
Findings of the Association for Computational Linguistics: ACL 2023, pages 5828–5843
July 9-14, 2023 ©2023 Association for Computational Linguistics

An Exploration of Encoder-Decoder Approaches to
Multi-Label Classification for Legal and Biomedical Text

Yova Kementchedjhieva∗ Ilias Chalkidis∗
Department of Computer Science, University of Copenhagen, Denmark

{yova,ilias.chalkidis}[at]di.ku.dk

Abstract

Standard methods for multi-label text clas-
sification largely rely on encoder-only pre-
trained language models, whereas encoder-
decoder models have proven more effective
in other classification tasks. In this study,
we compare four methods for multi-label clas-
sification, two based on an encoder only,
and two based on an encoder-decoder. We
carry out experiments on four datasets—two
in the legal domain and two in the biomed-
ical domain, each with two levels of label
granularity— and always depart from the same
pre-trained model, T5. Our results show that
encoder-decoder methods outperform encoder-
only methods, with a growing advantage on
more complex datasets and labeling schemes
of finer granularity. Using encoder-decoder
models in a non-autoregressive fashion, in par-
ticular, yields the best performance overall, so
we further study this approach through abla-
tions to better understand its strengths.

1 Introduction

Multi-label classification constitutes the task of
predicting multiple labels for an input as opposed to
a single (possibly binary) one. The labels are drawn
from a set of up to several hundred classes, often
with the added challenge of class imbalance. While
the order in which labels are predicted is irrelevant,
there can be interdependence between subsets of
labels. The task is commonly approached with a
classification model based on a pre-trained encoder
followed by a multi-output classification head.

Encoder-decoder models, like T5 (Raffel et al.,
2020), have taken over recent NLP literature with
state-of-the-art results on various tasks, such as
question-answering (QA), summarization, single-
label classification, etc. Raffel et al. (2020) showed
that any given NLP task could be reformulated
as a text-to-text task and solved with conditional

∗ Equal contribution.

generation, i.e., generating a text sequence that
represents the desired output, be that a span of
text in QA, a text summary, a label descriptor, etc.
Liu et al. (2021) presented an alternative use of
encoder-decoder models for classification tasks in
particular, wherein T5’s decoder is used in a non-
autoregressive fashion to obtain output representa-
tions, which are then fed to a classification head.

The application of encoder-decoder methods to
multi-label classification is currently limited to
one experiment in the work of Liu et al. (2021),
who compare a text-to-text approach and their non-
autoregressive approach on a single dataset, includ-
ing an encoder-only baseline built off of a differ-
ent pre-trained model, BERT (Devlin et al., 2019).
They obtain results favorable to the two encoder-
decoder methods, but since the focus of their work
is not multi-label classification in particular, their
evaluation is insufficient to draw hard conclusions
about this task, and analysis on the contribution of
different model components to performance on the
task is missing altogether.

In this work, we carry out an extensive study of
encoder-decoder approaches to multi-label classifi-
cation. To ensure the thorough and fair evaluation
of all methods:

(a) We experiment on four datasets from two dif-
ferent domains (legal and biomedical), each
with two levels of label granularity.

(b) We include four methods for multi-label clas-
sification, two encoder-only methods and two
encoder-decoder methods.

(c) We conduct preliminary development to deter-
mine the best configuration for the application
of each method, e.g. choice of label descrip-
tors for the text-to-text approach.

(d) We explore how model size affects perfor-
mance, by fine-tuning small, base, and large
T5 models.
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(e) We ablate components of the best perform-
ing approach, the non-autoregressive encoder-
decoder method of Liu et al. (2021), to better
understand its strengths.

We release our code base to assure reproducibility
and let others extend our study by experimenting
with new methods and more datasets.1

2 Related Work

Class imbalance is a critical issue in multi-label
classification, with researchers searching for the
best method to handle rare (less represented) labels.

Encoder-only Approaches Snell et al. (2017) in-
troduced the idea of a prototype label vector, ob-
tained by averaging over all instances of a given
class and used to add inductive bias to their Proto-
typical Network for multi-label classification. In a
similar vein, Mullenbach et al. (2018) developed
the Label-Wise Attention Network (LWAN) archi-
tecture, in which label-wise document represen-
tations are obtained by learning to attend to the
most informative input words for each label, using
trainable label vectors as keys.

Chalkidis et al. (2020) systematically studied
the effects of different language encoders (CNNs,
BIGRUs, BERT) and several variants of LWAN
with regards to the representation of prototype la-
bels. Experimenting with three datasets (EURLEX,
MIMIC-III, and AMAZON), they showed that bet-
ter language encoders counter-play the positive
effect of the LWAN module, i.e., a standard BI-
GRU classifier outperforms CNN-based LWANs
(Mullenbach et al., 2018), and a standard BERT
outperforms BIGRU-LWAN, respectively. More-
over, BERT-based LWANs offer minor overall im-
provements compared to a vanilla BERT classi-
fier, wherein BERT’s CLS token representation is
passed to a classification head (Devlin et al., 2019).

Chalkidis et al. (2021) were the first to explore
the use of a T5 model for multi-label classification,
although they only considered an encoder-only clas-
sifier, disregarding the model’s decoder. They fol-
lowed the now standard approach of a classifica-
tion head on top of the </s> token representation.
In experiments with mT5 (Xue et al., 2021), they
showcased improved results compared to XLM-
R (Conneau et al., 2020) on a newly introduced
multilingual dataset, MultiEURLEX.

1https://github.com/coastalcph/
Multi-Label-Classification-T5

Encoder-Decoder Approaches Text-to-text ap-
proaches, which utilize the full encoder-decoder
model, have proven effective for binary and single-
label classification tasks (Raffel et al., 2020; Chung
et al., 2022). The key to such approaches are la-
bel verbalizers, words in natural language which
verbalize the underlying semantics of a given class.
Label verbalizers are represented in the embedding
space of pre-trained models and in this way bene-
fit from the model pre-training. This can be more
optimal especially for few- and zero-shot labels, in
comparison to head-based classification methods
where randomly initialized parameters have to be
learned from scratch.

Liu et al. (2021) presented an alternative use of
the full T5 model for non-autoregressive tasks, e.g.
single-label and multi-label classification, wherein
the decoder is used to obtain label-wise represen-
tations informed by the input document, which in
turn are fed to label-specific binary classification
heads. Liu et al. (2021) performed one set of ex-
periments on the EURLEX-57K dataset (Chalkidis
et al., 2019), in which they compared their non-
autoregressive approach to a T5-based text-to-text
approach and a standard BERT-based classifier.
They found that both T5-based approaches out-
performed the encoder-only classifier, the non-
autoregressive method performing best. Nonethe-
less, the encoder-only classifier had less than half
the parameters of the T5 model (110M vs 222M).
Encoder-decoder approaches thus seem to carry
potential for multi-label classification, still with
insufficient empirical evidence, however.

3 Methods

We experiment with four methods for multi-label
classification, Encoder+Head, LWAN, Seq2Seq,
and T5Enc, basing their implementation on the T5
model (Raffel et al., 2020). T5 is a transformer-
based encoder-decoder model (Vaswani et al.,
2017), which encodes a string of input tokens and
generates a string of output tokens.

All methods discussed below use T5’s encoder
to represent input documents, a document being de-
noted as [x1, x2, . . . , xN], where N is the document
length in terms of T5 subword tokens. Some meth-
ods further use the model’s decoder—we introduce
decoder notation where needed.

Encoder+Head In this case, we use only the en-
coder of T5 in the standard classification setting,
as introduced by Devlin et al. (2019). We feed the
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Figure 1: Depiction of the four task-specific methods for multi-label classification: encoder-only (Encoder+Head,
LWAN), and encoder-decoder (Seq2seq, T5Enc). x: input tokens, y: label predictions, s: label descriptor tokens, d:
label descriptors, N: input sequence length, L: label set size, M: length of tokenized label sequence.

document to the encoder, and use the representation
of the special </s> token as document representa-
tion (d ∈ IRdim). This representation is passed to L
standard classification heads, one per label.

LWAN In this case, we use a Label-Wise Atten-
tion Network (LWAN) (Mullenbach et al., 2018)
on top of the T5 encoder, as done in Chalkidis
et al. (2020). We feed the document to the encoder,
and use one attention head per label to generate
L label-wise document representations dl ∈ IRdim,
i.e., L weighted averages of the contextualized to-
ken representations. Intuitively, each head focuses
on possibly different tokens of the document rele-
vant to the corresponding label. LWAN employs
L linear layers (ol ∈ IRdim×1) each operating on a
different label-wise document representation dl, to
produce L scores (logits), one per label.

Seq2Seq In this case, we use T5 for conditional
generation, which is the standard form of use, since
T5 was trained in an autoregressive fashion. The
target labels are formatted as a sequence of label
descriptors, separated by a comma and a space,
and ordered alphabetically, e.g., ‘EU, finance’. We
feed the document to the encoder and use the de-
coder to generate the tokenized output sequence,
[s1, s2, . . . , sM]. When we evaluate the trained
model’s performance in inference time, we split
the generated sequences using comma as a delim-
iter, keeping only valid label descriptors, and treat
them as a set (since their order does mot matter
for the task). We consider different options for the
label descriptors, discussed in Section 5.2.

T5Enc In this case, we follow the work of
Liu et al. (2021), where they use T5 in a non-
autoregressive fashion.2 We feed the docu-
ment to the encoder, and use the decoder in
non-autoregressive fashion, where its inputs are
fixed (pre-populated), i.e., we feed the decoder
with single-token label descriptors, [d1, d2, ..., dL],
where L is the size of the full label set. We then
use a binary classification head (ol ∈ IRdim×1) per
decoder output representation to produce L scores,
one per label. This method can be seen as an ad-
vanced version of the LWAN method which builds
label-wise representations (dl) via attention. In this
case, however, these representations are further co-
attended (conditioned) via the standard decoder
self-attention across many decoder layers.

4 Datasets

We experiment with four datasets from the legal
and biomedical domains, each with two different
label granularities, i.e., label sets including more
abstract or more specialized concepts.

UKLEX United Kingdom (UK) legislation is
publicly available as part of the United Kingdom’s
National Archives.3 Most of the laws have been
categorized in thematic categories (e.g., health-
care, finance, education, transportation, planing),
which are stated in the document preamble and are
used for archival indexing purposes. The UKLEX
dataset (Chalkidis and Søgaard, 2022) comprises

2We keep the name T5Enc, as coined by the authors, for
consistency, although the model actually uses both the encoder
and the decoder of T5.

3https://www.legislation.gov.uk/
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36.5k UK laws. The dataset is chronologically split
in training (20k, 1975–2002), development (8k,
2002–2008), and test (8.5k, 2008–2018) sets.

EURLEX European Union (EU) legislation is
published on the EUR-Lex website. All EU laws
are annotated by EU’s Publications Office with
multiple concepts from EuroVoc, a thesaurus main-
tained by the Publications Office.4 EuroVoc has
been used to index documents in systems of EU
institutions. We use the English part of the dataset
of Chalkidis et al. (2021), which comprises 65k EU
laws (documents). The dataset is chronologically
split in training (55k, 1958–2010), development
(5k, 2010–2012), and test (5k, 2012–2016) sets. It
supports four different label granularities. We use
the 1st and 2nd level of the EuroVoc taxonomy.

BIOASQ The BIOASQ (Task A) dataset con-
sist of biomedical articles from PubMed,5 anno-
tated with concepts from the Medical Subject Head-
ings (MeSH) taxonomy (Tsatsaronis et al., 2015;
Nentidis et al., 2021).6 MeSH is a hierarchically-
organized vocabulary produced by the National
Library of Medicine. The current version of MeSH
contains more than 29k concepts referring to var-
ious aspects of the biomedical research (e.g., dis-
eases, chemicals and drugs). It is primarily used
for indexing, cataloging, and searching of biomed-
ical and health-related information. We subsam-
ple 100k documents from the period 2000-2021
in the latest version (v.2022) of the dataset, and
split those chronologically for training (80k, 1964–
2015), development (10k, 2015–2018), and testing
(10k, 2018–2020). We use the 1st and 2nd levels
of the MeSH taxonomy.

MIMIC-III The MIMIC-III dataset (Johnson
et al., 2017) contains approximately 50k discharge
summaries from US hospitals. Each summary is
annotated with one or more codes (labels) from
the ICD-9 hierarchy, which has eight levels in to-
tal.7. The International Classification of Diseases,
Ninth Revision (ICD-9) is the official system of
assigning codes to diagnoses and procedures asso-
ciated with hospital utilization in the United States.
Documents in MIMIC-III have been anonymized
to protect patient privacy, including chronological
information (e.g., entry/discharge dates). Hence,

4http://eurovoc.europa.eu/
5https://pubmed.ncbi.nlm.nih.gov
6https://www.nlm.nih.gov/mesh/
7www.who.int/classifications/icd/en/

Dataset Size |L1| L/D T/L |L2| L/D T/L

UKLEX 36.5k 18 1.2 2.1 69 1.5 1.7
EURLEX 65k 21 3.2 2.4 127 4.5 2.9
BIOASQ 100k 16 5.6 3.4 116 8.9 4.0

MIMIC-III 50k 19 6.0 7.8 184 10.1 8.4

Table 1: Summary of datasets in terms of size, number
of labels on Level 1 (|L1|) and 2 (|L2|), average number
of gold labels per document (L/D), and average number
of tokens per label (T/L) in the T5 vocabulary.

it is not possible to split the data chronologically,
so we split it randomly in train (30k), development
(10k), and test (10k) sets. We use the 1st and 2nd
level of the ICD-9 hierarchy.

All four datasets come with label descriptors, e.g.
‘Agriculture & Food’, ‘Immigration & Citizenship’
(UKLEX), and ‘Chemicals and Drugs’, ‘Skin and
Connective Tissue Diseases’ (BIOASQ).8 More de-
tails about the datasets are provided in Table 1. No-
tice that Level 2 label sets are considerably larger
than Level 1 label sets, and that the number of label
assignments per document do not grow proportion-
ately from Level 1 to Level 2, which means Level
2 labels have less representation on average.

5 Experiments

5.1 Experimental Setup
We use the original checkpoints of T5 released by
Raffel et al. (2020) from the Hugging Face Hub.9

Following Raffel et al., for all four methods we
use the Adafactor optimizer (Shazeer and Stern,
2018) with a fixed learning rate of 1e-4 after warm-
up for one epoch.10 Seq2Seq models are trained
with teacher forcing. We report results in terms
of micro-F1 (µ-F1), and macro-F1 (m-F1) scores,
the former more indicative of performance on well-
represented labels, the latter, of performance on
rare labels. When fine-tuning models, we use early
stopping based on validation micro-F1 scores. We
run each experiment with 4 seeds, and report the
mean and standard deviations across runs.

5.2 Preliminary Experiments
We conduct a series of preliminary experiments to
identify the most promising setting for the exam-
ined methods. All results reported here are on the
development split of respective datasets.

8See Appendix B for label descriptors across all datasets.
9https://huggingface.co/t5-base

10In preliminary experiments, we also considered the
widely used AdamW optimizer (Loshchilov and Hutter, 2017),
which led to lower performance in most cases.
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No. Heads UKLEX (L1) EURLEX (L2)
µ-F1 m-F1 µ-F1 m-F1

N=1 83.3 ± 0.2 79.3 ± 0.7 76.3 ± 0.3 55.5 ± 0.8
N=4 82.8 ± 0.3 78.1 ± 0.7 75.1 ± 0.1 51.7 ± 2.1

N=6 83.2 ± 0.3 79.3 ± 0.5 75.1 ± 0.3 54.1 ± 0.6

N=12 83.0 ± 0.4 78.8 ± 1.4 75.2 ± 0.3 53.0 ± 1.2

Table 2: Number of attentions heads for LWAN.

LWAN – Number of attention heads Previous
work which employed the LWAN approach always
used a single attention head in the label-wise at-
tention mechanism. Here, we experiments with
N ∈ [1, 4, 6, 12]. In Table 2, we reports results
on two datasets, UKLEX (L1) with 18 labels, and
EURLEX (L2) with 127 labels. We observe that in
the case of UKLEX (L1) increasing the number of
attention heads does not improve results, while in
the case of EURLEX (L2) it harms performance.
It appears that the added expressivity from multi-
head attention is either not needed, or it is not easily
utilized, since it adds more randomly initialized pa-
rameters which have to be learned from scratch. In
subsequent experiments, we thus use the standard
single-head attention mechanism.

Label UKLEX (L1) MIMIC (L1)
µ-F1 m-F1 µ-F1 m-F1

Original 84.2 ± 0.0 81.6 ± 0.2 73.2 ± 0.0 70.2 ± 0.2
Simplified 84.8 ± 0.2 78.7 ± 0.3 73.1 ± 0.1 70.1 ± 0.1

Numbers 83.8 ± 0.2 80.2 ± 0.7 73.3 ± 0.1 69.7 ± 0.2

Table 3: Form of label descriptors for Seq2Seq.

Seq2Seq – Form of Label Descriptors We con-
sider three alternative forms of label descriptors:

(a) the original label descriptors, which may in-
clude complex multi-word expressions, e.g.,
‘Anthropology, Education, Sociology, and So-
cial Phenomena’

(b) simplified versions of the original label de-
scriptors, manually curated to consist of
single-token expressions (as per the T5 vocab-
ulary), e.g., ‘Anthropology’ for the example
above

(c) numbers arbitrarily assigned to labels, e.g. ‘1’.
In Table 3, we present results on two datasets,
UKLEX (L1), where the original label descrip-
tors are mostly single-word expressions that
map onto T5 sub-word tokens, and MIMIC
(L1), where the original label descriptors are

multi-word expressions which are further tok-
enized into subwords

We observe mixed rankings between the three
forms of label descriptors across different metrics
and datasets, with slight advantage for a lexical
form over the arbitrary numerical one. This is in
line with the intuition that the semantics of the label
descriptors contribute to the learning of the task. In
subsequent experiments, we use the original label
descriptors across all datasets.

Decoding UKLEX (L1) MIMIC (L1)
µ-F1 m-F1 µ-F1 m-F1

Greedy 84.3 ± 0.0 81.6 ± 0.2 72.9 ± 0.2 69.4 ± 0.4

Beam 84.2 ± 0.0 81.6 ± 0.2 73.2 ± 0.1 70.3 ± 0.2

Table 4: Greedy decoding vs. beam search for
Seq2Seq.

Seq2Seq – Greedy Decoding vs. Beam Search
Raffel et al. (2020) suggested using greedy de-
coding for single-label classification tasks but also
found beam search decoding (N=4) to work bet-
ter for tasks with long output sequences, as is the
case in multi-label classification. In Table 4, we
compare the two decoding strategies on UKLEX
(L1) and MIMIC (L1). We find that the choice of
decoding strategy has little effect on performance,
likely because the output space in these tasks is
constrained to a fixed set of valid labels, in a sin-
gle permissible (alphabetical) order. In subsequent
experiments, we use beam search (N=4), as it per-
forms slightly better on average.

Label UKLEX (L1) MIMIC (L1)
µ-F1 m-F1 µ-F1 m-F1

Simplified 84.8 ± 0.2 81.9 ± 0.5 73.6 ± 0.2 69.2 ± 1.5
Pseudo 84.8 ± 0.1 82.3 ± 0.2 73.2 ± 0.1 67.7 ± 1.9

Table 5: Form of label descriptors for T5Enc.

T5Enc – Form of Label Descriptors We com-
pare two forms of label tokens, lexical (using sim-
plified descriptors, as they have to be single tokens),
and pseudo descriptors, where we introduce spe-
cial tokens to the vocabulary of T5 (e.g., <label 1>).
Results on UKLEX (L1) and MIMIC (L1) are pre-
sented in Table 5. We observe that results are com-
parable for UKLEX, while simplified label descrip-
tors perform slightly better for MIMIC. In subse-
quent experiments, we thus use simplified label de-
scriptors for Level 1 datasets. For Level 2 datasets,
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Method UKLEX (L1) EURLEX (L1) BIOASQ (L1) MIMIC (L1) Average
µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1

Enc+Head 80.8 ± 0.5 77.2 ± 0.4 78.9 ± 0.4 67.9 ± 1.1 86.4 ± 0.0 76.8 ± 0.1 72.2 ± 0.2 66.3 ± 0.7 79.6 72.1
LWAN 80.4 ± 0.3 76.6 ± 0.5 79.6 ± 0.4 68.4 ± 0.7 86.3 ± 0.1 77.2 ± 0.2 72.3 ± 0.3 66.8 ± 0.8 79.7 72.3

Seq2Seq 79.6 ± 0.6 76.4 ± 0.6 78.8 ± 0.2 69.1 ± 0.3 86.0 ± 0.1 77.8 ± 0.2 72.9 ± 0.1 69.7 ± 0.2 79.3 73.3
T5Enc 80.8 ± 0.4 77.1 ± 0.5 80.0 ± 0.3 70.5 ± 0.4 86.6 ± 0.0 77.9 ± 0.4 73.4 ± 0.3 68.8 ± 1.4 80.2 73.6

Method UKLEX (L2) EURLEX (L2) BIOASQ (L2) MIMIC (L2) Average
µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1

Enc+Head 75.9 ± 0.5 64.9 ± 0.5 70.3 ± 0.2 48.2 ± 1.2 73.1 ± 0.0 60.1 ± 0.8 56.7 ± 0.6 22.3 ± 1.2 69.0 48.9
LWAN 76.6 ± 0.2 65.0 ± 0.8 70.3 ± 0.3 49.0 ± 0.7 73.0 ± 0.1 59.7 ± 0.9 57.2 ± 0.4 24.2 ± 0.3 69.3 49.5

Seq2Seq 75.3 ± 0.2 65.8 ± 0.4 70.6 ± 0.3 51.8 ± 1.0 73.8 ± 0.1 63.8 ± 0.1 57.4 ± 0.2 31.2 ± 1.7 69.3 53.2
T5Enc 76.5 ± 0.3 66.8 ± 0.9 72.0 ± 0.2 53.2 ± 1.4 75.1 ± 0.1 66.0 ± 0.1 60.5 ± 0.1 31.1 ± 0.9 71.0 54.3

Table 6: Test results for encoder-only methods (Encoder+Head and LWAN) and encoder-decoder methods
(Seq2Seq and T5Enc) trained from T5-Base.

we use pseudo labels, since we cannot manually
curate simplified descriptors for hundreds of labels.

Encoder UKLEX (L1) BIOASQ (L2)
µ-F1 m-F1 µ-F1 m-F1

BERT 84.4 ± 0.3 81.3 ± 0.9 71.7 ± 0.0 59.1 ± 0.0

RoBERTa 84.3 ± 0.6 81.1 ± 1.1 73.0 ± 0.0 59.8 ± 0.0

T5 84.3 ± 0.3 80.7 ± 0.8 73.2 ± 0.1 60.8 ± 0.8

Table 7: Encoder-only pre-trained models vs. T5’s en-
coder in Encoder+Head classification setups.

Encoder-only Models Comparing encoder-only
to encoder-decoder methods fro multi-label text
classification in a fair manner is non-trivial since
inherently encoder-only pre-trained models like
BERT (Devlin et al., 2019), and RoBERTa (Liu
et al., 2019) are trained on different data and with a
different objective than the encoder-decoder model
T5. Using T5’s encoder for encoder-only meth-
ods circumvenes this problem but introduces an-
other concern: that this encoder was trained in
an encoder-decoder architecture and may thus be
handicapped in comparison to encoders trained in
an encoder-only architecture.

In Table 7, we present development results on
UKLEX (L1) and BIOASQ (L2) for encoder-only
classifiers trained from BERT, RoBERTa and T5’s
encoder.11 We observe mixed results with BERT
performing best on UKLEX (L1) and T5 perform-
ing best on EURLEX (L2), with absolute differ-
ences between the three models being relatively
small and on average between the two datasets,
favouring T5. We thus conclude that T5’s encoder

11We use the prepended [CLS] token representation for
BERT and RoBERTa.

makes for a fair and strong encoder-only baseline
and use it in subsequent experiments.

5.3 Main Results
In Table 6, we present test results for all meth-
ods trained from T5-Base.12 The overall best per-
forming approach is T5Enc, followed by Seq2Seq,
LWAN and then Encoder+Head. The trend is
thus for encoder-decoder approaches (T5Enc and
Seq2Seq) to outperform encoder-only approaches
(LWAN and then Encoder+Head), which use just
half the model parameters. This result corroborates
and considerably substantiates the observations of
Liu et al. (2021). We gain further insights through
a breakdown by metric and label granularity.

The advantage of encoder-decoder methods can
be especially seen across macro-F1 scores, where
both T5Enc and Seq2Seq outperform encoder-only
approaches almost categorically (the one exception
being UKLEX (L1)). This indicates that encoder-
decoder approaches are particularly good at as-
signing less frequent labels, which is a key chal-
lenge in multi-label classification. This reading of
the results is further reinforced by the observation
that the performance gap increases from Level 1
datasets, which contain a smaller number of labels,
to Level 2 datasets, which contain more and thus on
average less frequent labels. The most striking per-
formance gap we observe measures 7 p.p. between
LWAN and Seq2Seq on MIMIC (L2).

Between the two encoder-decoder approaches,
we see that the non-autoregressive use of the T5
decoder is more effective (T5Enc) than the con-
ditional generation of labels (Seq2Seq), the gap

12We present development results in Table 11 in Ap-
pendix A for completeness.
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between the two methods growing from Level 1 to
Level 2 datasets. In the case of T5Enc, the decoder
serves to build representations for all labels relevant
to a dataset and in this sense defines and constraints
the output space for the task. Meanwhile, in the
Seq2Seq approach the model has to learn the con-
straints on the output space during training, and as
such it is likely more prone to errors.

These main results give us a general idea of
how the different approaches compare, indicating
clearly that encoder-decoder approaches are supe-
rior. In subsequent sections we explore the source
of performance and the limitations of encoder-
decoder approaches further.

5.4 Model Capacity

One possible explanation for the stronger perfor-
mance of encoder-decoder methods is that they
operate with twice as many parameters as encoder-
only methods. Here, we test whether this alone is
the source of their improved performance, by train-
ing models from different T5 models: small, base
and large.13 Since we previously saw that trends
in results are similar across L1 and L2 datasets,
and more pronounced in the latter, we carry out
this set of experiments on L2 datasets only. We
include the stronger performing encoder-only ap-
proach, LWAN, as well as both encoder-decoder
approaches. Results on the micro-F1 metric are
presented in Figure 2, and on the macro-F1 metric
in Figure 3 in Appendix A.14

Firstly, we note that T5Enc consistently out-
performs the other approaches across different
model sizes, in line with earlier findings (see Ta-
ble 6). We also see that all methods appear to scale,
with steady improvements in performance observed
across increasing model sizes.

Comparing models of similar size (i.e., mod-
els with the same number of layers), we gain a
more precise idea of how methods compare. Here,
T5Enc still proves to be the superior approach,
with T5Enc-Small outperforming LWAN-Base on
3 out of 4 datasets (UKLEX being the exception),
and similarly T5Enc-Base outperforming LWAN-
Large on 3 out of 4 datasets. Notice that in these
comparisons, the T5Enc variants are even at a
disadvantage, having the same number of layers
as the LWAN variants, but lower dimensionality.

13T5-Small has 12 layers of d=512, T5-Base has 24 layers
of d=768, T5-Large has 48 layers of d=1024, where half of
the layers are in the encoder and half in the decoder.

14All results are also presented in Table 12 in Appendix A.

Seq2Seq models, on the other hand, underperform
similarly-sized LWAN models on most compar-
isons in terms of micro-F1, which indicates that
this approach is overall less suitable for the task.15

5.5 Ablations on T5Enc Decoder

Here, we analyse the contribution of different as-
pects of the T5Enc decoder through ablations on
the decoder’s depth, width and self-attention.

Decoder Depth We train T5Enc models with a
varying number of decoder layers. We experiments
with N ∈ [1, 4, 6, 12]. In Table 8, we report results
on two datasets, UKLEX (L1) and EURLEX (L2).
We observe that larger depth in the decoder con-
tributes to performance, with the full set of decoder
layers (12) performing best.

Layers UKLEX (L1) EURLEX (L2)
µ-F1 m-F1 µ-F1 m-F1

N=1 84.6 ± 0.1 81.9 ± 0.1 76.6 ± 0.1 56.9 ± 0.1

N=4 84.7 ± 0.1 81.8 ± 0.1 76.9 ± 0.1 58.1 ± 1.1

N=6 84.8 ± 0.1 82.2 ± 0.1 77.0 ± 0.1 58.4 ± 1.3

N=12 84.8 ± 0.2 81.9 ± 0.5 77.1 ± 0.1 58.8 ± 1.4

Table 8: Development results for different numbers of
decoder layers in T5Enc.

Decoder Width In this ablation, we are inter-
ested to establish the importance of label-wise rep-
resentations being built in the decoder as opposed
to using it to create a single output representation
shared across the classification heads. To this end,
we feed the decoder with a single token ID, e.g.,
the ID of token ‘label’, and then pass its output
representation (d ∈ IRdim) to a set of standard clas-
sification heads to produce L scores (logits), similar
to the Encoder+Head method. This method can be
seen as an advanced version of the Encoder+Head
method that utilizes the decoder via cross-attention.

Results for Level 2 datasets are shown in Table 9
under Single-step T5Enc (Level 1 results are shown
in Table 11 in the Appendix). In comparison to the
Encoder+Head baseline, Single-step T5Enc is su-
perior across the board, likely because of the added
number of parameters available to the model. Com-
pared to the standard T5Enc approach, Single-step
T5Enc works slightly better for UKLEX but on all
other datasets it underperforms by a large gap. We
observe the same pattern for L1 results in Table 11
and thus conclude that the additional computational

15See Appendix A for a discussion of macro-F1 results.
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Figure 2: Performance of the three strongest classification methods (LWAN, Seq2Seq, T5Enc) across three model
sizes in terms of micro-F1 score. Dashed lines inside the boxes represent the mean performance across four seeds.

Method UKLEX (L2) EURLEX (L2) BIOASQ (L2) MIMIC (L2)
µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1

Encoder+Head 81.9 ± 0.6 72.9 ± 1.3 76.2 ± 0.2 54.0 ± 1.4 73.2 ± 0.1 60.8 ± 0.8 56.7 ± 0.7 22.3 ± 1.2

Single-step T5Enc 82.6 ± 0.1 74.4 ± 0.8 76.7 ± 0.2 55.8 ± 1.4 73.5 ± 0.3 61.8 ± 1.1 58.3 ± 0.5 25.8 ± 0.9

T5Enc 82.4 ± 0.4 74.2 ± 1.0 77.1 ± 0.1 58.8 ± 1.4 75.1 ± 0.0 66.3 ± 0.1 60.6 ± 0.1 31.1 ± 1.0

- No attention 81.9 ± 0.1 73.0 ± 0.5 76.8 ± 0.1 57.6 ± 0.8 74.3 ± 0.1 64.3 ± 0.3 58.6 ± 0.3 27.4 ± 1.6

- Full attention 82.3 ± 0.2 74.1 ± 0.8 77.1 ± 0.2 58.7 ± 0.8 75.2 ± 0.0 66.1 ± 0.0 60.6 ± 0.2 31.6 ± 0.7

Table 9: Ablations of T5Enc decoder. Single-step T5Enc builds a single output representation instead of L label-
wise representations. Attention ablations disable (No) or fully enable (Full) the self-attention in the decoder.

power of label-wise processing is important for the
good overall performance of T5Enc.

Attention Scheme The labels in multi-label clas-
sification are known to exhibit certain dependen-
cies (Tenenboim et al., 2009; Bogatinovski et al.,
2022). We measure the pair-wise dependency be-
tween labels in the four datasets included in this
study, using Fisher’s exact test.16 In Table 10, we
report the percentage of label pairs in Level 2 label
sets for which a significant association (p < .001)
was discovered (see Appendix A for Level 1 re-
sults). Based on the observed non-trivial rates of
inter-label dependency, we hypothesize that self-
attention in the T5 decoder is of key importance to
the performance of T5Enc.

Level UKLEX EURLEX BIOASQ MIMIC

L2 39.5 39.7 71.2 21.3

Table 10: Percentage of Level 2 label pairs with signif-
icant association according to Fisher’s exact test.

The decoder in T5 models uses causal attention,
wherein decoder inputs can only attend to the left

16The test determines whether the observed distribution
of one variable is likely to be random given the observed
distribution of another variable and vice-versa.

context. We measure the contribution of this sys-
tem component by ablating it, i.e. training T5Enc
models with no self-attention. In Table 9, we report
results on Level 2 datasets under No attention (see
Table 11 in Appendix A for Level 1 results). We
observe that without self-attention, performance
suffers considerably for all datasets, most notably
so in terms of macro-F1 on MIMIC (∆ = 3.7).
This result indicates that self-attention indeed has
a key role, although its contribution does not prove
to be proportional to the rate of significant pair-
wise associations in the data (Table 10)—this may
be due to higher-order label dependencies taking
precedence over pair-wise ones.

Having confirmed the importance of modeling
label dependency above, we next consider whether
we can achieve even better performance with bidi-
rectional (rather than causal) attention in the T5
decoder. In Table 9 Full attention, we see that the
contribution of bidirectional attention is negligible.
Assuming that the model is able to adjust to the new
attention scheme during the fine-tuning process, we
take these results to indicate that modeling label de-
pendency in just one direction is sufficient. Indeed,
Fisher’s exact test measures two-way association,
disregarding the direction of the dependency.
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5.6 Errors in Seq2Seq Models

The Seq2Seq approach similarly can model label
dependency through self-attention and can even
condition the prediction of labels on one another
(in an autoregressive fashion), an ability which
none of the other approaches included in this study
posses. Yet, we find empirically that it underper-
forms T5Enc. Here, we investigate whether this
finding can be explained in terms of the uncon-
strained output space in Seq2Seq models. Specif-
ically, we analyse the models’ predictions for the
invention of novel labels.

Such errors occur for two out of the four datasets,
EURLEX and UKLEX, but with extremely low fre-
quency: the highest observed rate is 0.2% of novel
labels generated for UKLEX (L2). Some examples
include ‘accommodation’, ‘domestic violence’ and
‘vulnerable persons’. Labels in UKLEX and EU-
RLEX are phrased in common terms, compared
to the rather technical, domain-specific labels in
MIMIC and BIOASQ (see Appendix B for exam-
ples). Models trained on UKLEX and EURLEX
therefore seem to interpret the output space as open-
ended and on occasion generate novel labels. Still
the total number of novel labels generated is neg-
ligible, so this could not explain the lower perfor-
mance of this approach compared to T5Enc. The
reason may instead lie with the fact that Seq2Seq
models have to learn the bounds of the output space
during training, whereas T5Enc models have that
as a given via the fixed decoder input.

6 Conclusions

In this work, we compared four approaches to
multi-label classification, two based on an encoder
only and two based on an encoder-decoder. We
experimented with 4 datasets from 2 different do-
mains (legal and biomedical), which support two
different label granularities. We found that encoder-
decoder methods outperform encoder-only meth-
ods, in line with findings in other NLP tasks. We
further found that the non-autoregressive use of an
encoder-decoder model performs better than using
it for conditional generation. We found that de-
coder depth, width and self-attention are all key
contributors to the success of this best approach.

In future work, we will consider prompt-based
approaches as well, specifically instruction-based
fine-tuned models (Wei et al., 2022), currently lim-
ited by the excessive computational cost of encod-
ing the full label set as part of the input string.

Limitations

Recent work has shown that models of a certain
size (upwards of 3B parameters) exhibit learning
properties that cannot be observed in smaller mod-
els. Due to practical limitations and environmental
concerns, in this study we chose not to train mod-
els larger than T5-Large. It is thus not possible
to know how emergent properties in larger mod-
els may have affected the comparison between the
different approaches compared here. We believe
that our findings will nevertheless be useful to NLP
practitioners who operate on a constrained com-
pute budget and may thus opt for moderately-sized
models anyway.

We compare encoder-only and encoder-decoder
models for multi-label classification. Decoder-only
models (Radford et al., 2019) are omitted since
at present there are no decoder-only methods for
multi-label classification in the literature. While we
could have adapted the Seq2Seq approach in our
experiments to operate in a decoder-only context,
we deem this unsuitable for the datasets we work
with, as they contain long documents which will
quickly cause problems for standard decoder-only
models like GPT-2.

Domain-specific pre-trained language models
exist for both the legal and biomedical domain,
which outperform their generic counterparts when
used for classification tasks. These models all have
an encoder-only architecture, however, which ren-
ders them unsuitable for a comparison of encoder-
only and encoder-decoder approaches to multi-
label classification.

Our experiments consider datasets from the legal
and biomedical domains first and foremost because
there are publicly available datasets with hierarchi-
cal labelling in these domains, unlike others. More-
over, we believe that working in critical application
domains is a worthy purpose and covering two such
domains with two different datasets in each domain
gives us a good view on how the examined methods
are expected to work in such domains.

Ethics Statement

The legal and biomedical fields are both highly
sensitive and have high impact on human life. In
this work, we have ensured that the data we work
with is sourced in compliance with the relevant
regulations and are fully anonymized where neces-
sary. The application of multi-label classification
to this data carries no obvious risk as it can ease
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these domains, without having any direct impact on
individuals involved in legal and medical matters.
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Džeroski, and Dragi Kocev. 2022. Comprehensive
comparative study of multi-label classification
methods. Expert Systems with Applications,
203:117215.

Ilias Chalkidis, Emmanouil Fergadiotis, Prodromos
Malakasiotis, and Ion Androutsopoulos. 2019.
Large-scale multi-label text classification on EU leg-
islation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 6314–6322, Florence, Italy. Association
for Computational Linguistics.

Ilias Chalkidis, Manos Fergadiotis, and Ion Androut-
sopoulos. 2021. MultiEURLEX - a multi-lingual
and multi-label legal document classification dataset
for zero-shot cross-lingual transfer. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Online.

Ilias Chalkidis, Manos Fergadiotis, Sotiris Kotitsas,
Prodromos Malakasiotis, Nikolaos Aletras, and Ion
Androutsopoulos. 2020. An empirical study on
large-scale multi-label text classification including
few and zero-shot labels. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 7503–7515, On-
line. Association for Computational Linguistics.

Ilias Chalkidis and Anders Søgaard. 2022. Improved
multi-label classification under temporal concept
drift: Rethinking group-robust algorithms in a label-
wise setting. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 2441–
2454, Dublin, Ireland. Association for Computa-
tional Linguistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Sharan Narang, Gaurav Mishra, Adams Yu, Vin-
cent Zhao, Yanping Huang, Andrew Dai, Hongkun
Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
Adam Roberts, Denny Zhou, Quoc V. Le, and Jason
Wei. 2022. Scaling instruction-finetuned language
models.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Alistair EW Johnson, David J. Stone, Leo A. Celi, and
Tom J. Pollard. 2017. MIMIC-III, a freely accessi-
ble critical care database. Nature.

Frederick Liu, Siamak Shakeri, Hongkun Yu, and Jing
Li. 2021. Enct5: Fine-tuning T5 encoder for non-
autoregressive tasks. CoRR, abs/2110.08426.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in adam. CoRR,
abs/1711.05101.

James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng
Sun, and Jacob Eisenstein. 2018. Explainable Pre-
diction of Medical Codes from Clinical Text. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1101–1111.

Anastasios Nentidis, Georgios Katsimpras, Eirini Van-
dorou, Anastasia Krithara, Luis Gasco, Martin
Krallinger, and Georgios Paliouras. 2021. Overview
of bioasq 2021: The ninth bioasq challenge on
large-scale biomedical semantic indexing and ques-
tion answering. In International Conference of the
Cross-Language Evaluation Forum for European
Languages (CLEF2021). Springer, Springer.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAI blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

5837

https://doi.org/https://doi.org/10.1016/j.eswa.2022.117215
https://doi.org/https://doi.org/10.1016/j.eswa.2022.117215
https://doi.org/https://doi.org/10.1016/j.eswa.2022.117215
https://doi.org/10.18653/v1/P19-1636
https://doi.org/10.18653/v1/P19-1636
https://arxiv.org/abs/2109.00904
https://arxiv.org/abs/2109.00904
https://arxiv.org/abs/2109.00904
https://doi.org/10.18653/v1/2020.emnlp-main.607
https://doi.org/10.18653/v1/2020.emnlp-main.607
https://doi.org/10.18653/v1/2020.emnlp-main.607
https://doi.org/10.18653/v1/2022.findings-acl.192
https://doi.org/10.18653/v1/2022.findings-acl.192
https://doi.org/10.18653/v1/2022.findings-acl.192
https://doi.org/10.18653/v1/2022.findings-acl.192
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.nature.com/articles/sdata201635
https://www.nature.com/articles/sdata201635
http://arxiv.org/abs/2110.08426
http://arxiv.org/abs/2110.08426
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://www.aclweb.org/anthology/N18-1100
http://www.aclweb.org/anthology/N18-1100
https://link.springer.com/chapter/10.1007%2F978-3-030-85251-1_18
https://link.springer.com/chapter/10.1007%2F978-3-030-85251-1_18
https://link.springer.com/chapter/10.1007%2F978-3-030-85251-1_18
https://link.springer.com/chapter/10.1007%2F978-3-030-85251-1_18
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html


Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
CoRR, abs/1804.04235.

Jake Snell, Kevin Swersky, and Richard S. Zemel.
2017. Prototypical networks for few-shot learning.
CoRR, abs/1703.05175.

Lena Tenenboim, Lior Rokach, and Bracha Shapira.
2009. Multi-label classification by analyzing labels
dependencies. In Proceedings of the 1st interna-
tional workshop on learning from multi-label data,
Bled, Slovenia, pages 117–132.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, Yannis Almirantis, John Pavlopoulos, Nico-
las Baskiotis, Patrick Gallinari, Thierry Artieres,
Axel Ngonga, Norman Heino, Eric Gaussier, Lil-
iana Barrio-Alvers, Michael Schroeder, Ion An-
droutsopoulos, and Georgios Paliouras. 2015. An
overview of the bioasq large-scale biomedical se-
mantic indexing and question answering competi-
tion. BMC Bioinformatics, 16:138.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing
Systems, pages 6000–6010, Long Beach, California,
USA.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022. Finetuned language
models are zero-shot learners. In International Con-
ference on Learning Representations.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mT5: A massively
multilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483–498, Online. Association for Computa-
tional Linguistics.

A Additional Results

In Table 11, we present the development results for
all models trained from T5-Base across all datasets.

In Table 12, we present detailed results for all
L2 datasets for methods using T5-Small and Large.
In Figure 3, which visualizes the macro-F1 results,
we see that in comparisons between similarly-sized
T5Enc models and LWAN models, the same trends
hold here as observed in Section 5.3 for the micro-
F1 metric: T5Enc is superior to LWAN as a method
for multi-label classification.

Comparing Seq2Seq models to similarly-sized
LWAN models, on the other hand, we see quite a
different trend here compared to the micro-F1 re-
sults discussed in Section 5.3: Seq2Seq-Small out-
performs LWAN-Base models on 2 out of 4 datasets
(BIOASQ and MIMIC), and Seq2Seq-Base models
outperform LWAN-Base models on all 4 datasets.
This suggests that the Seq2Seq approach is es-
pecially suitable for the prediction of rare labels,
which are better represented by the macro-F1 met-
ric and particularly abundant in the BIOASQ and
MIMIC datasets. We presume that as the only ap-
proach with access to the actual tokens comprising
Level 2 label descriptors, Seq2Seq gains from lex-
ical overlap between label descriptors and prior
knowledge of the semantics of these tokens.

In Table 13, we show Fisher’s exact test results
for pair-wise association among labels in Level 1
label sets across all datasets. We see higher rates of
pair-wise association, likely because of the smaller
number of labels in each set.

B Dataset descriptors

In Tables 14, 15, 16, 17, we list the original Level 1
and Level 2 label descriptors for the UKLEX, EU-
RLEX, BIOASQ and MIMIC datasets, respectively,
as well as the simplified Level 1 label descriptors,
which we manually curated.
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Method UKLEX (L1) EURLEX (L1) BIOASQ (L1) MIMIC (L1)
µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1

Encoder+Head 84.3 ± 0.3 80.7 ± 0.8 82.9 ± 0.2 72.5 ± 0.8 86.6 ± 0.0 77.1 ± 0.2 72.4 ± 0.1 65.8 ± 0.9

LWAN 84.5 ± 0.4 81.0 ± 1.1 83.0 ± 0.2 72.2 ± 0.3 86.6 ± 0.0 77.1 ± 0.3 72.5 ± 0.3 66.3 ± 1.2

Seq2Seq 84.2 ± 0.0 81.6 ± 0.2 82.8 ± 0.1 74.3 ± 0.5 86.5 ± 0.0 77.6 ± 0.2 73.2 ± 0.1 70.3 ± 0.2
Single-Step T5Enc 85.1 ± 0.2 82.4 ± 0.4 83.3 ± 0.2 73.8 ± 0.8 86.7 ± 0.1 77.1 ± 0.4 73.1 ± 0.1 67.4 ± 1.1

T5Enc 84.8 ± 0.2 81.9 ± 0.5 83.6 ± 0.1 75.0 ± 0.6 87.0 ± 0.0 78.1 ± 0.3 73.6 ± 0.2 69.2 ± 1.5

- No attention 85.0 ± 0.2 82.5 ± 0.1 83.5 ± 0.1 74.8 ± 0.5 87.0 ± 0.1 78.3 ± 0.2 73.6 ± 0.1 69.5 ± 0.4
- Full Attention 84.7 ± 0.3 82.1 ± 0.6 83.6 ± 0.1 75.0 ± 0.3 87.0 ± 0.1 78.0 ± 0.3 73.3 ± 0.1 68.7 ± 1.2

Method UKLEX (L2) EURLEX (L2) BIOASQ (L2) MIMIC (L2)
µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1

Encoder+Head 81.9 ± 0.6 72.9 ± 1.3 76.2 ± 0.2 54.0 ± 1.4 73.2 ± 0.1 60.8 ± 0.8 56.7 ± 0.7 22.3 ± 1.2

LWAN 82.0 ± 0.3 72.2 ± 0.6 76.3 ± 0.3 55.5 ± 0.8 73.2 ± 0.1 60.5 ± 0.8 57.2 ± 0.3 24.5 ± 0.4

Seq2Seq 81.2 ± 0.3 72.7 ± 1.1 75.7 ± 0.1 57.2 ± 1.1 74.1 ± 0.1 64.3 ± 0.2 57.5 ± 0.3 30.7 ± 1.7

Single-Step T5Enc 82.6 ± 0.1 74.4 ± 0.8 76.7 ± 0.2 55.8 ± 1.4 73.5 ± 0.3 61.8 ± 1.1 58.3 ± 0.5 25.8 ± 0.9

T5Enc 82.4 ± 0.4 74.2 ± 1.0 77.1 ± 0.1 58.8 ± 1.4 75.1 ± 0.0 66.3 ± 0.1 60.6 ± 0.1 31.1 ± 1.0

- No attention 81.9 ± 0.1 73.0 ± 0.5 76.8 ± 0.1 57.6 ± 0.8 74.3 ± 0.1 64.3 ± 0.3 58.6 ± 0.3 27.4 ± 1.6

- Full attention 82.3 ± 0.2 74.1 ± 0.8 77.1 ± 0.2 58.7 ± 0.8 75.2 ± 0.0 66.1 ± 0.0 60.6 ± 0.2 31.6 ± 0.7

Table 11: Development Results for all methods across datasets with T5 (base).

Method UKLEX (L2) EURLEX (L2) BIOASQ (L2) MIMIC (L2)
µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1

T5 (Small) models

LWAN 75.1 ± 0.3 63.5 ± 0.3 69.4 ± 0.2 45.0 ± 0.6 71.4 ± 0.1 56.0 ± 0.2 54.4 ± 0.2 18.7 ± 0.6

Seq2Seq 74.0 ± 0.4 64.7 ± 0.5 68.9 ± 0.6 48.7 ± 1.9 72.2 ± 0.1 60.7 ± 0.2 57.8 ± 0.3 27.1 ± 0.3
T5Enc 75.8 ± 0.2 65.8 ± 0.4 71.4 ± 0.4 50.6 ± 1.6 73.7 ± 0.1 62.4 ± 0.6 58.8 ± 0.3 25.2 ± 0.4

T5 (Large) models

LWAN 77.1 ± 0.1 65.4 ± 0.8 70.9 ± 0.1 49.4 ± 1.8 74.0 ± 0.2 61.4 ± 0.9 58.3 ± 0.9 24.0 ± 3.0

Seq2Seq 76.5 ± 0.3 67.1 ± 0.3 71.3 ± 0.1 54.1 ± 0.6 74.7 ± 0.1 65.5 ± 0.5 60.4 ± 0.1 34.5 ± 0.7
T5Enc 77.7 ± 0.2 68.1 ± 0.7 72.4 ± 0.2 53.6 ± 1.2 75.8 ± 0.1 67.1 ± 0.2 60.8 ± 0.2 33.2 ± 1.6

Table 12: Test Results for all methods across datasets with T5 (small) and (large).
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Figure 3: Performance of the three strongest classification methods across three model sizes in terms of macro-F1
score. Dashed lines within the boxes represent the mean performance across four seeds.

Level UKLEX EURLEX BIOASQ MIMIC

L1 72.8 82.3 93.8 85.6

Table 13: Percentage of Level 1 label pairs with signif-
icant association according to Fisher’s exact test.
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Level 1 (Original)

Agriculture and Food Children Criminal Law Education Environment

EU Finance Healthcare Housing Immigration and Citizenship

Local Government Planning and Development Politics Public Order Social Security

Taxation Telecommunications Transportation - -

Level 1 (Simplified)

Agriculture Children Crime Education Environment

EU Finance Healthcare Housing Immigration

Local Planning Politics Public Social

Taxation Telecom Transport - -

Level 2 (Original)

Agriculture Air Transport Animals Banking Broadcasting

Children Citizenship Disabled Persons Education Elections

Employment Environment EU Finance Fire and Rescue Services

Food Healthcare Housing Immigration Insurance

Land Registration Local Government NHS Police Pollution

Social Security Taxation Telecommunications Terrorism Urban Development

Table 14: Sample of label descriptors (Law Subject) for UKLEX dataset.

Level 1 (Original)

Politics European Union International Relations Law Economics

Trade Finance Social Questions Education & Communications Science

Business & Competition Environment Transport Working Conditions Agriculture

Forestry & Fisheries Agri-Foodstuffs Production Technology & Research Energy

Industry Geography International Organisations - -

Level 1 (Simplified)

Politics International EU Law Economy
Trade Finance Social Education Science
Business Environment Transport Employment Agriculture
Forestry Food Production Technology Energy
Industry Geography Organisations - -

Level 2 (Original)

Political Framework Political Party Agricultural Activity Engineering European Organisations

Politics & Public Safety Forestry International Affairs Cooperation Policy International Security

Defence Energy Policy European Construction EU Finance Agricultural Production

Justice International Law Rights and Freedoms Economic Policy Regional Policy

Economic Structure Trade Policy Tariff Policy International Trade Marketing

Distributive Trades Monetary Relations Monetary Economics Farming Systems Food Technology

Table 15: Sample of label descriptors (EUROVOC concepts) for EURLEX dataset.
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Level 1 (Original)

Anatomy Organisms Diseases Chemicals and Drugs Analytical, Diagnostic and Ther-
apeutic Techniques and Equip-
ment

Psychiatry and Psychology Phenomena and Processes Humanities Disciplines and Occupations Anthropology, Education, Sociol-
ogy, and Social Phenomena

Information Science Named Groups Health Care Technology, Industry, and Agri-
culture

Publication Characteristics

Geographicals - - - -

Level 1 (Simplified)

Anatomy Organism Disease Drug Technical

Psychology Process Occupation Human Social

Information Groups Healthcare Technology Publications

Geography - - - -

Level 2 (Original)

Musculoskeletal System Digestive System Respiratory System Urogenital System Endocrine System

Cardiovascular System Nervous System Sense Organs Embryonic Structures Cells, Fluids and Secretions

Stomatognathic System Hemic and Immune Systems Tissues Integumentary System Plant Structures

Fungal Structures Bacterial Structures Viral Structures Biomedical and Dental Materials Microbiological Phenomena

Equipment and Supplies Psychological Phenomena Dentistry Mental Disorders Behavior and
Behavior Mechanisms

Table 16: Sample of label descriptors (MeSH concepts) for BIOASQ dataset.

Level 1 (Original)

Infection and Parasitic Diseases Diseases of The Genitourinary
System

Endocrine Nutritional and
Metabolic Diseases and Immu-
nity Disorders

Diseases of Blood and Blood
Forming Organs

Mental Disor-
ders

Diseases of Nervous System and
Sense Organs

Diseases of The Circulatory Sys-
tem

Diseases of The Respiratory Sys-
tem

Diseases of The Digestive Sys-
tem

Neoplasms

Complications of Pregnancy,
Childbirth and the Puerperium

Diseases of The Skin and Subcu-
taneous Tissue

Diseases of The Musculoskeletal
System and Connective Tissue

Certain Conditions Originating
In The Perinatal Period

Congenital
Anomalies

Symptoms, Signs and Ill-Defined
Conditions

Injury and Poisoning Supplemen-
tary Factors Influencing Health
Status and Contact With Health
Services

Supplementary Classification of
External Causes of Injury and
Poisoning

- -

Level 1 (Simplified)

Infections Cancer Metabolic Blood Mental

Nervous Circular Respiratory Digestive Urinar

Pregnancy Skin Muscle Birth Newborn

Symptoms Injury External - -

Level 2 (Original)

Osteopathies, Chondropathies,
and Acquired Musculoskeletal
Deformities

Bulbus Cordis Anomalies and
Anomalies of Cardiac Septal Clo-
sure

Hereditary and Degenerative Dis-
eases of The Central Nervous
System

Poliomyelitis and Other Non-
Arthropod-Borne Viral Diseases
of Central Nervous System

Tuberculosis

Viral Diseases Accompanied By
Exanthem

Arthropod-Borne Viral Diseases Rickettsioses and Other
Arthropod-Borne Diseases

Syphilis and Other Venereal Dis-
eases

Mycoses

Hereditary Hemolytic Anemias Acquired Hemolytic Anemias Aplastic Anemia and Other Bone
Marrow Failure Syndromes

Other and Unspecified Anemias Coagulation De-
fects

Personality Disorders, and Other
Nonpsychotic Mental Disorders

Congenital Anomalies of Eye Inflammatory Diseases of The
Central Nervous System

Human Immunodeficiency Virus Neurotic Disor-
ders

Disorders of The Peripheral Ner-
vous System

Disorders of The Eye and Ad-
nexa

Diseases of The Ear and Mastoid
Process

Chronic Rheumatic Heart Dis-
ease

Acute
Rheumatic
Fever

Ischemic Heart Disease Diseases of Pulmonary Circula-
tion

Acute Respiratory Infections Chronic Obstructive Pulmonary
Disease and Allied Conditions

Pneumonia and
Influenza

Intestinal Infectious Diseases Anencephalus and Similar
Anomalies

Other Congenital Anomalies of
Nervous System

Zoonotic Bacterial Diseases Intellectual Dis-
abilities

Table 17: Sample of label descriptors (ICD-9 codes) for MIMIC dataset.
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