
Findings of the Association for Computational Linguistics: ACL 2023, pages 5747–5758
July 9-14, 2023 ©2023 Association for Computational Linguistics

A Customized Text Sanitization Mechanism with Differential Privacy

Huimin Chen1∗, Fengran Mo2∗, Yanhao Wang1, Cen Chen1†,
Jian-Yun Nie2, Chengyu Wang3, Jamie Cui4

1East China Normal University 2Université de Montréal 3Alibaba Group 4Ant Group
saichen@stu.ecnu.edu.cn, fengran.mo@umontreal.ca

{yhwang,cenchen}@dase.ecnu.edu.cn, nie@iro.umontreal.ca
chywang2013@gmail.com, jamie.cui@outlook.com

Abstract

As privacy issues are receiving increasing at-
tention within the Natural Language Process-
ing (NLP) community, numerous methods have
been proposed to sanitize texts subject to dif-
ferential privacy. However, the state-of-the-
art text sanitization mechanisms based on met-
ric local differential privacy (MLDP) do not
apply to non-metric semantic similarity mea-
sures and cannot achieve good trade-offs be-
tween privacy and utility. To address the above
limitations, we propose a novel Customized
Text (CusText) sanitization mechanism based
on the original ϵ-differential privacy (DP) def-
inition, which is compatible with any similar-
ity measure. Furthermore, CusText assigns
each input token a customized output set of
tokens to provide more advanced privacy pro-
tection at the token level. Extensive experi-
ments on several benchmark datasets show that
CusText achieves a better trade-off between
privacy and utility than existing mechanisms.
The code is available at https://github.
com/sai4july/CusText.

1 Introduction

In many Natural Language Processing (NLP) ap-
plications, input texts often contain sensitive infor-
mation that can infer the identity of specific per-
sons (Jegorova et al., 2021), leading to potential pri-
vacy leakage that impedes privacy-conscious users
from releasing data to service providers (Carlini
et al., 2019, 2021; Song and Raghunathan, 2020).
Moreover, legal restrictions such as CCPA1 and
GDPR2 may further limit the sharing of sensitive
textual data. This makes NLP service providers
difficult to collect training data unless the privacy
concerns of data owners, including individuals and
institutions, are well discoursed.

∗Equal contribution.
† Corresponding author.

1https://oag.ca.gov/privacy/ccpa
2https://data.europa.eu/eli/reg/2016/

679/oj

["!,$!, $!] NLP
ModelTrain

Query for Data

Institution

Individual

Individual

Local

Data Owners

Text
Sanitization
Mechanism

Text
Sanitization
Mechanism

Text
Sanitization
Mechanism

$

$

"

Query for Data

Query for Data

Service Provider

Sanitized Dataset "
!

Sanitized Record $!

Sanitized Record $!

Figure 1: A privacy-preserving NLP workflow.

To address such privacy issues, great efforts (Lyu
et al., 2020; Anil et al., 2022; Dupuy et al., 2022; Li
et al., 2022; Mireshghallah et al., 2021) have been
made to train language models (LMs) with differen-
tial privacy (Dwork et al., 2006) (DP), which has
been regarded as the de facto standard for privacy-
preserving computation. These approaches mainly
focus on adding calibrated noise to gradients or text
representations during the training phase so that
sensitive user data cannot be inferred from trained
LMs. Nevertheless, they require service providers
to collect the original data for LM training. As
such, data owners may still have privacy concerns
when service providers are not fully trusted.

To solve the privacy problem from the root, a
common paradigm is to let data owners sanitize
their data locally before releasing them to the ser-
vice provider, as shown in Figure 1. Generally,
such privatization mechanisms (Feyisetan et al.,
2019, 2020; Yue et al., 2021) generate a sanitized
text document by replacing the original tokens
(e.g., characters, words, or n-grams) in the original
document sequentially with new tokens sampled
from output token sets. Specifically, they adopt the
Metric Local Differential Privacy (Chatzikokolakis
et al., 2013) (MLDP, also known as dχ-privacy), a
relaxation of the original DP definition, to provide
the privacy and utility guarantees simultaneously.
On the one hand, MLDP inherits the idea of DP

5747

https://github.com/sai4july/CusText
https://github.com/sai4july/CusText
https://oag.ca.gov/privacy/ccpa
https://data.europa.eu/eli/reg/2016/679/oj
https://data.europa.eu/eli/reg/2016/679/oj

to ensure that the outputs of any adjacent input to-
kens are indistinguishable to protect the original
tokens from being inferred. On the other hand,
MLDP also preserves the utility of sanitized texts
by assigning higher sampling probabilities to to-
kens that are semantically closer to the original
ones. In these mechanisms, any metric distance
(e.g., Euclidean distance) can be used to measure
the semantic similarities between tokens.

However, the above text sanitization mecha-
nisms suffer from two inherent limitations. First,
since MLDP is specific for metric distances satis-
fying the triangle inequality, they do not apply to
non-metric semantic similarity measures in NLP
applications such as cosine similarity (Mrksic et al.,
2016) and TF-IDF (Salton and Buckley, 1988).
Second, they cannot achieve good privacy-utility
trade-offs, i.e., either having high privacy costs
with insufficient protections or resulting in low ac-
curacy of models trained on sanitized data. We
observe that the low accuracy arises as they treat
each token in the text equally by assigning each
input token with the same output set, which can
be excessively large (e.g., the size of the output set
is over 80,000). Such a huge output set leads to
high costs for MLDP and thus impedes the model’s
utility when the privacy budget is tight.

To this end, we propose a novel Customized
Text (CusText) sanitization mechanism that pro-
vides more advanced privacy protection at the to-
ken level. Specifically, to generalize CusText to all
similarity measures, we turn to a mechanism that
satisfies the original ϵ-Differential Privacy (ϵ-DP),
i.e., Exponential Mechanism (EM) (McSherry and
Talwar, 2007), to sample the output for each input
token. Meanwhile, we inherit the merit of MLDP
by designing an appropriate scoring function for
EM to take into account the semantic similarities
between tokens for sampling. Then, to achieve
a better trade-off between privacy and utility, we
design a mapping scheme to assign each input to-
ken a customized output set of a much smaller size
for token-level privacy protection. Here, we can
adjust a customized parameter K that determines
the size of the output set for each input token for
different utility-privacy trade-offs. Using the map-
ping scheme, we exclude most of the tokens that
are semantically irrelevant to the input token from
consideration and reduce the privacy costs caused
by excessive output set sizes. As the privacy risks
of some tokens, e.g., stopwords, are low in practice,

we further propose an improved CusText+ mech-
anism that skips the stopwords in the sampling
process to achieve higher utility without incurring
greater privacy losses.

Finally, we conduct extensive experiments on
three benchmark datasets to demonstrate that Cus-
Text achieves better privacy-utility trade-offs than
the state-of-the-art text sanitization mechanisms
in (Feyisetan et al., 2020; Yue et al., 2021). More
particularly, with the same privacy parameter ϵ,
the models trained on texts sanitized by CusText
have significantly higher accuracy rates than those
sanitized by SANTEXT (Yue et al., 2021). Further-
more, when the utilities of models are comparable,
CusText provides better protection against two to-
ken inference attacks than SANTEXT.

2 Related Work

There have been numerous studies on the vulnera-
bility of deep learning models (Carlini et al., 2019;
Song and Raghunathan, 2020), including language
models (Carlini et al., 2021; Zhao and Chen, 2022)
(LMs), against privacy attacks. In particular, such
attacks can recover sensitive user attributes or raw
texts from trained models. Therefore, incorporat-
ing privacy mechanisms with rigorous guarantees
is vital to protect LMs from privacy attacks.

A few attempts at applying anonymization tech-
niques for i.i.d. data (Li et al., 2007; Machanava-
jjhala et al., 2007) fail to provide strong privacy
protection for textual data (Zhao and Chen, 2022).
Then, many efforts (Lyu et al., 2020; Anil et al.,
2022; Dupuy et al., 2022; Hessel and Schofield,
2021; Li et al., 2022; Mireshghallah et al., 2021)
have been made to preserve the utility of LMs on
textual data with provable differential privacy (DP)
guarantees. Following the application of DP in
deep learning (Abadi et al., 2016), they mainly fo-
cus on adding calibrated noise to gradients or text
representations during the training phase for both
utility and privacy. However, they need a trustwor-
thy server to collect original texts from data owners
for model training and thus cannot be applied to
the scenario without trusted servers.

To address privacy issues from the root, different
(customized) local differential privacy (Duchi et al.,
2013; Chatzikokolakis et al., 2013) (LDP) mecha-
nisms have been proposed to allow data owners to
sanitize their data locally before releasing them to
the server. Due to the high dimensionality and com-
plicated features of textual data, compared with

5748

statistical analytics on i.i.d. data with LDP (Mu-
rakami and Kawamoto, 2019; Nie et al., 2019), it
is much more challenging to achieve good utility-
privacy trade-offs for LMs with LDP. To improve
the model utility, existing methods (Feyisetan et al.,
2020; Qu et al., 2021; Yue et al., 2021) rely on
a relaxed notion of metric local differential pri-
vacy (Chatzikokolakis et al., 2013) (MLDP, also
known as dχ-privacy) for text sanitization. How-
ever, they either achieve reasonable accuracy only
at a very low privacy protection level (e.g., with
a privacy parameter ϵ > 10) or become unusable
(around 50% accuracy rate for the benchmark bi-
nary classification tasks) with appropriate privacy
guarantees (e.g., ϵ = 2). Thus, there remains much
room for improvement in terms of utility-privacy
trade-off for differentially private text sanitization,
which is the goal of this work.

3 Preliminaries

Before introducing our CusText mechanism, we
briefly review the key concepts, including ϵ-DP
and exponential mechanism (EM).

Definition 1 (ϵ-differential privacy (Dwork et al.,
2006)). For a given privacy parameter ϵ ≥ 0, all
pairs of adjacent inputs x, x′ ∈ X , and every pos-
sible output y ∈ Y , a randomized mechanism M
is ϵ-differentially private (DP) if it holds that

Pr[M(x) = y]

Pr[M(x′) = y]
≤ eϵ. (1)

By definition, a smaller value of ϵ corresponds
to a higher level of privacy protection. Conceptu-
ally, the notion of ϵ-DP means that an unlimited
adversary cannot distinguish the two probabilis-
tic ensembles with sufficiently small ϵ because the
probabilities of adjacent tokens producing the same
output token y are similar. In the context of NLP,
we consider any pair of input tokens that share the
same output set Y to be adjacent to each other. In
the rest of this paper, we follow the above defini-
tion of adjacent inputs for ϵ-DP. Next, we define the
Exponential Mechanism (EM) commonly used for
differentially private item selection from a discrete
domain, which naturally fits NLP applications due
to the discrete nature of textual data.

Definition 2 (Exponential Mechanism (McSherry
and Talwar, 2007)). For a given scoring function
u : X × Y → R, an exponential mechanism
(EM) M(X , u,Y) satisfies ϵ-differential privacy
if it samples an output token y ∈ Y to perturb the

input token x ∈ X with probability proportional
to e

ϵ·u(x,y)
2∆u , where u(x, y) denotes the score of out-

put token y for input token x. In addition, we use
∆u := maxy∈Y maxx,x′∈X |u(x, y)− u(x′, y)| to
denote the sensitivity of u for EM.

From Definition 2, we can see that smaller sensi-
tivity makes it harder for adversaries to distinguish
the original token from its adjacent tokens. In prac-
tice, for simplicity, we can normalize the scoring
function u to scale its sensitivity ∆u to a specific
real number (e.g., 1). As such, the sampling prob-
ability of each output token y for input token x
is only related to u(x, y), as ϵ and ∆u are known
beforehand, and a larger u(x, y) indicates a higher
sampling probability.

In an NLP task, we suppose that each document
D = ⟨Ri⟩mi=1 contains m records and each record
R = ⟨tj⟩nj=1 contains n tokens. We formulate our
text sanitization task as follows: Given an input
document D containing sensitive information, a
set X of all possible input tokens, a set Y of all
possible output tokens, and a differentially private
mechanism M (e.g., EM in this work), it performs
the mechanism M on each input token tj ∈ D to
replace it with an output token t′j from Y if tj ∈ X .
All the tokens after replacement form the sanitized
document, i.e., D′ = ⟨R′

i⟩mi=1 and R′ = ⟨t′j⟩nj=1.
Following the prior work on text sanitization (Qu

et al., 2021; Feyisetan et al., 2020; Yue et al., 2021),
we consider a semi-honest threat model under the
LDP setting where data owners (e.g., individuals or
institutions) only submit their sanitized documents
to the service provider. Malicious service providers
may try to infer sensitive information from their
received data. We assume that adversaries only
have access to sanitized texts, and all algorithms
and mechanisms are publicly known. Moreover,
adversaries have unlimited computation resources.

4 The CusText Mechanism

An overview of our customized text (CusText) san-
itization mechanism is presented in Figure 2. In
general, it replaces each token in the original text
document with a new token to achieve the privacy
guarantee. It consists of two components: (1) a
mapping function fmap : X → {Y ′ ⊆ Y} that
determines the output set Y ′

j for each input token
xj ∈ X based on semantic relevance; (2) a sam-
pling function3 fsample : X ′ → Y ′ based on the ex-
ponential mechanism to sample a new token from

3For any Y ′ ⊆ Y , X ′ = {x ∈ X | fmap(x) = Y ′}.

5749

!!
!"

"! "" …

⋮
"! "" …
"! "" …
#

!!# "!# ""# …

⋮
#

!"# "!# ""	# …
"!# ""# …

Mapping Function

Similarity
Measure

Input Set

$

Scoring
Function

Sampling Function

!

Exponential
Mechanism

Output Set

Input Token

Customized
Output Set

Figure 2: An overview of the CusText method.

Sun

Moon

Flower

Grass

Sun

Moon

Flower

Grass

SANTEXT

Sun

Moon

Flower

Grass

Sun

Moon

Flower

Grass

CusText

Input Set Output Set Input Set Output Set

Figure 3: A comparison of the mapping schemes of
SANTEXT and CusText.

an output set to sanitize the input token. Specifi-
cally, our CusText mechanism first obtains the out-
put set Y ′

j for each tj ∈ D according to fmap, i.e.,
Y ′
j = fmap(tj), then samples an output token t′j

from Y ′
j according to fsample, i.e., t′j = fsample(tj).

Finally, after applying CusText on each input token
tj in D, the sanitized document D′ is formed by
all output tokens.

4.1 Mapping Function

In our CusText mechanism, the mapping function
fmap : X → {Y ′ ⊆ Y} decides the output set for
each input token. If a bunch of input tokens in X
are mapped to the same output set Y ′, we say that
they belong to the same input set X ′ ⊆ X and are
adjacent to each other. For the SANTEXT mecha-
nism (Yue et al., 2021), the function fmap : X → Y
simply maps every input token x ∈ X to all tokens
in the output set Y . Since the size of the output set
is excessively large in SANTEXT, the chances that
the output token is semantically irrelevant to the
original token become higher if the privacy budget
is tight, thus leading to poor model utility. To over-
come the above problem, CusText customizes the
output set of each input token. A comparison of
the mapping schemes of CusText and SANTEXT
is shown in Figure 3. Before introducing how to
construct fmap, we first discuss the requirements
for mapping generation.

Algorithm 1 Token Mapping Generation
Input: Customization parameter K, input set X , output set
Y = X , similarity measure d

Output: Mapping Function fmap

1: while |X | ≥ K do
2: Pick an arbitrary token x from X
3: Initialize an output set Y ′ = {x} for x
4: for all y ∈ Y \ {x} do
5: Compute the similarity d(x, y) of x and y
6: Add the top-(K − 1) tokens that are semantically clos-

est to x to Y ′ based on d(·, ·)
7: for all x′ ∈ Y ′ do
8: Assign the output set of x′ as Y ′

9: Update X ← X \ Y ′ and Y ← Y \ Y ′

10: Perform Lines 2–9 for the remaining tokens in X and Y
with customization parameter K′ = |X |

11: return fmap

Mapping Strategy. According to the sizes of X ′

and Y ′ as indicated by the mapping function fmap,
we can categorize the token mappings into four
types: 1-to-1, N -to-1, 1-to-N , and N -to-M , where
1, N , and M denote the size of the input/output
token sets and N,M > 1. Theoretically, CusText
can provide ϵ-differential privacy protection to all
input tokens only if the mappings of all input tokens
in the set X are N -to-M or N -to-1 mappings so
that every input token in X has at least one adjacent
token. This is because the goal of applying ϵ-DP
is to make any two adjacent tokens indistinguish-
able so that the input token cannot be effectively
inferred. Moreover, following prior work (Feyise-
tan et al., 2020; Yue et al., 2021), we consider that
X is equal to Y (i.e., X = Y) in CusText, as they
both correspond to the vocabulary of a specific lan-
guage. Also, any input token x is always included
in its output set because it must be the closest to
itself. Next, we describe our mapping generation
that can satisfy all the above requirements.

Mapping Function Generation. The generation
of the mapping function fmap : X → {Y ′ ⊆ Y} is
to assign the customized output set for each input
token based on semantic relevance. The semantic
relevance can be defined by any similarity measure
d : X × Y → R. In practice, we use the Euclidean
distance or cosine similarity on the vector repre-
sentations of tokens, such as Word2Vec (Mikolov
et al., 2013), GloVe (Pennington et al., 2014), and
Counter-Fitting (Mrksic et al., 2016) as the similar-
ity measure. Then, we fix the sizes of all output sets
to K. Specifically, we pick an arbitrary unmapped
token x ∈ X , find the K tokens semantically clos-
est to x, generate an K-to-K mapping from all the
K tokens to themselves, and remove the mapped

5750

tokens from X and Y at each round until either
all tokens are mapped or fewer than K tokens re-
main unmapped. In the latter case, the remaining
tokens will constitute a K ′-to-K ′ mapping where
K ′ ∈ [1,K). The pseudocode of generating the
mapping function fmap is presented in Algorithm 1.

4.2 Sampling Function
Based on the mapping function fmap : X → {Y ′ ⊆
Y}, a sampling function fsample : X ′ → Y ′ is
designed to sample the output token for each in-
put token. CusText adopts the exponential mecha-
nism (McSherry and Talwar, 2007) (EM) for sam-
pling. We need to design an appropriate scoring
function for EM to strike a good utility-privacy
trade-off. We obey the following two rules when
designing the scoring function u : X ′ × Y ′ → R.

1. The score of each pair of input and output
tokens should be bounded, i.e., ∀x ∈ X ′,
∀y ∈ Y ′, u(x, y) < B, so that the sensitivity
∆u of u is bounded for satisfying ϵ-DP.

2. The higher the semantic similarity between a
pair of input and output tokens is, the higher
the score is, i.e., ∀x ∈ X ′, ∀y, y′ ∈ Y ′, if y
is semantically closer to x than y′, u(x, y) >
u(x, y′). This ensures the candidates semanti-
cally closer to x have higher probabilities of
being sampled, which inherits the advantage
of dχ-privacy (Chatzikokolakis et al., 2013).

For the scoring function, we are based on the
same similarity function as used in the mapping
scheme, e.g., Euclidean distance or cosine similar-
ity on the vector representations of tokens (Mikolov
et al., 2013; Pennington et al., 2014; Mrksic et al.,
2016). Generally, according to the correlation be-
tween scores and semantic closeness, all the simi-
larity measures can be categorized into two types,
i.e., negative correlation and positive correlation.
For instance, Euclidean distance and cosine similar-
ity are negative and positive correlation measures,
respectively, as a smaller Euclidean distance and
a larger cosine value between two vectors imply
higher semantic closeness of their corresponding
tokens. Next, we will design scoring functions for
both types of similarity measures.
Scoring Function for Negative Correlation Mea-
sures. We take Euclidean distance as an example to
design the scoring function u : X ′ × Y ′ → R. For
any input set X ′ and its corresponding output set
Y ′, we first compute the Euclidean distance d(x, y)

Algorithm 2 Document Sanitization
Input: Original document D = ⟨Ri⟩mi=1, sampling function

fsample, stopword list T
Output: Sanitized document D′

1: Initialize the sanitized document D′ = ∅
2: for all record R ∈ D do
3: Initialize the sanitized record R′ = ∅
4: for all token x ∈ R do
5: if ‘CusText+’ is used and x ∈ T then
6: Append x to R′

7: else
8: x′ ← fsample(x) and append x to R′

9: Add R′ to D′

10: return D′

between each x ∈ X ′ and y ∈ Y ′. Specifically,
we have d(x, y) = ∥Φ(x) − Φ(y)∥2, where Φ(x)
and Φ(y) are the vector representations of x and y,
respectively. Then, we normalize the distances of
all pairs of tokens to the range [0, 1] as d′(x, y) =
d(x,y)−dmin

dmax−dmin
, where dmin = minx∈X ′,y∈Y ′ d(x, y)

and dmax = maxx∈X ′,y∈Y ′ d(x, y). Finally, we
transform the normalized distance d′(x, y) into
the score of output token y for input token x as
u(x, y) = −d′(x, y). After the above transforma-
tion, a more similar pair x, y of input and output
tokens has a higher score u(x, y). Finally, by re-
peating the above steps on all disjoint partitions of
adjacent tokens with the same X ′ and Y ′, we have
obtained the scoring functions for all tokens.

Scoring Function for Positive Correlation Mea-
sures. We take cosine similarity as another ex-
ample to design the scoring function u. For any
input set X ′ and its corresponding output set Y ′,
we also compute the cosine similarity cos(x, y) be-
tween each x ∈ X ′ and y ∈ Y ′, where cos(x, y) =
⟨Φ(x),Φ(y)⟩

∥Φ(x)∥·∥Φ(y)∥ and Φ(x) and Φ(y) are the vector
representations of x and y. Then, the normaliza-
tion procedure is the same as that for Euclidean
distance, but we use the normalized distance, in-
stead of its additive inverse, in the score function,
i.e., u(x, y) = d(x,y)−dmin

dmax−dmin
. Finally, we repeat the

above steps on all disjoint partitions of adjacent
tokens to obtain all scoring functions.

Sampling Procedure. After acquiring the scoring
function u for each input token x, the sampling
function fsample is used to generate the sanitized
token x′ for x based on the exponential mechanism
M({x}, u,Y ′) with a privacy parameter ϵ > 0.
The pseudocode of sanitizing a document based on
fsample is provided in Algorithm 2. Theoretically,
it guarantees that fsample satisfies ϵ-DP. For any
input set X ′ and its corresponding output set Y ′,

5751

the sensitivity ∆u between any two adjacent input
tokens x, x′ ∈ X ′ is bound by 1 according to the
design of the scoring function u, i.e.,

∆u = max
y∈Y ′

max
x,x′∈X ′

|u(x, y)− u(x′, y)| = 1

Given a privacy parameter ϵ > 0, the probability
of obtaining an output token y ∈ Y ′ for an input
token x ∈ X ′ is as follows:

Pr[fsample(x) = y] =
exp(ϵu(x,y)2∆u)

∑
y′∈Y ′ exp(

ϵu(x,y′)
2∆u)

We can prove that the sampling function fsample

satisfies ϵ-DP because, for any two input tokens
x, x′ ∈ X ′ and output token y ∈ Y ′, it holds that

Pr[fsample(x) = y]

Pr[fsample(x′) = y]
=

exp(
ϵu(x,y)
2∆u

)
∑

y′∈Y′ exp(
ϵu(x,y′)

2∆u
)

exp(
ϵu(x′,y)

2∆u
)

∑
y′∈Y′ exp(

ϵu(x′,y′)
2∆u

)

= e
ϵ·(u(x,y)−u(x′,y))

2∆u ·
(∑

y′∈Y ′ exp(
ϵu(x′,y′)
2∆u)

∑
y′∈Y ′ exp(

ϵu(x,y′)
2∆u)

)

≤ e
ϵ
2 · e ϵ

2 ·
(∑

y′∈Y ′ exp(
ϵu(x,y′)
2∆u)

∑
y′∈Y ′ exp(

ϵu(x,y′)
2∆u)

)
= eϵ.

4.3 The CusText+ Mechanism
Since not all tokens contain sensitive information,
our CusText mechanism that replaces all tokens
might be over-protective. Therefore, we can retain
non-sensitive original tokens with low privacy risk
(e.g., stopwords) to improve the utility of the sani-
tized text. In practice, we have a predefined list of
stopwords T (e.g., the collection of stopwords in
the NLTK library), check whether each token x is
included in T , and keep x in the sanitized document
if x ∈ T or replace x with x′ = fsample(x) other-
wise. The above procedure is called the CusText+
mechanism and is also described in Algorithm 2.

5 Experiments

5.1 Experimental Setup
Following (Feyisetan et al., 2020; Yue et al., 2021),
we choose two datasets from the GLUE bench-
mark (Wang et al., 2019) and one medical dataset
MedSTS (Wang et al., 2020), which all contain
sensitive information, in our experiments. Detailed
descriptions of the three datasets are as follows:

• SST-2 is a popular movie reviews dataset with
67k training samples and 1.8k test samples

for sentiment classification, where accuracy
is used as the evaluation metric.

• MedSTS is a medical dataset with 1,642 train-
ing samples and 412 test samples for semantic
similarity computation, where Pearson corre-
lation coefficient is used for evaluation.

• QNLI is a sentence dataset with 105k training
samples and 5.2k test samples for sentence-
pair classification, where accuracy is used as
the evaluation metric.

In the experiments, we compare CusText with
two existing text sanitization mechanisms, i.e.,
FBDD (Feyisetan et al., 2020) and SANTEXT (Yue
et al., 2021). In the training phase, we perform
each mechanism to sanitize the training data and
then use the sanitized documents to fine-tune the
pre-trained model. In the evaluation phase, we san-
itize the test data by the same mechanism as used
for training. When producing the sanitized docu-
ments, both the input set X and output set Y are as-
signed to the vocabulary of Counter-Fitting (Mrksic
et al., 2016) (of size 65,713), and out-of-vocabulary
(OOV) tokens except numbers are retained. For a
fair comparison, we adopt the same vocabulary
in GloVe (Pennington et al., 2014) as in Counter-
Fitting. The Euclidean distance and cosine similar-
ity are used as the similarity measures for GloVe
and Counter-Fitting, respectively. We use the stop-
word list in NLTK for CusText+. For each down-
stream task, we set the maximum sequence length
to 128 and the training epoch to 3. On the SST2
and QNLI datasets, we set the batch size to 64
and the learning rate to 2× 10−5 using bert-base-
uncased4 as the pre-trained model. On the MedSTS
dataset, we set the batch size to 8 and the learning
rate to 5 × 10−5 using ClinicalBERT (Alsentzer
et al., 2019) as the pre-trained model. Other hyper-
parameters are the same as those used in the de-
fault Transformer model (Wolf et al., 2020). All
experiments were conducted on a server with two
Intel Xeon Silver 4210R 2.40GHz CPUs and one
NVIDIA Tesla V100 SXM2 (32GB).

5.2 Experimental Results
Comparison of Different Mechanisms for Text
Sanitization. In this experiment, we fix the cus-
tomization parameter K to 20 in CusText and Cus-
Text+ and vary the privacy parameter ϵ = 1, 2, 3

4https://huggingface.co/
bert-base-uncased

5752

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased

Mechanisms SST2 MedSTS QNLI
ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 1 ϵ = 2 ϵ = 3

Random 0.5014 0.0382 0.5037
FBDD 0.5022 0.5041 0.5032 0.0321 0.0368 0.0411 0.5021 0.5152 0.5368

SANTEXT 0.5014 0.4827 0.5091 0.0850 0.1673 0.1124 0.5304 0.5302 0.5357
CusText 0.6985 0.7172 0.7029 0.4957 0.5112 0.5242 0.6926 0.6884 0.7133

SANTEXT+ 0.7211 0.7446 0.7260 0.4143 0.4271 0.5423 0.7607 0.7636 0.7493
CusText+ 0.7501 0.7452 0.7683 0.6172 0.6316 0.6213 0.7528 0.7602 0.7740
Original 0.9050 0.7598 0.9096

Table 1: Utility comparison of different sanitization mechanisms at similar privacy levels.

for DP. The evaluation of the effect of K on the
performance of CusText will be presented later.
Furthermore, we choose GloVe as the token em-
bedding in CusText and CusText+ for a fair com-
parison since FBDD, SANTEXT, and SANTEXT+
cannot apply the Counter-Fitting embedding. This
is because they only work with metric distances
(e.g., Euclidean distance in GloVe) due to the in-
herent limitation of MLDP and thus cannot handle
the non-metric cosine similarity in Counter-Fitting.
Finally, because a mechanism will be ϵ-DP if it
is ϵ′-MLDP (Chatzikokolakis et al., 2013), where
ϵ = ϵ′ ·dmax and dmax = maxx∈X ,y∈Y d(x, y), we
re-scale the privacy parameter ϵ in FBDD, SAN-
TEXT, and SANTEXT+ with dmax to align their
privacy levels to be similar to our mechanisms.

Table 1 presents the utilities of different text san-
itization mechanisms with ϵ-DP (ϵ = 1, 2, 3) on
three datasets. The results demonstrate the huge
advantages of CusText compared with two existing
mechanisms, i.e., FBDD and SANTEXT, which
achieves over 20% improvements in accuracy on
the SST-2 and QNLI datasets and more than 50%
improvement in Pearson correlation coefficient on
the MedSTS dataset. Compared with SANTEXT
and CusText, their improved versions, i.e., SAN-
TEXT+ and CusText+, exhibit significantly better
performance because they keep some original to-
kens to preserve original semantics. Generally, the
results indicate the superior performance of Cus-
Text by showing that using a customized, smaller
output set for each input token can lead to better
utilities at similar (theoretical) privacy levels.

Privacy-Utility Trade-off. Subsequently, we com-
pare SANTEXT and CusText in terms of privacy-
utility trade-offs. As shown in (Yue et al., 2021) as
well as our previous results, FBDD has lower per-
formance than SANTEXT and CusText and thus
is not compared in the remaining experiments any-
more. To alleviate the effects of different DP defi-
nitions in SANTEXT and CusText, we do not use

Figure 4: Privacy-utility trade-offs in terms of success
rates of mask token inference attacks vs. accuracy rates
by varying the privacy parameter ϵ ∈ [0.01, 50] on the
SST-2 dataset. Here, “Original” denotes the result on
unsanitized data.

the privacy parameter ϵ, which corresponds to the
worst possible privacy leakage but may not reveal
the privacy protection level in practice. Alterna-
tively, we adopt two privacy attacks to evaluate the
privacy protection levels: One is the Mask Token
Inference Attack in (Yue et al., 2021), and the other
is Query Attack proposed in this work.

We first present the results for mask token in-
ference attacks. To recover raw texts from sani-
tized texts, an adversary can use the pre-trained
BERT model to help infer the original tokens since
it is trained via masked language modeling. It re-
places each token with a special token “[MASK]”
in the sanitized text sequentially, inputs the masked
text to BERT, and acquires the predicted output of
“[MASK]” as the original token. Then, we consider
the attack successful if the output token is the same
as the input. Finally, we compute the success rate
among all attacks, denoted as rmask, and define the
privacy protection level as 1− rmask.

Figure 4 illustrates the privacy-utility trade-offs
of CusText (based on GloVe and Counter-Fitting,
respectively) and SANTEXT (based on GloVe) by
varying the value of ϵ on the SST-2 dataset. The

5753

Token SANTEXT CusText (GloVe) CusText (Counter-Fitting)
ϵ′ = 1 ϵ′ = 2 ϵ′ = 3 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 8 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 8

she 2350 35 4 1000 200 80 5 5500 1000 320 4
car 1300 14 1 1220 250 90 6 420000 90000 31000 3200

alice 1550 20 3 1190 240 100 6 1700 360 120 9
happy 3200 55 4 1490 290 110 8 320000 55000 21500 1500

Accuracy 0.4959 0.5799 0.7958 0.6985 0.7172 0.7029 0.8155 0.7117 0.7370 0.7298 0.7957

Table 2: Results for query attacks on four selected tokens in the SST-2 dataset.

results confirm that CusText achieves better utility-
privacy trade-offs than SANTEXT and remains
a relatively good utility (accuracy at around 0.7)
when the privacy level approaches 1 (over 0.98). In
comparison, SANTEXT degenerates to a random
classifier (accuracy at around 0.5). Meanwhile, the
results also imply that Counter-Fitting works better
with CusText than GloVe. The higher performance
of Counter-Fitting can be attributed to its better
representations of synonyms.

We then describe the results for query attacks.
Since the input token is contained in its correspond-
ing output set and always has the highest score,
the probability that it is sampled by fsample is also
the highest among all output tokens. An adver-
sary can determine the input token by querying
the data owner for the sanitized document multiple
times, as the input token will have the highest fre-
quency among all output tokens after a sufficiently
large number of queries. Thus, we use the smallest
number N of queries an adversary needs to infer
the input token at a confidence level of 95% as a
new measure of the privacy protection level. Here,
the larger the value of N is, the higher the level
of privacy protection is. In the experiment, we
obtain the value of N by using the Monte Carlo
method (Gentle, 2009) to sample the output tokens
until the confidence level of determining the input
token from the output distribution reaches 95%.

Table 2 further confirms that CusText achieves
better privacy-utility trade-offs than SANTEXT.
Although SANTEXT achieves a good utility when
ϵ′ = 3 (i.e., with 3-MLDP), it almost provides no
privacy protection as input tokens can be inferred
by performing only a few queries. CusText (with
either GloVe or Counter-Fitting) remains relatively
good privacy protection levels when ϵ = 3 (i.e.,
with 3-DP) while achieving high utilities. Gener-
ally, Counter-Fitting also outperforms GloVe for
CusText. But the privacy protections for different
tokens vary very much for Counter-Fitting: “she”
and “alice” are more vulnerable than “car” and
“happy”. This is because “she” and “alice” are

Figure 5: Privacy-utility trade-offs of CusText with dif-
ferent customization parameters K by varying the pri-
vacy parameter ϵ ∈ [0.001, 50] on the SST-2 dataset.

mapped with semantically less relevant tokens than
themselves in the mapping function generation.

Effect of K on CusText. To test the effect of K
on CusText in practice, we study the privacy-utility
trade-offs with different customization parameters
K = 5, 20, 50 on the SST-2 dataset. We choose the
mask token inference attack as the privacy metric
since its performance is more semantically related.
Then, we use Counter-Fitting for its better perfor-
mance than GloVe, as depicted previously.

The results for different K’s are presented in Fig-
ure 5. We observe that the performance of CusText
is generally stable for different K’s. But it achieves
slightly better utilities when K is smaller at rela-
tively higher privacy protection levels (> 0.9). This
is because, on the one hand, the semantic similarity
of output tokens to the input token will be higher
when K is smaller. However, on the other hand,
a smaller K will also make it easier to infer the
input token, thus lowering the privacy protection
levels (e.g., for K = 5, it does not exceed 0.96
even when ϵ has been decreased to 0.001).

6 Concluding Remarks

In this work, we study the problem of differentially
private text sanitization. We propose a novel Cus-
Text mechanism consisting of a mapping scheme

5754

to assign each input token a customized output set
and sampling function generation methods based
on the mapping scheme and exponential mecha-
nism to reduce privacy costs while improving the
utilities of sanitized texts. Extensive experiments
demonstrate that CusText achieves better privacy-
utility trade-offs than state-of-the-art text sanitiza-
tion mechanisms. In the future, we will explore
how to improve our mechanism by adaptively allo-
cating privacy costs across tokens and find a better
way to decide whether a token is sensitive than
based on a pre-defined stopword list.

Acknowledgements

This work was supported by the National Natural
Science Foundation of China (under Grant numbers
62202170, 62202169) and Alibaba Group through
the Alibaba Innovation Research Program.

Limitations

First, as indicated in Table 2, different tokens are
not equally vulnerable to privacy attacks. As such,
assigning every token with the same output size
K and privacy parameter ϵ might not be an ideal
choice. An improved method would be to adap-
tively allocate privacy costs across tokens so that
all of them are adequately protected. Second, we
adopt two simple strategies to decide whether a
token is sensitive: assuming all tokens are sensitive
or based on a pre-defined stopword list. However,
the prior might be over-protective, but the latter
can lead to privacy leakage since stopwords might
help infer other sanitized tokens. Therefore, a more
flexible and practical way to decide the sensitivity
of tokens is required.

References
Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Bren-

dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016. Deep learning with differential pri-
vacy. In CCS, pages 308–318.

Emily Alsentzer, John Murphy, William Boag, Wei-
Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available clin-
ical BERT embeddings. In Proceedings of the 2nd
Clinical Natural Language Processing Workshop,
pages 72–78.

Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi Kumar,
and Pasin Manurangsi. 2022. Large-scale differen-
tially private BERT. In EMNLP (Findings), pages
6481–6491.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. 2019. The secret sharer: Eval-
uating and testing unintended memorization in neural
networks. In USENIX Security Symposium, pages
267–284.

Nicholas Carlini, Florian Tramèr, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom B. Brown, Dawn Song, Úl-
far Erlingsson, Alina Oprea, and Colin Raffel. 2021.
Extracting training data from large language models.
In USENIX Security Symposium, pages 2633–2650.

Konstantinos Chatzikokolakis, Miguel E. Andrés,
Nicolás Emilio Bordenabe, and Catuscia Palamidessi.
2013. Broadening the scope of differential privacy
using metrics. In Privacy Enhancing Technologies
(PETS), pages 82–102.

John C. Duchi, Michael I. Jordan, and Martin J. Wain-
wright. 2013. Local privacy and statistical minimax
rates. In FOCS, pages 429–438.

Christophe Dupuy, Radhika Arava, Rahul Gupta, and
Anna Rumshisky. 2022. An efficient DP-SGD mech-
anism for large scale NLU models. In ICASSP, pages
4118–4122.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam D. Smith. 2006. Calibrating noise to sensitiv-
ity in private data analysis. In Theory of Cryptogra-
phy (TCC), pages 265–284.

Oluwaseyi Feyisetan, Borja Balle, Thomas Drake, and
Tom Diethe. 2020. Privacy- and utility-preserving
textual analysis via calibrated multivariate perturba-
tions. In WSDM, pages 178–186.

Oluwaseyi Feyisetan, Tom Diethe, and Thomas Drake.
2019. Leveraging hierarchical representations for
preserving privacy and utility in text. In ICDM, pages
210–219.

James E. Gentle. 2009. Monte Carlo methods for sta-
tistical inference. In Computational Statistics, pages
417–433. Springer.

Jack Hessel and Alexandra Schofield. 2021. How ef-
fective is BERT without word ordering? Implica-
tions for language understanding and data privacy. In
ACL/IJCNLP (Short Papers), pages 204–211.

Marija Jegorova, Chaitanya Kaul, Charlie Mayor, Al-
ison Q. O’Neil, Alexander Weir, Roderick Murray-
Smith, and Sotirios A. Tsaftaris. 2021. Survey: Leak-
age and privacy at inference time. arXiv:2107.01614.

Ninghui Li, Tiancheng Li, and Suresh Venkatasubrama-
nian. 2007. t-closeness: Privacy beyond k-anonymity
and l-diversity. In ICDE, pages 106–115.

Xuechen Li, Florian Tramèr, Percy Liang, and Tatsunori
Hashimoto. 2022. Large language models can be
strong differentially private learners. In ICLR.

5755

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://aclanthology.org/W19-1909
https://aclanthology.org/W19-1909
https://aclanthology.org/2022.findings-emnlp.484
https://aclanthology.org/2022.findings-emnlp.484
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://doi.org/10.1007/978-3-642-39077-7_5
https://doi.org/10.1007/978-3-642-39077-7_5
https://doi.org/10.1109/FOCS.2013.53
https://doi.org/10.1109/FOCS.2013.53
https://doi.org/10.1109/ICASSP43922.2022.9746975
https://doi.org/10.1109/ICASSP43922.2022.9746975
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/3336191.3371856
https://doi.org/10.1145/3336191.3371856
https://doi.org/10.1145/3336191.3371856
https://doi.org/10.1109/ICDM.2019.00031
https://doi.org/10.1109/ICDM.2019.00031
https://doi.org/10.1007/978-0-387-98144-4_11
https://doi.org/10.1007/978-0-387-98144-4_11
https://aclanthology.org/2021.acl-short.27
https://aclanthology.org/2021.acl-short.27
https://aclanthology.org/2021.acl-short.27
https://arxiv.org/abs/2107.01614
https://arxiv.org/abs/2107.01614
https://doi.org/10.1109/ICDE.2007.367856
https://doi.org/10.1109/ICDE.2007.367856
https://openreview.net/forum?id=bVuP3ltATMz
https://openreview.net/forum?id=bVuP3ltATMz

Lingjuan Lyu, Xuanli He, and Yitong Li. 2020. Dif-
ferentially private representation for NLP: Formal
guarantee and an empirical study on privacy and fair-
ness. In EMNLP (Findings), pages 2355–2365.

Ashwin Machanavajjhala, Daniel Kifer, Johannes
Gehrke, and Muthuramakrishnan Venkitasubrama-
niam. 2007. L-diversity: Privacy beyond k-
anonymity. ACM Trans. Knowl. Discov. Data,
1(1):3:1–3:52.

Frank McSherry and Kunal Talwar. 2007. Mechanism
design via differential privacy. In FOCS, pages 94–
103.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv:1301.3781.

Fatemehsadat Mireshghallah, Huseyin A. Inan, Mar-
cello Hasegawa, Victor Rühle, Taylor Berg-
Kirkpatrick, and Robert Sim. 2021. Privacy regu-
larization: Joint privacy-utility optimization in Lan-
guageModels. In NAACL-HLT, pages 3799–3807.

Nikola Mrksic, Diarmuid Ó Séaghdha, Blaise Thomson,
Milica Gasic, Lina Maria Rojas-Barahona, Pei-Hao
Su, David Vandyke, Tsung-Hsien Wen, and Steve J.
Young. 2016. Counter-fitting word vectors to linguis-
tic constraints. In NAACL-HLT, pages 142–148.

Takao Murakami and Yusuke Kawamoto. 2019. Utility-
optimized local differential privacy mechanisms for
distribution estimation. In USENIX Security Sympo-
sium, pages 1877–1894.

Yiwen Nie, Wei Yang, Liusheng Huang, Xike Xie,
Zhenhua Zhao, and Shaowei Wang. 2019. A utility-
optimized framework for personalized private his-
togram estimation. IEEE Trans. Knowl. Data Eng.,
31(4):655–669.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global vectors for word
representation. In EMNLP, pages 1532–1543.

Chen Qu, Weize Kong, Liu Yang, Mingyang Zhang,
Michael Bendersky, and Marc Najork. 2021. Natu-
ral language understanding with privacy-preserving
BERT. In CIKM, pages 1488–1497.

Gerard Salton and Chris Buckley. 1988. Term-
weighting approaches in automatic text retrieval. Inf.
Process. Manag., 24(5):513–523.

Congzheng Song and Ananth Raghunathan. 2020. In-
formation leakage in embedding models. In CCS,
pages 377–390.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In ICLR.

Yanshan Wang, Naveed Afzal, Sunyang Fu, Liwei
Wang, Feichen Shen, Majid Rastegar-Mojarad, and
Hongfang Liu. 2020. MedSTS: a resource for clini-
cal semantic textual similarity. Lang. Resour. Eval.,
54(1):57–72.

Thomas Wolf, Lysandre Debut, et al. 2020. Transform-
ers: State-of-the-art natural language processing. In
EMNLP (Demos), pages 38–45.

Xiang Yue, Minxin Du, Tianhao Wang, Yaliang Li,
Huan Sun, and Sherman S. M. Chow. 2021. Dif-
ferential privacy for text analytics via natural text
sanitization. In ACL/IJCNLP (Findings), pages 3853–
3866.

Ying Zhao and Jinjun Chen. 2022. A survey on differ-
ential privacy for unstructured data content. ACM
Comput. Surv., 54(10s):207:1–207:28.

5756

https://aclanthology.org/2020.findings-emnlp.213
https://aclanthology.org/2020.findings-emnlp.213
https://aclanthology.org/2020.findings-emnlp.213
https://aclanthology.org/2020.findings-emnlp.213
https://doi.org/10.1145/1217299.1217302
https://doi.org/10.1145/1217299.1217302
https://doi.org/10.1109/FOCS.2007.66
https://doi.org/10.1109/FOCS.2007.66
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://aclanthology.org/2021.naacl-main.298
https://aclanthology.org/2021.naacl-main.298
https://aclanthology.org/2021.naacl-main.298
https://aclanthology.org/N16-1018
https://aclanthology.org/N16-1018
https://www.usenix.org/conference/usenixsecurity19/presentation/murakami
https://www.usenix.org/conference/usenixsecurity19/presentation/murakami
https://www.usenix.org/conference/usenixsecurity19/presentation/murakami
https://doi.org/10.1109/TKDE.2018.2841360
https://doi.org/10.1109/TKDE.2018.2841360
https://doi.org/10.1109/TKDE.2018.2841360
https://aclanthology.org/D14-1162
https://aclanthology.org/D14-1162
https://doi.org/10.1145/3459637.3482281
https://doi.org/10.1145/3459637.3482281
https://doi.org/10.1145/3459637.3482281
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1145/3372297.3417270
https://doi.org/10.1145/3372297.3417270
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.1007/s10579-018-9431-1
https://doi.org/10.1007/s10579-018-9431-1
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2021.findings-acl.337
https://aclanthology.org/2021.findings-acl.337
https://aclanthology.org/2021.findings-acl.337
https://doi.org/10.1145/3490237
https://doi.org/10.1145/3490237

ACL 2023 Responsible NLP Checklist

A For every submission:
� A1. Did you describe the limitations of your work?

Left blank.

� A2. Did you discuss any potential risks of your work?
Left blank.

� A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

� A4. Have you used AI writing assistants when working on this paper?
Left blank.

B � Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
Left blank.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C � Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

5757

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Left blank.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D � Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.

5758

