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Abstract
The multi-answer phenomenon, where a ques-
tion may have multiple answers scattered in
the document, can be well handled by humans
but is challenging enough for machine reading
comprehension (MRC) systems. Despite recent
progress in multi-answer MRC, there lacks a
systematic analysis of how this phenomenon
arises and how to better address it. In this work,
we design a taxonomy to categorize commonly-
seen multi-answer MRC instances, with which
we inspect three multi-answer datasets and ana-
lyze where the multi-answer challenge comes
from. We further analyze how well different
paradigms of current multi-answer MRC mod-
els deal with different types of multi-answer
instances. We find that some paradigms cap-
ture well the key information in the questions
while others better model the relationship be-
tween questions and contexts. We thus explore
strategies to make the best of the strengths of
different paradigms. Experiments show that
generation models can be a promising platform
to incorporate different paradigms. Our an-
notations and code are released for further re-
search1.

1 Introduction

In the typical setting of machine reading compre-
hension, such as SQuAD (Rajpurkar et al., 2016),
the system is expected to extract a single answer
from the passage for a given question. However, in
many scenarios, questions may have multiple an-
swers scattered in the passages, and all the answers
should be found to completely answer the ques-
tions, such as the examples illustrated in Figure 1.
Recently, a series of MRC benchmarks featuring
multi-answer instances have been constructed, in-
cluding DROP (Dua et al., 2019), Quoref (Dasigi

∗Corresponding author.
1https://github.com/luciusssss/

how-many-answers

Question
Which two players made the score 10-0 in the second quarter?

Passage
… They would make it 10-0 in the second quarter when Blake Bortles 
found Marqise Lee on a 3-yard pass. …

Answer
Blake Bortles; Marqise Lee

Example A from DROP:

Question
Who wrote the song A Hard Day's Night?

Passage
… It [A Hard Day's Night] was written by John Lennon, with 
collaboration from Paul McCartney. …

Answer
John Lennon; Paul McCartney

Example B from MultiSpanQA:

Figure 1: Two examples from existing multi-answer
MRC datasets.

et al., 2019) and MultiSpanQA (Li et al., 2022).
Most current research efforts focus primarily on
improving the overall QA performance on these
benchmarks (Hu et al., 2019; Segal et al., 2020; Li
et al., 2022). Yet, as far as we know, there still lacks
a systematic analysis of how the phenomenon of
multi-answer arises and how we can better tackle
this challenge.

In this paper, we systematically analyze the cat-
egorization of multi-answer MRC instances and
investigate how to design a strong multi-answer
MRC system. We try to answer the following
research questions: (1) Where does the multi-
answer challenge come from? (2) How do differ-
ent MRC models specifically deal with the multi-
answer challenge? (3) How can we design better
models by combining different multi-answer MRC
paradigms?

We first analyze existing multi-answer MRC
datasets to track the origin of the multi-answer
challenge. Previous works have attempted to cate-
gorize multi-answer instances primarily based on
the distances or relationships between multiple an-
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swers (Li et al., 2022; Ju et al., 2022). Yet, they did
not holistically consider the interaction between
questions and contexts. We observe that in some
cases the number of answers is indicated in the
question itself (two players in Example A of Fig-
ure 1) while in others we have no idea until we read
the documents carefully (Example B of Figure 1).

To better understand this challenge, we develop a
taxonomy for the multi-answer phenomenon, based
on how the number of answers is determined: the
question itself suffices, or both the question and
the passage should be taken into consideration. We
annotate 6,857 instances from DROP, Quoref, and
MultiSpanQA based on our taxonomy and find
that the procedure of dataset construction has a
large influence on the expressions in the questions.
Most questions in crowdsourced datasets contain
certain clues indicating the number of answers. By
contrast, real-world information-seeking questions
are less likely to specify the number of answers,
which is usually dependent on the passages.

We further use our annotations to examine the
performance of current MRC solutions regarding
the multi-answer challenge (Hu et al., 2019; Segal
et al., 2020; Li et al., 2022), which can be catego-
rized into 4 paradigms, i.e., TAGGING, NUMPRED,
ITERATIVE and GENERATION. We analyze their
strengths and weaknesses and find that some efforts,
e.g., NUMPRED, are good at capturing the key in-
formation in the questions, while others, e.g., ITER-
ATIVE, can better model the relation between ques-
tions and contexts. This motivates us to investigate
better ways to benefit from different paradigms.

Given the complementary nature of these
paradigms, we wonder whether a combination of
paradigms improves performance on multi-answer
MRC. We explore two strategies, early fusion and
late ensemble, to benefit from different paradigms.
With a generation model as the backbone, we at-
tempt to integrate the paradigms NUMPRED and
INTERATIVE, in a lightweight Chain-of-Thought
style (Wei et al., 2022). Experiments show that the
integration remarkably improves the performance
of generation models, demonstrating that GENERA-
TION is a promising platform for paradigm fusion.

Our contributions are summarized as follows:
(1) We design a taxonomy for multi-answer MRC
instances according to how the number of answers
can be determined. It considers both questions and
contexts simultaneously, enlightening where the
multi-answer challenge comes from. (2) We anno-

tate 6,857 instances from 3 datasets with our tax-
onomy, which enables us to examine 4 paradigms
for multi-answer MRC in terms of their strengths
and weaknesses. (3) We explore various strategies
to benefit from different paradigms. Experiments
show that generation models are promising to be
backbones for paradigm fusion.

2 Task Formulation

In multi-answer MRC, given a question Q and a
passage P , a model should extract several spans,
A = {a1, a2, ..., an}(n ≥ 1), from P to answer Q.
Each span, ai ∈ A, corresponds to a partial answer
to Q, and the answer set A as a whole answers
Q completely. These spans can be contiguous or
discontiguous in the passage.

We distinguish between two terms, multi-answer
and multi-span, which are often confused in previ-
ous works. Multi-answer indicates that a question
should be answered with the complete set of enti-
ties or utterances. Multi-span is a definition from
the perspective of answer annotations. In certain
cases, the answer annotation of a question can be
either single-span or multi-span, as explained in the
next paragraph. Ideally, we expect that the answers
to a multi-answer question should be annotated as
multi-span in the passage, where each answer is
grounded to a single span, although some of them
can be contiguous in the passage.

Q0: What’s Canada’s official language?
P: [...] English and French, are the official languages
of the Government of Canada. [...]

For example, in Q0, there are two answers, En-
glish and French, to the given question. According
to the annotation guidelines of SQuAD, one might
annotate this instance with a single continuous span
English and French. Yet, this form of annotation is
not preferred in the multi-answer MRC setting. It
blurs the boundary of different answers and fails to
denote explicitly the number of expected answers.
Thus, it is suboptimal for a comprehensive model
evaluation. Instead, we suggest denoting each an-
swer with distinct spans, say, annotating this in-
stance with two spans, English and French. With
this criterion, we can encourage models to disen-
tangle different answers. With fine-grained answer
annotations, we can also assess how well a model
answers a question sufficiently and precisely.

This annotation criterion generally conforms to
the annotation guidelines of existing multi-answer
datasets, e.g., DROP, Quoref and MultiSpanQA.
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MRC Instance

question-dependent

passage-dependent

Is the question sufficient to  
determine #answers?

Yes

No

without-clue-words

with-clue-words

Does the question contain 
explicit clue words?

Yes

No

Figure 2: Illustration of our taxonomy for multi-answer
MRC instances.

Type Question # Ans.

Cardinal Which two players
completed 1-yard TD pass? 2

Ordinal Who scored the first
touchdown of the game? 1

Comp./Super. What’s the largest pizza
chain in America? 1

Alternative
Is San Juan Bautista
incorporated or
unincorporated?

1

Other
Semantics

What are the first names of
the trio who try to call 911? 3

Table 1: Examples of various types of clue words.
Comp./Super. denotes comparatives and superlatives.

A few instances violating the criterion are consid-
ered as bad annotations, as discussed in Section 4.2.
See more remarks on the task formulation in Ap-
pendix A.

3 Taxonomy of Multi-Answer MRC

To better understand the challenge of multi-answer,
we first design a taxonomy to categorize various
multi-answer MRC instances. It assesses how the
number of answers relates to the question or pas-
sage provided. Different from the previous works
that classify questions according to the distances
or relations between multiple answers (Li et al.,
2022; Ju et al., 2022), our taxonomy, taking both
questions and passages into consideration, focuses
on how the number of answers is determined. This
enables us to analyze multi-answer questions and
single-answer questions in a unified way. We illus-
trate our taxonomy in Figure 2 and elaborate on
each category as follows.

Question-Dependent If one can infer the exact
number of answers from the question without re-
ferring to the passage, this instance belongs to
the question-dependent category. According to

whether there are clue words that directly indicate
the number of answers, this type is further divided
into two sub-categories:

(a) In a with-clue-words question, one can
find a few words that indicate the number of an-
swers. In Q1, the word two in the question indicates
that two answers are expected.

Q1: What are the two official languages of Puerto Rico?
P: [...] English is an official language of the Govern-
ment of Puerto Rico. [...] As another official language,
Spanish is widely used in Puerto Rico. [...]

We group the clue words into five types: cardinal,
ordinal, comparative/superlative, alternative, and
other lexical semantics, as illustrated in Table 1.

(b) In a without-clue-words question, al-
though we can not locate obvious clue words, we
can infer the number of answers with sentence se-
mantics or commonsense knowledge. In Q2, we
can determine that there is only one conversion re-
sult for the question based on sentence semantics
instead of any single words.

Q2: 1 light year equal to how many km?
P: [...] The light-year is a unit of length used to express
astronomical distances. It is about 9.5 trillion kilome-
tres or 5.9 trillion miles. [...]

In Q3, we can infer that the following question has
only one answer, based on the commonsense that
there is only one winner of a given Super Bowl.

Q3: Who won Super Bowl XXXIX?
P: [...] The Eagles advanced to Super Bowl XXXIX,
where they dueled the 2004 New England Patriots
season. [...] The Patriots won 24-21. [...]

Passage-Dependent In a passage-dependent
instance, the question itself is not adequate to infer
the number of answers. One needs to rely on the
provided passage to decide how many answers are
needed to answer the question. In Q4, we have no
idea of the number of answers solely based on the
question. If we refer to the passage, we will find
ten answers to the question.

Q4: Which countries does the Danube River flow
through?
P: [...] Originating in Germany, the Danube flows
southeast for 2,850 km, passing through or bordering
Austria, Slovakia, Hungary, Croatia, Serbia, Roma-
nia, Bulgaria, Moldova and Ukraine before draining
into the Black Sea. [...]

4 Analyses of Multi-Answer Datasets

We investigate existing multi-answer datasets based
on our designed taxonomy to analyze where the
multi-answer challenge comes from.
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Dataset All Single-Ans. Multi-Ans.

DROP 3,133 2,609 524
Quoref 2,418 2,198 220
MultiSpanQA 1,306 653 653

Total 6,857 5,460 1,397

Table 2: The number of instances for human annotation
in the validation set of each dataset.

4.1 Datasets

We annotate the validation sets of three widely-
used multi-answer MRC datasets, i.e., DROP (Dua
et al., 2019), Quoref (Dasigi et al., 2019), and Mul-
tiSpanQA (Li et al., 2022). The number of an-
notated questions is listed in Table 2 and more
statistics are in Appendix B.

DROP is a crowdsourced MRC dataset for evalu-
ating the discrete reasoning ability. The annotators
are encouraged to devise questions that require dis-
crete reasoning such as arithmetic. DROP has four
answer types: numbers, dates, single spans, and
sets of spans. Since the previous two types of an-
swers are not always exact spans in the passages,
we only consider the instances whose answers are
single spans or sets of spans.

Quoref focuses on the coreferential phenomena.
The questions are designed to require resolving
coreference among entities. 10% of its instances
require multiple answer spans.

MultiSpanQA is a dataset specialized for multi-
span reading comprehension. The questions are ex-
tracted from NaturalQuestions (Kwiatkowski et al.,
2019), which are real queries from the Google
search engine.

4.2 Annotation

Annotation Process Our annotation process is
two-staged: we first automatically identify some
question-dependent instances and then recruit
annotators to classify the remaining ones.

In the first stage, we automatically identify the
questions containing certain common clue words
such as numerals (full list in Appendix B) to re-
duce the workload of whole-process annotation.
Afterward, the annotators manually check whether
each instance is question-dependent. Out of the
4,594 recalled instances, 3,727 are identified as
question-dependent.

In the second stage, we recruit annotators to
annotate the remaining 3,130 instances. For each
instance, given both the question and the answers,

the annotators should first check whether the form
of answers is correct and mark incorrect cases as
bad-annotation2. We show examples of common
bad-annotation cases in Table 10. After filtering
out the bad-annotation ones, the annotators
are presented with the question only and should
decide whether they could determine the number
of answers solely based on the question. If so, this
instance is annotated as question-dependent;
otherwise passage-dependent. For a
question-dependent instance, the annota-
tors are further asked to extract the clue words,
if any, from the question, which determines
whether the instance is with-clue-words or
without-clue-words.

Quality Control Six annotators participated in
the annotation after qualification. Each instance is
annotated by two annotators. In case of any conflict,
a third annotator resolves it. An instance is clas-
sified as bad-annotation if any annotator labels
it as bad-annotation. Cohen’s Kappa between
two initial annotators is 0.70, indicating substantial
agreement. See more details in Appendix B.

4.3 Analyses of Annotation Results

With our annotated data, we study how the multi-
answer instances differ across different datasets
under our designed taxonomy. We find that the
distributions of instance types are closely related
to how the datasets are constructed.

Instance Types The distributions of instance
types in different datasets are shown in Ta-
ble 3. Question-dependent prevails in DROP and
Quoref, making up over 70% of the two datasets.
In contrast, most instances in MultiSpanQA are
passage-dependent. This difference stems from
how the questions are collected. DROP and Quoref
use crowdsourcing to collect questions with spe-
cific challenges. Given a passage, the annotators
know the answers in advance and produce ques-
tions that can only be answered through certain rea-
soning skills. These artificial questions are more
likely to contain clues to the number of answers,
such as the question with ordinal in Table 1. By
contrast, the questions in MultiSpanQA are col-
lected from search engine queries. Users generally
have no idea of the answers to the queries. The
number of answers, as a result, is more often de-

2In the first stage, the annotators also need to check
whether an instance is bad-annotation.
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Dataset passage-dependent question-dependent bad-annotation
All with-clue-word no-clue-word

DROP 826 (26.4%) 2,242 (71.6%) 2,204 (70.3%) 38 (1.2%) 65 (2.1%)
Quoref 711 (29.4%) 1,704 (70.5%) 1,639 (67.8%) 65 (2.7%) 3 (0.2%)
MultiSpanQA 991 (75.9%) 285 (21.8%) 121 (9.3%) 164 (12.6%) 30 (2.3%)

Total 2,528 (36.9%) 4,231 (61.7%) 3,964 (57.8%) 267 (3.9%) 98 (1.4%)

Table 3: Distribution of instance types in three datasets.

Dataset with-clue-word Cardinal Ordinal Comp./Super. Alternative Other Semantics

DROP 2,204 113 (5.1%) 592 (26.9%) 1,298 (58.9%) 1,214 (55.1%) 135 (6.1%)
Quoref 1,639 83 (5.1%) 35 (2.1%) 25 (1.5%) 0 (0.0%) 1,501 (91.6%)
MultiSpanQA 121 51 (41.8%) 26 (21.3%) 23 (19.0%) 2 (1.6%) 19 (15.6%)

Table 4: Distribution of clue word types in three datasets. A question may contain multiple types of clue words.

pendent on the provided passages, such as Q4 in
Section 3.

Clue Words Since a large portion (57.8%) of the
annotated instances belong to the with-clue-word
type, we further investigate the distribution of clue
words in different datasets, shown in Table 4. On
the one hand, the questions contain a large variety
of clue words, demonstrating the complexity of
multi-answer MRC. On the other hand, the prevail-
ing type of clue words is different in each dataset,
reflecting the preference in dataset construction.
Specifically, nearly 60% of the with-clue-word
questions in DROP are alternative questions with
comparatives/superlatives, because DROP’s anno-
tators are encouraged to inject discrete reasoning
challenges, e.g., comparison, when writing ques-
tions. In Quoref, 91% of the clue words indi-
cate the number of answers through their lexical
semantics. This unbalanced distribution results
from the emphasis on coreference resolution: most
questions begin with what is the name of the per-
son who ..., where name of the person is iden-
tified as clue words. In MultiSpanQA, whose
questions are search engine queries, 63% of the
with-clue-word questions contain numerals. If
users already know the number of desired answers,
they tend to restrict it in the question, such as seven
wonders of the world.

We provide more analyses on of how the instance
types are distributed with respect to the specific
number of answers in Appendix C.

5 Existing Multi-Answer MRC Models

Based on our categorization of the multi-answer
instances, we continue to investigate how exist-
ing multi-answer MRC models perform differently

on various types of multi-answer instances. We
summarize current solutions into four paradigms
according to how they obtain multiple answers, as
illustrated in Figure 3.

TAGGING Segal et al. (2020) cast the multi-
answer MRC task as a sequence tagging prob-
lem, similar to named entity recognition (NER), so
that the model can extract multiple non-contiguous
spans from the context.

NUMPRED (Number Prediction) Hu et al.
(2019) first predict the number of answers k as
an auxiliary task and then select the top k non-
overlapped ones from the output candidate spans.

ITERATIVE Searching for evidence iteratively is
widely adopted in many QA tasks (Xu et al., 2019;
Zhao et al., 2021; Zhang et al., 2021), but it is not
explored in multi-answer MRC. We adapt this idea
to extract multiple answers iteratively. In each itera-
tion, we append the previously extracted answers to
the question, with the word except in between, and
then feed the updated question to a single-answer
MRC model. The iterative process terminates when
the model predicts no more answers.

GENERATION Generation has been adopted as
a uniform paradigm for many QA tasks (Khashabi
et al., 2020, 2022), but it is less explored on multi-
answer MRC. For GENERATION, we concatenate
all answers, with semicolons as separators, to form
an output sequence, and finetune the model to gen-
erate it conditioned on the question and passage.

5.1 Experimental Setup

Implementation Details We use RoBERTa-
base (Liu et al., 2019) for the three extractive
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RoBERTa

Question +

O   O   B   I   O   O   B   I   I   O

Passage

Ans 1 Ans 2

(a) Tagging

RoBERTa

+

(b) NumPred

# Ans: 2 Ans 3

Rank 1:

Rank 2:
Rank 3:

No Ans
Question Passage

Ans 1

Ans 2 Q P

(c) Iterative

except Ans 1

except 
Ans 1, Ans2

+

+Q P

+Q P

Ans 2

Ans 1

RoBERTa
BART

+
(d) Generation

;

PassageQuestion

Ans 1 Ans 2

Figure 3: An illustration of four paradigms for multi-answer MRC.

Model EM PM
P R F1 P R F1

DROP

TAGGING 61.86 63.91 62.87 77.53 77.39 77.46
NUMPRED 61.59 56.77 59.09 76.71 74.86 75.77
ITERATIVE 60.66 60.07 60.36 76.19 76.04 76.11
GENERATION 60.07 57.15 58.58 75.39 72.39 73.86

Quoref

TAGGING 71.00 72.21 71.60 80.44 79.74 80.09
NUMPRED 65.61 63.57 64.57 77.30 78.20 77.75
ITERATIVE 67.28 66.35 66.81 78.57 78.58 78.57
GENERATION 63.57 63.39 63.48 73.38 74.02 73.70

MultiSpanQA

TAGGING 61.31 68.84 64.85 80.45 83.08 81.75
NUMPRED 55.03 46.06 50.15 80.16 75.26 77.63
ITERATIVE 66.32 67.98 67.14 84.39 80.96 82.64
GENERATION 65.40 62.60 63.97 82.06 78.14 80.06

Table 5: Performance of four paradigms on three
datasets.

paradigms and BART-base (Lewis et al., 2020) for
GENERATION. We train models on the training
sets of each dataset and evaluate them on the cor-
responding validation sets with our instance type
annotations. See more details in Appendix D.1.

Metrics We adopt the official metrics of Multi-
SpanQA (Li et al., 2022), including the precision
(P), recall (R), and F1 in terms of exact match (EM)
and partial match (PM). See Appendix D.2 for de-
tails.

5.2 Results and Analyses
We report the overall performance in Table 5, and
the performance on different instance types in Ta-
ble 6. We observe that each of these paradigms has
its own strengths and weaknesses.

TAGGING outperforms other paradigms on
DROP and Quoref, whose dominating instance
type is question-dependent. Although TAG-
GING has no explicit answer number prediction
step, it can still exploit this information implicitly
because it takes the question into account during

Model p-dep. q-dep.
All w/-clue w/o-clue

DROP

TAGGING 74.57 79.11 80.88 68.77
NUMPRED 72.37 77.54 79.32 70.08
ITERATIVE 73.47 77.60 79.21 65.73
GENERATION 72.18 74.77 76.19 72.62

Quoref

TAGGING 70.60 84.86 85.23 75.76
NUMPRED 69.45 81.88 82.44 70.12
ITERATIVE 71.42 82.18 82.37 77.30
GENRATION 66.31 77.41 78.38 52.63

MultiSpanQA

TAGGING 82.28 79.66 86.60 73.36
NUMPRED 77.77 77.11 78.19 78.77
ITERATIVE 82.78 82.09 87.22 77.80
GENERATION 80.57 78.05 81.73 75.85

Table 6: The performance (PM F1) of four
paradigms on different types of instances. p-dep.
denotes passage-dependent. q-dep. denotes
question-dependent.

the sequential processing of every token. Besides,
TAGGING, as a common practice for entity recogni-
tion, is good at capturing the boundaries of entities.
Thus, it is not surprising that it performs the best
on DROP and Quoref, most of whose answers are
short entities.

ITERATIVE achieves the best overall perfor-
mance on MultiSpanQA, whose prevailing instance
type is passage-depenent. This paradigm does
not directly exploit the information of the number
of answers given in the question. Rather, it encour-
ages adequate interactions between questions and
passages, performing single-answer extraction at
each step. As a result, ITERATIVE does well for
the questions whose number of answers heavily
depends on the given context.

As for NUMPRED, although we expect high per-
formance on question-dependent instances, it
lags behind TAGGING by approximately 2% in
PM F1 on DROP and Quoref. This might result
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Input
[Q] What  are Canada’s 
official languages? [P] 
Canada granted English 
and French the status of 
official languages …

Output
English; French

Vanilla Generation

Input
[Q] What  are 
Canada’s official 
languages? [P] …

Output
There are 2 answers: 
English; French

+NumPred (multitask)

Input
[Q] What  are 
Canada’s official 
languages? There 
are 2 answers. [P]…

Output
English; French

+NumPred (pipeline)

Input
[Q] What  are 
Canada’s official 
languages? 
[P] …

Output
English

+Iterative (normal)

Input
[Q] What  are 
Canada’s official 
languages except 
English? [P] …

Output
French

Input
[Q] What  are 
Canada’s official 
languages except 
English and 
French? [P] …

Output
No answer

Input
[Q] What  are Canada’s 
official languages? [P] …

Output
English; The number of 
remaining answer is 1

+Iterative (number)

[Q] What  are Canada’s 
official languages except 
English?  [P] …

Output
French; The number of 
remaining answer is 0

Input

Figure 4: An illustration of different strategies for early
fusion of paradigms.

from the gap between training and inference. The
model treats the answer number prediction and an-
swer span extraction as two separate tasks during
training, with limited interaction. Yet during in-
ference, the predicted number of answers is used
as a hard restriction on multi-span selection. Dif-
ferent from the decent performance on DROP and
Quoref, NUMPRED performs worst among the four
paradigms on MultiSpanQA, because it is difficult
for models to accurately predict the number of an-
swers for a long input text that requires thorough
understanding.

Among all paradigms, GENERATION generally
performs the worst. Under the same parameter
scale, extractive models seem to be the better
choice for tasks whose outputs are exact entity
spans from the input, while generation models do
well in slightly longer answers. This also explains
the smaller gap between GENERATION and extrac-
tive paradigms on MultiSpanQA compared to that
on DROP and Quoref: MultiSpanQA has many
descriptive long answers instead of short entities
only.

6 Fusion of Different Paradigms

From the above analysis, we can see that extrac-
tive methods can better locate exact short spans in
the passage, and NUMPRED can provide potential

guidance on the number of answers. Meanwhile,
the generation models can better handle longer an-
swers and are more adaptable to different forms of
inputs and outputs. Now an interesting question is
how to combine different paradigms to get the best
of both worlds.

We explore two strategies for combining differ-
ent paradigms: early fusion and late ensemble.
The former mixes multiple paradigms in terms of
model architectures while the latter ensembles the
predictions of different models. We discuss our
exploration of late ensemble in Appendix E.1 since
model ensemble is a well-explored technique. Here
we primarily elaborate on early fusion. We carry
out a series of pilot studies to demonstrate the po-
tential of paradigm fusion.

Previous works attempt to fuse two extractive
paradigms, TAGGING and NUMPRED (Segal et al.,
2020; Li et al., 2022). However, they only lead
to marginal improvements, probably because TAG-
GING can already implicitly determine answer num-
bers well and the help of NUMPRED is thus limited.

Although the performance of base-size genera-
tion models on multi-answer MRC is inferior to
that of extractive ones, generation models of larger
sizes show great potential with more parameters
and larger pre-training corpora (Khashabi et al.,
2020, 2022). More importantly, GENERATION can
easily adapt to various forms of inputs and out-
puts. We carry out pilot studies using a genera-
tion model as the backbone and benefiting from
the ideas of other paradigms. We propose sev-
eral lightweight methods to combine GENERATION

with NUMPRED and ITERATIVE, as illustrated in
Figure 4.

GENERATION + NUMPRED Inspired by recent
works on Chain-of-Thought (Wei et al., 2022),
we guide the model with prompts indicating the
number of answers. We introduce a NUMPRED
prompt sentence (NPS) in the form of There
are {2, 3, ...} answers/There is only one answer.
We experiment with two variants, multitask and
pipeline. In the multitask variant, the model out-
puts an NPS before enumerating all the answers.
In the pipeline variant, we predict the number of
answers with a separate classifier and then append
the NPS to the question as extra guidance.

GENERATION + ITERATIVE We substitute the
original extractor of ITERATIVE with a generator.
The iterative process terminates when the model
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outputs the string No answer. Besides the normal
setting, we experiment with another variant that
additionally outputs an NPS in the form of The
number of remaining answers is {1, 2, 3, ...}.

Results Our main experiments are conducted
with BART-base and BART-large due to our lim-
ited computational budget. For the pipeline variant
of GENERATION + NUMPRED, we use RoBERTa-
base as an answer number classifier. The overall
experiment results are reported in Table 7 and the
results on different question types are reported in
Appendix E.2.

When GENERATION is multitasking with
NUMPRED, it outperforms the vanilla one con-
sistently. The NPS in the output provides a soft
but useful hint for the succeeding answer gener-
ation, improving the accuracy of answer number
prediction by 1.7% on average for BART-base. The
pipeline variant is often inferior to the multitask-
ing one due to error propagation. Especially, its
performance drops a lot on MultiSpanQA, whose
instances are passage-dependent. The accuracy
of the answer number classifier on MultiSpanQA
lags behind that on the other two datasets by more
than 12%. Thus the NPS in the input, with an unre-
liably predicted answer number, is more likely to
mislead the subsequent answer span generation.

The combination of GENERATION and ITERA-
TIVE does not always lead to improvement. This
might be because the answer generation process
of GENERATION is already in an iterative style:
in the output sequence, each answer is generated
conditioned on the previously-generated ones. The
incorporation of ITERATIVE thus does not lead to
further improvement. When we further introduce
an NPS with the number of remaining answers, the
performance generally outperforms the normal set-
ting. This proves that GENERATION, as a backbone,
is easy to integrate with various hints.

Pilot Study on GPT-3.5 To investigate whether
these fusion strategies work on larger models, we
conduct a pilot study on GPT-3.5. We use the 653
multi-answer instances in the validation set of Mul-
tiSpanQA for experiments. The prompts are listed
in Appendix E.2. The experiment results are shown
in Table 8.

When given only one example for in-context
learning, GPT-3.5 can already achieve 79.27% PM
F1 on the multi-answer instances, with only a small
gap between BART trained on full data. Its EM

Model Base Large
EM PM EM PM

DROP

Vanilla GENERATION 58.58 73.86 66.43 80.55
+NUMPRED (multitask) 60.02 74.34 69.61 82.85
+NUMPRED (pipeline) 59.19 73.94 66.45 80.63
+ITERATIVE (normal) 58.44 73.58 66.55 80.53
+ITERATIVE (number) 58.98 74.07 68.19 82.17

Quoref

Vanilla GENERATION 63.48 73.70 76.57 84.47
+NUMPRED (multitask) 66.25 75.43 77.04 84.45
+NUMPRED (pipeline) 67.94 77.42 75.42 83.66
+ITERATIVE (normal) 68.81 78.23 74.72 82.60
+ITERATIVE (number) 63.33 73.34 76.67 84.57

MultiSpanQA

Vanilla GENERATION 63.97 80.06 69.13 84.61
+NUMPRED (multitask) 64.85 80.58 69.31 84.82
+NUMPRED (pipeline) 39.71 60.94 45.34 68.09
+ITERATIVE (normal) 63.26 79.97 65.62 82.88
+ITERATIVE (number) 63.84 80.04 66.77 83.41

Table 7: The performance (EM F1 and PM F1) of dif-
ferent strategies for early fusion of paradigms.

Model Setting EM F1 PM F1

Vanilla BART-base Supervised 66.77 81.24
Vanilla BART-large Supervised 71.93 85.83
Vanilla GPT-3.5 One-Shot 53.34 79.27
GPT-3.5 + NUMPED One-Shot 63.45 82.38

Table 8: The performance of BART and GPT-3.5 on the
multi-answer instances of MultiSpanQA.

F1 score is low because GPT-3.5 cannot handle
the boundaries of answer spans well. This is not
unsurprising since one example is not sufficient for
GPT-3.5 to learn the annotation preference of span
boundaries in MultiSpanQA. If we ask GPT-3.5 to
predict the number of answers before giving all the
answers, we observe an improvement of 10.1% EM
F1 and 3.1% PM F1. This proves the effectiveness
of fusing NUMPED with larger generation models

As evidenced by the above trials, it is promising
to fusion different paradigms. We hope that our ex-
ploration will inspire future works adopting larger
generation models for multi-answer MRC.

7 Related Works

Compared to the vast amount of single-answer
MRC datasets, the resources for multi-answer
MRC are limited. Aside from the datasets in Sec-
tion 4.1, MASH-QA (Zhu et al., 2020) focuses
on the healthcare domain, with 27% of the ques-
tions having multiple long answers, ranging from
phrases to sentences. CMQA (Ju et al., 2022) is
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another multi-answer dataset in Chinese, featuring
answers with conditions or different granularities.
For our analysis, we select two commonly-used
datasets, DROP and Quoref, as well as a newly-
released dataset, MultiSpanQA.

Current models addressing multi-answer MRC
generally fall into two paradigms: TAGGING (Se-
gal et al., 2020) and NUMPRED (Hu et al., 2019),
as explained in Section 5. ITERATIVE (Xu et al.,
2019; Zhao et al., 2021; Zhang et al., 2021; Gao
et al., 2021) and GENERATION (Khashabi et al.,
2020, 2022) have been adopted for many types of
QA tasks including knowledge base QA, multiple-
choice QA, and open-domain QA. Nevertheless,
their performance on multi-answer MRC is less
explored. In our paper, we also study how to adapt
these paradigms for multi-answer MRC. Apart
from the exploration of model architectures for
multi-answer MRC, Lee et al. (2023) attempt to
generate multi-answer questions as data augmenta-
tion.

Previous works have made preliminary attempts
in fusing two extractive paradigms. Segal et al.
(2020) adopt a single-span extraction model for
single-answer questions and TAGGING for multi-
answer questions; Li et al. (2022) add a NUMPRED

head to the TAGGING framework. The predicted
number of answers is used to adjust the tagging re-
sults. Both strategies lead to marginal improvement
over the baselines. We instead resort to GENERA-
TION for paradigm fusion, considering its potential
with larger sizes and its flexibility in inputs and
outputs.

8 Conclusion

In this paper, we conduct a systematic analysis for
multi-answer MRC. We design a new taxonomy for
multi-answer instances based on how the number of
answers is determined. We annotate three datasets
with the taxonomy and find that multi-answer is
not merely a linguistic phenomenon; rather, many
factors contribute to it, especially the process of
data collection. With the annotation, we further
investigate the performance of four paradigms for
multi-answer MRC and find their strengths and
weaknesses. This motivates us to explore various
strategies of paradigm fusion to boost performance.
We believe that our taxonomy can help determine
what types of questions are desirable in the anno-
tation process and aid in designing more practical
annotation guidelines. We hope that our annota-

tions can be used for more fine-grained diagnoses
of MRC systems and encourage more robust MRC
models.

Limitations

First, our taxonomy of multi-answer MRC in-
stances only considers whether we know the exact
number of answers from the questions. In some
cases, one might have an imprecise estimate of
answer numbers from the question. For example,
for the question Who are Barcelona’s active play-
ers?, one might estimate that there are dozens of
active players for this football club. Yet, these esti-
mations are sometimes subjective and difficult to
quantify. Therefore, this instance is classified as
passage-dependent according to our current tax-
onomy. We will consider refining our taxonomy to
deal with these cases in the future.

Second, we did not conduct many experiments
with pre-trained models larger than the large-size
ones due to limited computational budgets. Gen-
eration models of larger sizes show great poten-
tial with more parameters and larger pre-training
corpora. We encourage more efforts to deal with
multi-answer MRC with much larger models, such
as GPT-3.5.
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A Additional Remarks on Task
Formulation

As discussed in Section 2, multi-answer and multi-
span are two orthogonal concepts. We have already
shown an example (Q0 in Section 2) where a multi-
answer question can be annotated as single-span by
certain annotation guidelines. Here is another ex-
ample to demonstrate the difference between multi-
answer and multi-span.

Q: Which offer of Triangle-Transit is most used by
students?
P: [...] Triangle-Transit offers scheduled, fixed-route
regional and commuter bus service. The first is most
used by students.

This is an example where a single-answer ques-
tion can be annotated as multi-span. A single an-
swer, scheduled bus service, will be annotated as
multiple-span, i.e., scheduled and bus service in
the passage.

Considering the differences between multi-
answer and multi-span, we suggest carefully dis-
tinguishing between these two terms in the future.

B Annotation Details

Dataset Statistics We report more statistics of
the annotated datasets in Table 9. MultiSpanQA
has the largest average number of answers since it
is a dataset designed especially for multi-answer
questions. The answers in MultiSpanQA are gener-
ally longer than those in DROP and Quoref because
many of the answers in MultiSpanQA are long de-
scriptive phrases or clauses instead of short entities.
For all three datasets, the distances between an-
swers are large. This indicates that the answers to
a large proportion of the questions are discontigu-
ous in the passages, demonstrating the difficulty of
multi-answer MRC.

Dataset DROP Quoref MultiSpanQA

Length of Question 9.4 15.5 9.0
Length of Context 214.7 326.0 219.9
Length of Answer 1.9 1.6 3.1

#Answers 1.2 1.1 1.9
#Answers (Multi) 2.5 2.4 2.9

Distance Between Ans. 30.5 17.3 10.3

Table 9: Dataset Statistics, including the (a) average
length (in words) of questions, contexts, and answers,
(b) the average number of answers for all the instances
and the multi-answer ones, (c) the average distances (in
words) between answers.

Pre-defined Clue Words Here, we list the pre-
defined clue words in the first stage of annotation:

• Numerals, including cardinals and ordinals
• Comparatives and superlatives
• The word or, as an indicator of alternative ques-

tions.
• Other words, including only, last, single, name

of the person, and, top.

Selection of Annotators A total of 10 graduates
proficient in English participated in our annotation
task. We first provided training materials to the
annotators and asked them to annotate 100 sample
instances. Based on their annotation accuracy on
the sample instances, six of them are qualified to
continue annotating the remaining instances. The
annotators are paid $10 per hour, which is adequate
given the participants’ demographic. The annota-
tors are informed of how the data would be used.

Examples of Bad Annotations In Table 10,
we present several examples we marked as
bad-annotation. Common reasons for bad an-
notations including incorrect segmentation of an-
swers, irrelevant answers, and duplicate answers.

C Additional Analyses on Annotation
Results

We report more statistics of the annotation results
in Table 11 and Table 12, and conduct additional
analyses from the perspective of the number of
answers.

For multi-answer instances,
passage-dependent questions account for the
largest proportion, followed by with-clue-word.
As for the single-answer instances in DROP and
Quoref, they tend to be question-dependent,
while in MultiSpanQA most of them are
passage-dependent. In terms of the clue words
in the with-clue-word questions, cardinal num-
bers are more common in multi-answer questions
while other types of clue words are more likely to
appear in single-answer questions.

D Experimental Setup

D.1 Implementation Details
We use base-size models for our main experiments
for sake of energy savings. Since T5-base has
twice as many parameters as RoBERTa-base and
BART-base, we did not use it to ensure fair com-
parisons. We carefully tune each model on the
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Type Example Explanation

Incorrect segmentation
of answers

Source: DROP
Question: Which event occurred first, Duke
Magnus Birgersson started a war or Erik Klip-
ping gathered a large army?
Annotated Answers: Duke Magnus Birgers-
son; started a war

The correct answer Duke Mag-
nus Birgersson started a war is
wrongly split into two spans, Duke
Magnus Birgersson and started a
war.

Irrelevant Answers Source: DROP
Question: Who scored first in the second half
of the game, Cowboys or 49ers?
Annotated Answers: end of the half; San
Francisco scored; making the score 28-14

All three annotated answers are
not related to the questions. A cor-
rect answer should be either Cow-
boys or 49ers.

Duplicate answers Source: MultiSpanQA
Question: who benefited by title ix of the edu-
cation amendments
Annotated Answers: women; women playing
college sports

One annotead answer, women is
duplicated with the other, women
playing college sports.

Table 10: Examples and explanations of bad-annotation cases.

#Ans p-dep. q-dep.
w/-clue w/o-clue

DROP

1 480 2,085 37
2 209 105 1
3 74 11 0
>3 63 3 0

Quoref

1 582 1,548 65
2 82 62 0
3 28 23 0
>3 19 6 0

MultiSpanQA

1 448 56 140
2 300 32 22
3 131 14 2
>3 112 19 0

Table 11: Distribution of question types accord-
ing to the number of answers. p-dep. de-
notes passage-dependent. q-dep. denotes
question-dependent.

training set and report its best performance on the
validation set. We use an NVIDIA A40 GPU for
experiments. A training step takes approximately
0.5s for RoBERTa-base and 0.2s for BART-base.
We describe the implementation details of different
models here.

TAGGING We use the implementation by Segal
et al. (2020)3. We use the IO tagging variant, which
achieves the best overall performance according to
the original paper. We adopt the best-performing

3https://github.com/eladsegal/
tag-based-multi-span-extraction

#Ans Alternative Cardinal Comp./Super. Ordinal Others

DROP

1 1,213 3 1,293 588 132
2 1 97 4 3 3
3 0 11 0 0 0
>3 0 2 1 1 0

Quoref

1 0 1 25 35 1,492
2 0 55 0 0 7
3 0 21 0 0 2
>3 0 6 0 0 0

MultiSpanQA

1 2 1 14 25 14
2 0 21 5 1 5
3 0 12 2 0 0
>3 0 17 2 0 0

Table 12: Distribution of clue word types in three
datasets according to the number of answers.

hyperparameters provided by the original paper.

NUMPRED Because the implementation by the
original paper (Hu et al., 2019)4 does not support
RoBERTa, we re-implement the model with Hug-
gingface Transformers (Wolf et al., 2020)5. We
use the representation of the first token in the input
sequence for answer number classification. The
maximum number of answers of the classifier is
8. The batch size is 12. The number of training
epochs is 10. The learning rate is 3e-5. The maxi-
mum sequence length is 512.

ITERATIVE Our implementation is based on the
scripts of MRC implemented by Huggingface. Dur-

4https://github.com/huminghao16/MTMSN
5https://github.com/huggingface/transformers
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ing training, the order of answers for each iteration
is determined by their order of position in the pas-
sage. The batch size is 8. The number of training
epochs is 8. The learning rate is 3e-5. The maxi-
mum sequence length is 384. During inference, the
beam size is set to 3 and the length penalty is set to
0.7. The maximum length of answers is 10.

GENERATION Our implementation is based on
the scripts of sequence generation implemented by
Huggingface. The batch size is 12. The learning
rate is 3e-5. The number of training epochs is 10.
The maximum input length is 384. The maximum
output length is 60.

D.2 Evaluation Metrics
Here, we describe the evaluation metrics used in
our experiments, which are the official ones used
by MultiSpanQA (Li et al., 2022). The metrics
consist of two part: exact match and partial match.

Exact Match An exact match occurs when a pre-
diction fully matches one of the ground-truth an-
swers. We use micro-averaged precision, recall,
and F1 score for evaluation.

Partial Match For each pair of prediction pi and
ground truth answer tj , the partial retrieved score
sretij and partial relevant score srelij are calculated as
the length of the longest common substring (LCS)
between pi and tj , divided by the length of pi and
tj respectively, as:

sretij =
len(LCS(pi, tj))

len(pi)

srelij =
len(LCS(pi, tj))

len(tj)

Suppose there are n predictions and m ground
truth answers for a question. We compute the par-
tial retrieved score between a prediction and all
answers and keep the highest one as the retrieved
score of that prediction. Similarly, for each ground
truth answer, the relevant score is the highest one
between it and all predictions. The precision, recall,
and F1 are finally defined as follows:

Precision =

∑n
i=1maxj∈[1,m](s

ret
ij )

n

Recall =

∑m
j=1maxi∈[1,n](srelij )

m

F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

We use micro-averaged scores for these metrics.

E Additional Experiment Results

E.1 Late Ensemble
By late ensemble, we aggregate the outputs from
models of different paradigms to boost perfor-
mance. We experiment with a simple voting strat-
egy. If a span is predicted as an answer by more
than one model, we add it to the final prediction
set. If a span is part of another span, we consider
them equivalent and take the longer one. In rare
cases where the four models predict totally differ-
ent answers, we add them all to the final prediction
set.

Our voting strategy leads to improvements of
1.0%, 1.2%, and 1.3% in PM F1 on DROP, Quoref,
and MultiSpanQA, respectively, over the best-
performing models in Table 5. Yet, this strategy
might discard many correct answers. In the fu-
ture, we can explore more sophisticated strategies.
For example, similar to the idea of Mixture of Ex-
perts (Jacobs et al., 1991), the system can evaluate
the probability that the instance belongs to a certain
category and then adjust the weight of the model
based on its capabilities in this category.

E.2 Early Fusion
In Table 13, we report the performance of different
strategies for early fusion on different types of in-
stances. In Table 14, we list the prompts used for
our pilot study on GPT-3.5.

F Licenses of Scientific Artifacts

The license for Quoref and DROP is CC BY
4.0. The license for HuggingFace Transformers
is Apache License 2.0. Other datasets and models
provide no licenses.
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BART-base BART-large

Model p-dep. q-dep. p-dep. q-dep.
All w/-clue w/o-clue All w/-clue w/o-clue

DROP

Vanilla GENERATION 72.18 74.77 76.19 72.62 78.57 81.65 83.42 77.31
+NUMPRED (multitask) 72.45 75.37 76.80 70.58 80.35 84.24 86.06 77.88
+NUMPRED (pipeline) 70.58 75.72 77.14 76.77 76.79 82.66 84.34 79.65
+ITERATIVE (normal) 71.82 74.55 75.97 68.26 78.07 81.90 83.56 74.03
+ITERATIVE (number) 71.90 75.27 76.66 72.93 80.58 83.05 84.91 72.66

Quoref

Vanilla GENERATION 66.31 77.41 78.38 52.63 76.41 88.51 88.90 79.76
+NUMPRED (multitask) 67.54 79.37 80.15 58.30 77.73 87.88 88.11 82.35
+NUMPRED (pipeline) 66.26 82.88 83.55 65.20 75.37 87.71 88.22 77.36
+ITERATIVE (normal) 69.40 82.68 83.24 68.24 73.13 87.43 87.93 77.20
+ITERATIVE (number) 65.79 77.16 77.97 55.63 77.69 88.09 88.59 75.41

MultiSpanQA

Vanilla GENERATION 80.57 78.05 81.73 75.85 84.52 84.96 88.78 81.65
+NUMPRED (multitask) 81.08 78.65 81.09 77.73 84.83 84.80 89.66 81.06
+NUMPRED (pipeline) 60.24 63.56 68.67 58.25 67.27 71.21 74.53 69.33
+ITERATIVE (normal) 80.46 78.06 81.81 74.78 83.16 81.78 84.84 80.87
+ITERATIVE (number) 80.15 79.63 83.47 76.17 83.49 83.06 86.08 80.44

Table 13: The performance (PM F1) of different strategies for early fusion on different types of instances. p-dep.
denotes passage-dependent. q-dep. denotes question-dependent.

Vanilla GPT-3.5
Answer the question based on the given context. Each question has more than one answer. Please give all the answers and
separate them with a semicolon.
Context: Laura Horton is a fictional character from the NBC soap opera , Days of Our Lives , a long - running serial drama
about working class life in the fictional , United States town of Salem . Created by writer Peggy Phillips , the role was
originated by actress Floy Dean on June 30 , 1966 till October 21 , 1966 . Susan Flannery stepped into the role from
November 22 , 1966 to May 27 , 1975 . Susan Oliver briefly stepped into the role from October 10 , 1975 , to June 9 , 1976 ,
followed by Rosemary Forsyth from August 24 , 1976 , to March 25 , 1980 .
Question: who played laura horton on days of our lives
Answers: Floy Dean; Susan Flannery; Susan Oliver; Rosemary Forsyth

Following the example above and answer the following multi-answer question. Please give all the answers and separate
them with a semicolon.
Context: {context}
Question: {question}
Answers:

GPT-3.5 + NUMPED
Answer the question based on the given context. Each question has more than one answer. Please predict the number of
answers first, then give all the answers and separate them with a semicolon.
Context: Laura Horton is a fictional character from the NBC soap opera , Days of Our Lives , a long - running serial drama
about working class life in the fictional , United States town of Salem . Created by writer Peggy Phillips , the role was
originated by actress Floy Dean on June 30 , 1966 till October 21 , 1966 . Susan Flannery stepped into the role from
November 22 , 1966 to May 27 , 1975 . Susan Oliver briefly stepped into the role from October 10 , 1975 , to June 9 , 1976 ,
followed by Rosemary Forsyth from August 24 , 1976 , to March 25 , 1980 .
Question: who played laura horton on days of our lives
Answers: The number of answers is 4: Floy Dean; Susan Flannery; Susan Oliver; Rosemary Forsyth

Following the example above and answer the following multi-answer question. Please predict the number of answers first,
then give all the answers and separate them with a semicolon.
Context: {context}
Question: {question}
Answers:

Table 14: The one-shot prompts for GPT-3.5 to answer multi-answer questions in MultiSpanQA.
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