwards from
automatic translations of natural language re-
sponses that use those templates.

Relatedly, we have only tested the proposed ap-
proach on dataflow graphs. Future work could
apply the method to generate textual descrip-
tions of other graph-structured inputs, such as
graph databases or abstract meaning representa-
tion (AMR) graphs.

While QCFG productions were unweighted in
this paper, giving them weights would allow the
QCFG to express its own preferences about which
productions to use for a given input. For example,
in a product-of-experts architecture, the probabil-
ity of a given response y, would be proportional
to the LM probability of y times the weights of
all productions used in the QCFG derivation of y
(summed over all such derivations). Beam search
(§4) could then be carried out using prefix weights
(Opedal et al., 2023). The weights could be trained
using gold responses.

Weighting the QCFG raises the possibility that
the dataflow transduction rules could encode prag-
matic context-dependent policies. For example,
a dataflow transduction rule could call a neural
network to assess the suitability of applying the
rule to a given node in the dataflow graph, and
then weight the resulting QCFG production ac-

cordingly.

Ethics Statement

Our proposed approach strongly outperforms a
purely neural model at truthfully describing the re-
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A Alternatives in Response Templates

A dataflow transduction rule can be equipped with
multiple templates, and our template format also
allows choices within a single template. Specif-
ically, our implementation allows the use of ver-
tical bar to encode alternatives within a template,
e.g., “I {{ didn’t find any | found no }} {{ match-
ing events | events matching {LEX [subject]} }}
on your calendar.” During dataflow transduc-
tion, this template is automatically converted into
a small system of QCFG productions, i.e., intro-
ducing new nonterminals for the alternations.

B Dataflow Transduction Rule Details

In our experiments, there are 9 head types (in-
cluding the START symbol) for the 187 trans-
duction rules for SMCalFlow2Text, and 3 head
types for the 14 transduction rules for MultiWOZ.
Our framework is agnostic to the nonterminal
types (see footnote 1). We mainly used syntac-
tic categories like NP, PP, DT, VB, UH (interjection),
Copula, etc. One potential challenge is that the
domain developers may need to have some lin-
guistic knowledge about the syntactic categories.
Alternatively, they could use semantic categories.

The complete set of rules for SMCalFlow2Text
is available in our released Python code. The 187
transduction rules cover the 8938 and 1041 ex-
amples from the training and validation set in the
original SMCalFlow data, i.e., the gold agent re-
sponses can all be produced from the transduction
rules. The authors who wrote the rules were able
to look at both the training and validation exam-
ples. The remaining training and validation ex-
amples in the original SMCalFlow dataset are not
covered by these rules.

Below we explain some examples of dataflow
transduction rules.

# Head: PP
# Body:
match computation:

case FullMonthofPreviousMonth(month):
return {"month": month}

# Response Template:
"last {NP [month]}"

The rule head PP suggests that the compu-
tation is described as a preposition phrase.
The body simply checks whether the computa-
tion being described is a call to the function
FullMonthofPreviousMonth and extracts the ar-
gument month. The response template lexicalizes

the function call as “last” and defers describing the
month to appropriate NP rules such as the one be-
low.

# Head: NP
# Body:
if computation.__value__ == Month.March:

return {}
# Response Template:
"March"

For this rule, its body checks the value of the com-
putation rather than its structure. Since the re-
sponse template has no nonterminal, the body does
not return any variable binding. Note returning an
empty dictionary is different from returning None
(which is the default return value in Python), as
the latter indicates that the rule cannot be applied.

# Head: S
# Body:
match computation:

case GetAttr(
StructAttribute("organizer", _),
event ,

) as organizer:
return {"event": event , "organizer":
organizer}

# Response Template:
"{NP [organizer ]} {{ is | are }} the {{

organizer | organizers }} of {NP [
event ]}".

The head of this rule is S, which is our start
nonterminal. The function GetAttr is similar to
Python’s builtin getattr method, i.e., it is used
to access the values of an object’s attributes, and
the special constructor StructAttribute speci-
fies the name of the attribute and optionally its
type. Here, the body checks whether the computa-
tion is describing the organizer of an event, as re-
flected in the response template as well. Note the
response template uses the vertical bar for alterna-
tives, as described in Appendix A. A more precise
rule could choose between are and is based on
whether there are multiple organizers or not. We
usually recommend leaving such decisions to the
neural LM instead of hard-coding them in trans-
duction rules, but the latter approach is still possi-
ble if the system designer prefers.

C Human Evaluation Details

A screenshot of the MTurk interface for human
evaluation is shown in Fig. A1. Table A1 shows
the percentages of examples where all three work-
ers choose the same answer for individual systems.
It can be observed that the gold responses receive
the highest agreements on all three questions. The
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Figure A1: A screenshot of the MTurk interface for human evaluation.

QCFG-constrained decoding has slightly higher
agreements than the unconstrained dcoding. The
QCFG random sampling receives a significantly
lower agreement on “Grammatical,” probably be-
cause this approach may produce ungrammatical
responses but people may not agree on whether
these are understandable.

D Model Configurations

For SMCalFlow, we fine-tune the CodeT5 model
for a fixed number of epochs (=10). For Mul-
tiWOZ, we fine-tune the model for at most 10
epochs and do early stopping based on the on
the loss on the development set. We use the
AdamW optimizer (Loshchilov and Hutter, 2019)
with β1 = 0.9 and β2 = 0.999, using a linear
learning rate scheduler with an initial learning rate
of 5× 10−5. For decoding, we always use a fixed

beam size of 5.
The CodeT5-base models used in our experi-

ments have 220 million parameters. We used ma-
chines with 32GB V100 GPUs for model fine-
tuning while the decoding experiments were car-
ried out on CPU-only machines.

For SMCalFlow experiments, the input se-
quence to the LM is the string representation of
the computation in the lispress format followed
by its execution result rendered as a JSON string,
e.g., “Plan: (Yield (Event.start ( . . . ))) Result:
{“type”: “DateTime”, “value”: . . . } <s>”,
where the last token is a special token to separate
the input and the output. For the ablative study
(group 5) in §5.3, the user utterance is prefixed to
the sequence, e.g., “User: When do I have thee oil
change on my car scheduled for? Plan: . . . Result:
. . . <s>”.
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System Grammatical Relevant Truthful

QCFG Random Sampling .58 .75 .71
Unconstrained Decoding .86 .71 .71
QCFG-Constrained Decoding .90 .78 .76
Gold .95 .81 .80

Table A1: The percentage of examples where all three workers choose the same answer.

Unconstrained Constrained

Untruth 19 0
Omission 3 11
Addition 17 18
Minor Difference 10 13
Disfluency 1 1
Annotation Error 7 8

Total 57 51

Table A2: Classification of differences between gener-
ated responses and human-annotated gold responses on
100 randomly sampled examples from the SMCalFlow
dataset. Details are provided in Appendix E.

For MultiWOZ experiments, the computation is
rendered as a raw JSON string that encodes the
ground-truth belief state and the predicted system
act. There is no execution result for these compu-
tations.

E Qualitative Analysis

We looked at 100 randomly selected examples
from the experiments on SMCalFlow from §5.2,
and compared the generated responses from both
unconstrained decoding and QCFG-constrained
decoding with the human-annotated gold re-
sponses provided by the dataset. We summarize
the differences between the generated and gold
responses in Table A2, using the following cate-
gories:

Untruth The system reports incorrect informa-
tion.

Omission The system fails to mention informa-
tion mentioned in the gold response.

Addition The system mentions additional (cor-
rect) information that is not mentioned in the
gold response.

Minor Difference The system uses a different
phrasing than the gold response that nonethe-
less has the same information and fluency.

Disfluency The system output is disfluent.

Annotation Error The system output is accept-
able but the gold annotation contains a flu-
ency or factuality error.

For unconstrained decoding, 57 out of 100 re-
sponses differ from the gold responses, whereas
for QCFG-constrained decoding, only 51 of 100
responses differ. This result is consistent with the
R@1 column of Table 1 (mismatch rates of 53%
and 44% respectively on the full validation set).

As expected, the most noticeable difference is in
the number of Untruths. The QCFG-constrained
system produced no Untruths. The unconstrained
system produced 19%, close to the 18% rate found
in the human evaluations in Table 1. We show
some examples of Untruths in Table 2.

Conversely, the QCFG-constrained system pro-
duces substantially more Omissions than the un-
constrained system. Of the 11 omissions produced
by the constrained system, 3 are are identical to
the unconstrained output while 7 are on inputs for
which the unconstrained output produce an Un-
truth. In other words, our system successfully re-
moved the 19 Untruths by the system, but in 7 of
those cases, it produced a shorter (but still factu-
ally correct) input than the preferred gold annota-
tion for that example. We also note that the gold
dataset is not consistent in how much information
is included in the responses – short answers like
“Looks like it” in Example C from ?? are present
in the gold annotations on examples similar to Ex-
ample C. Furthermore, both systems produce more
Additions than Omissions, indicating that there
is not a systematic bias towards shorter answers
overall. In future work, the model could be made
to select more descriptive responses by adding a
brevity penalty in the decoder or by weighting the
QCFG productions, so that responses are scored
not only by the LM but also by the QCFG.

F Dataset License

The SMCalFlow dataset is distributed under the
CC BY-SA 4.0 license. To the best of the authors’
knowledge, the MultiWOZ datasets were released
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under MIT license as shown in https://github.
com/budzianowski/multiwoz. Our experiments
follow the intended use of these datasets, which is
to advance research in dialogue systems.
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