
Findings of the Association for Computational Linguistics: ACL 2023, pages 5866–5878
July 9-14, 2023 ©2023 Association for Computational Linguistics

Improving Knowledge Graph Completion with Generative
Hard Negative Mining

Zile Qiao1, Wei Ye2 , Dingyao Yu2, Tong Mo1,†

Weiping Li1, Shikun Zhang2

1 School of Software and Microelectronics, Peking University
2 National Engineering Research Center for Software Engineering, Peking University

{zileq, wye, yudingyao, zhangsk}@pku.edu.cn
{motong, wpli}@ss.pku.edu.cn

Abstract

Contrastive learning has recently shown great
potential to improve text-based knowledge
graph completion (KGC). In this paper, we pro-
pose to learn a more semantically structured
entity representation space in text-based KGC
via hard negatives mining. Specifically, we
novelly leverage a sequence-to-sequence archi-
tecture to generate high-quality hard negatives.
These negatives are sampled from the same de-
coding distributions as the anchor (or correct
entity), inherently being semantically close to
the anchor and thus enjoying good hardness. A
self-information-enhanced contrasting strategy
is further incorporated into the Seq2Seq genera-
tor to systematically diversify the produced neg-
atives. Extensive experiments on three KGC
benchmarks demonstrate the sound hardness
and diversity of our generated negatives and
the resulting performance superiority on KGC.

1 Introduction

Knowledge Graph (KG) is an efficient method of
representing global knowledge (Cui et al., 2019;
Lv et al., 2022), playing a fundamental role in
many Natural Language Processing (NLP) tasks
like question answering (Sun et al., 2019a; Saxena
et al., 2020), recommender systems (Huang et al.,
2018), and web search (Ji et al., 2020), etc. The
knowledge graph is composed of triples (h, r, t),
where h, t, and r denote a head entity, a tail entity,
and their relation, respectively. Modern public KGs
such as Freebase, YAGO, and Wikidata, although
covering massive knowledge with a large number
of entities, are inevitably incomplete. Therefore,
Knowledge graph completion (KGC) has become
a popular area of research in recent years (Wang
et al., 2017).

Generally, two types of methods are applied
for this task. Embedding-based methods assign
each entity/relation with a dense vector trained

†Corresponding authors.

Embedding Space

Generated Negatives In-Batch Negatives Anchor

< Chara, occupation, ? >
lyricist
singer
writer
engineer
lawyer

…
cook

Generator:

Self-information

Figure 1: Conceptual illustration of our generative neg-
ative mining strategy. We feed the query (e.g., “<Chara,
occupation, ?>”) into a sequence-to-sequence model
to generate multiple entities consisting of the correct
answer and negatives. These entities are sampled from
the same decoding distributions, making the negatives
inherently semantically close to the target entity (as the
yellow arrows show). A contrasting strategy regulated
by token self-information is imposed on the Seq2Seq
generator to make the negatives more diversified (or
uniformly distributed, as the grey arrows depict).

with structural information of graphs. Represen-
tative efforts include TransE (Bordes et al., 2013),
TransH (Wang et al., 2014), Complex (Trouillon
et al., 2016), and RotatE (Sun et al., 2019b), etc.
Text-based methods (Wang et al., 2019; Yao et al.,
2019; Lv et al., 2022; Saxena et al., 2022) exploit
textual names or descriptions of entities and rela-
tions to facilitate representation learning. Among
the two categories, the performance of text-based
ones generally lags behind that of embedding-
based ones, due to inadequate entity representation
optimization of the former (Wang et al., 2022).

The recent robust text-based method,
SimKGC (Wang et al., 2022), tackles the
sub-optimal representation problem by contrasting
carefully sampled in-batch, pre-batch and self
negatives, inspiring us to leverage hard example
mining (Kalantidis et al., 2020; Hu et al., 2020)
to unlock the potential of contrastive learning
for text-based KGC methods. Specifically, there

5866

are two essential properties for negative sample
selection:

• Vicinity (Robinson et al., 2021; Tabassum
et al., 2022a) is a metric to measure the dis-
tance between the negatives and the anchor.
Lower vicinity can push the model to learn
better representation boundaries.

• Uniformity (Wang and Isola, 2020; Tabassum
et al., 2022a) is another one to measure the
representativeness of the negatives. Higher
uniformity means negative samples are uni-
formly distributed on the hypersphere and will
make the produced representation more gen-
eralized.

To improve vicinity, we pioneeringly introduce
a generative method to produce negatives in KGC.
Unlike previous efforts that use in-batch or pre-
batch entities, we apply a sequence-to-sequence
model as a generator, which is trained to directly
generate the tail entity t for a given < h, r > pair.
With a sampling strategy, we can get multiple tail
entities from the generator, and the incorrect ones
among them constitute our negatives for efficient
contrastive learning. As shown in Figure 1, since
the generated negative samples are decoded from
the same hidden state as the correct answer, they
inherently have better anchor similarity in the se-
mantic space.

To improve uniformity, we further incorporate
the generator itself with a novel self-information-
enhanced contrastive learning strategy. In partic-
ular, we apply a prefix tree to obtain the condi-
tional frequency of the tokens at each decoding
step, which is converted to self-information (Shan-
non, 1948) and utilized as a token-wise weight for
contrastive learning in the generator. Typically, the
generator prefers to predict more frequent entity
descriptions which consist of tokens of low self-
information. Incorporating the weighting mecha-
nism forces the generator to produce more distinc-
tive representations for more informative tokens
(e.g., in less frequent entity descriptions), yielding
more diversified negatives for KGC.

In summary, our generative negative mining
strategy innovatively balances the vicinity and uni-
formity of negative samples. Meanwhile, the hard
negatives produced by the generator are natural
candidates for inference. Compared to other text-
based methods that have to enumerate all enti-
ties for inference, we can pick a small number

of generated entities as a high-quality candidate
set, significantly accelerating inference speed for
large-scale KGs. We evaluate our method on three
popular KGC datasets (WN18RR (Dettmers et al.,
2017), FB15K237 (Toutanova and Chen, 2015a),
and Wikidata (Wang et al., 2019)), and the empiri-
cal results verify the superiority of our method.

Our contributions are as follows:

• We pioneeringly incorporate generative meth-
ods to produce hard negatives in text-based
KGC for better contrasting effects.

• We design a novel self-information-enhanced
contrastive learning method for the negative
generator, providing us with high-quality neg-
ative samples.

• The negatives we generated are proven to sys-
tematically balance the hardness and diversity
(or vicinity and uniformity, more formally),
leading to competitive performances on three
KGC benchmarks.

2 Methodology

The link prediction task of KGC is to infer the
missing triples given an incomplete G. In this
section, we mathematically describe the proposed
Generative Hard Negative Mining (GHN) method
in detail. The core idea of GHN is to obtain better
negatives in terms of vicinity and uniformity. We
first introduce the overall process of GHN in 2.1
which includes how to generate and use these nega-
tive samples to enhance KGC model training. Then,
to further improve the vicinity and uniformity of
generated negatives, we propose a self-information-
enhanced token-level contrastive learning method
which is discussed in 2.2. Finally, we introduce
how to facilitate inference on KGC tasks in 2.3.

2.1 Model Architecture
Our GHN model mainly consists of two parts, a
generator that aims to provide hard negatives to
facilitate efficient contrastive learning and a pre-
dictor which is supposed to predict the tail entity
given a <head entity, relation> pair. Then, we will
present how to leverage generated negatives for
better training efficiency.

Generator Saxena et al. (2022) has proved that
a simple encoder-decoder Transformer (Vaswani
et al., 2017) can perform knowledge graph com-
pletion in the form of a sequence-to-sequence task.

5867

The performance of directly using a Transformer
to predict the tail entity may not appeal. However,
using a sequence-to-sequence model to generate
negatives has ideal properties, such as scalability
(the inference speed is independent of the scale of
KG) and the better vicinity of generated negatives,
considering that the generation of negatives and
golden entities share the same hidden state.

First, we construct a mapping between the tex-
tual descriptions and entities/relations following
Saxena et al. (2022); Wang et al. (2022). The
textual mentions we used are provided by KG-
BERT (Yao et al., 2019). Then we formally de-
scribe how to convert link prediction queries to tex-
tual queries. Given a link prediction query (h, r, ?),
where h and r represent the head entity and the rela-
tion, respectively. The textual query is the concate-
nation of the text mentions of h and r, separated
by |. For example, given a link prediction query
(St.Louis, time zones location, ?), the converted
text query thr is ′St.Louis | time zones location′.
The text query is the input of our generator,
which is supposed to output the correct answer
′Central Time Zone′.

To obtain diverse and semantically similar neg-
atives to the golden entity, we use the sampling
strategy to get multiple predictions for the same
input query. Specifically, we get a probability dis-
tribution over tokens at each step of decoding, then
sample a token from the distribution and autoregres-
sively decode until the ‘stop’ token. This procedure
will be repeated multiple times to produce a neg-
ative set N q for each query. Finally, we drop the
correct entity to get a set of negatives.

Predictor Following SimKGC (Wang et al.,
2022), our GHN adopts a bi-encoder architecture.
The first encoder BERThr takes the text query thr
as input and produces the relation-aware embed-
ding ehr, where thr is the same text query as the
input of the generator. Similarly, the second en-
coder BERTt takes the textual mentions of the
tail entity and produces its embedding et. We use
mean pooling followed by L2 normalization to ob-
tain these embeddings. Then we compute cosine
similarity to these embeddings and predict the one
with the largest score:

ϕ(h, r, ti) = cos (ehr, eti) ,

argmax
ti

ϕ(h, r, ti), ti ∈ E , (1)

Training with Generated Negatives We first
briefly introduce the objective of the generator.

The generator is optimized by minimizing a cross-
entropy loss with the golden entity:

LCE = − 1

K

K∑

k=1

log p (y∗k | y<k,x) , (2)

where K is the length of the target entity. The
probability p (y∗k | y<k,x) is calculated by multi-
plying the last layer decoder hidden state of the
generator sk and the softmax embedding matrix
Ws together:

p (yk | y<k,x) ∝ exp (Ws · sk) , (3)

where x and y denote the input sequence and out-
put sequence respectively.

Unlike other negative mining methods (Xiong
et al., 2020; Kalantidis et al., 2020), our method
does not need to calculate weights for negatives.
Instead, we directly mix the generated negatives
and in-batch negatives to produce a negative set
N = Nib ∪Ngen, where Nib and Ngen denote the
set of in-batch negatives and generated negatives
respectively. In training, the generated negative
samples N q

gen ⊆ N q are sampled from correspond-
ing negative set N q:

p(n | q) =
T∑

t=1

log (p (nt | y<t,x)) , n ∈ N q.

(4)
After constructing the negative set, we use In-

foNCE (Chen et al., 2020) loss to train the predic-
tor:

Lp = − log
eϕ(h,r,t)/τ

eϕ(h,r,t)/τ +
∑|N |

i=1 e
ϕ(h,r,t′i)/τ

, (5)

where τ is a learnable parameter.

2.2 Self-information enhanced Training
We have used a sequence-to-sequence model to
provide hard negatives for the predictor. Through
further investigation, we noticed that the target of
generative link prediction is different from tradi-
tional generative tasks like machine translation. We
call tasks like link prediction as target-constraint
generation tasks. Specifically, one is able to ob-
tain all available targets in link prediction, which
is impossible for traditional generative tasks. Intu-
itively, more informative tokens are more critical
than others. We hypothesize that informative to-
kens may impact the diversity of generated results
since the generator prefers to predict more frequent

5868

entity descriptions which consist of tokens of low
self-information, typically. Our investigation (see
section 4.3 for more details) verified this hypothe-
sis.

Therefore, we propose a self-information-
enhanced contrastive learning method to further im-
prove the uniformity of generated negatives by pro-
ducing more distinctive representations for more
informative tokens. First, we will introduce how
to obtain the self-information (Shannon, 1948) of
tokens. Then, we will introduce how to facili-
tate training for the generator of GHN with self-
information.

Self-Information is a measure of the information
content associated with the outcome of a random
variable (Shannon, 1948). Since all possible out-
puts are acquirable in KGC, we can easily calculate
self-information for all tokens.

We first construct a prefix tree T where nodes
are annotated with tokens from the vocabulary of
entity mentions. The children of each node t ∈ T
indicate all the available continuations from the pre-
fix defined traversing the prefix tree from the root to
t. Then, given the previous sequence generated by
a sequence-to-sequence model w1, · · · , wn−1 and
the current label token wn, the self-information of
the current label token I(wn|w<n) can be calcu-
lated as:

I(wn|w<n) = − log (P (wn|w<n))

P (wn|w<n) :=
Count(wn|Aw1,···wn−1)∣∣Aw1,···wn−1

∣∣ ,
(6)

where A is all the children nodes determined by
the prefix w1, · · · , wn−1 on the prefix tree. Then
we average the self-information of tokens that are
present in the different positions of the vocabulary
to produce the self-information for each token:

I(wn) =
1

K

K∑

k=1

I(wk
n), (7)

where wk
n denotes the kth token in vocabulary and

K is the total times of occurrences of wn.

Self-Information-aware Contrastive Learning
Token-level contrastive learning methods widen the
representations of tokens that have different labels.
Since we want the representation of informative
tokens to be more distinctive, we assign a set of
weights for each contrasting pair (higher weight
for contrasting pairs with higher self-information

tokens in it) according to their self-information. As
a result, the model can assign more distinctive rep-
resentations for tokens with more self-information
and facilitate the generation of these tokens.

Formally, given a target token ti and a negative
sample tj , we assign a soft weight w(i, j) for them.
The weight is determined by the self-information of
both ti and tj . We use the same strategy as token-
level contrastive learning (Zhang et al., 2021) to
build up the negative and positive samples. Given
the sequence of former target tokens and current
target label ti, we formulate the information-aware
soft weight w(i, j) for ti and corresponding nega-
tive sample tj as:

w(i, j) = λI(ti) · I(tj), (8)

where λ is a hyperparameter. In our implementa-
tion, the mean value of information-aware weights
for all negatives of each anchor is normalized to be
1. The contrastive learning object is:

LCL = − log
ecos(sa,sp)

∑N
i=1w(a, i)e

cos(sa,si)
, (9)

where sa, sp, and si denote the representation of
anchor, positive token, and negative tokens, respec-
tively. Finally, we weight the traditional gener-
ative object LCE and the self-information-aware
contrastive objective LCL by a hyperparameter γ to
compute the final loss LGEN for the generator:

LGEN = (1− γ)LCE + γLCL. (10)

2.3 Inference
Most text-based methods have to produce repre-
sentation for each entity (Wang et al., 2022; Yao
et al., 2019). Considering the large scale of modern
KGs, the efficiency of link prediction is of con-
cern. Therefore, we propose a simple generation-
classification two-stage method to perform high-
efficiency inference. Specifically, the generator we
used to produce hard negatives is also able to pro-
vide candidates for inference. In the first stage, the
generator produces a set of candidates Nc by the
same sampling strategy as we discussed in 2.1. In
the second stage, the predictor computes scores
for candidates and then predicts the one with the
largest score:

argmax
ti

ϕ(h, r, ti), ti ∈ Nc. (11)

The number of candidates |Nc| is empirically set to
be 50. Be aware that the two-stage inference is not

5869

dataset #entity #relation #train #valid #test
WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466
Wikidata5M 4,594,485 822 20,614,279 5,163 5,163

Table 1: Statistics of the datasets used in this paper.

enforced for our method, it can speed up inference
only when the scale of KG is relatively large.

3 Experiments Setup

3.1 Datasets

We evaluate our method on three widely-used link
prediction datasets, WN18RR (Dettmers et al.,
2017), FB15K237 (Toutanova and Chen, 2015b),
and Wikidata (Wang et al., 2019). The statistics
are shown in Table 1. WN18RR consists of about
41k synsets and 11 relations from WordNet (Miller,
1995). This dataset is constructed by removing the
inverse relations from FB15k (Bordes et al., 2013)
which suffers from test set leakage. FB15k-237
is a subset of Freebase (Bollacker et al., 2008), it
consists of about 15k entities and 237 relations.
Similar to the WN18RR dataset, Dettmers et al.
(2017) removed the inverse relations to address the
test set leakage problem. Wikidata5M has much
larger scale which consists of ∼ 4.6M entities, 822
relations, and ∼ 20 million triples. Following most
of KGC methods, we use the transductive version
of Wikidata5M. All the textual descriptions for
WN18RR and FB15k-237 are provided by Yao et al.
(2019). The Wikidata5M dataset already provides
descriptions for all entities and relations.

3.2 Baselines

TransE (Bordes et al., 2013) constructs a relation-
specific translation from the head entity to the tail
entity. Trouillon et al. (2016) introduces complex
number embeddings.Tucker (Balažević et al., 2019)
facilitate KGC based on Tucker decomposition of
the binary representation of triples. DistMult (Yang
et al., 2014) models the three-way interactions in
triples. RotatE (Sun et al., 2019b) models a relation
as rotation in complex space. DKRL (Xie et al.,
2016) leverages a CNN network to obtain text rep-
resentations. KEPLER (Wang et al., 2019) uses a
Transformer-based encoder trained with the typical
KGE objective and the masked language modeling
objective. MTL-KGC (Kim et al., 2020) proposes a
multi-task learning method that can learn more rela-
tional properties. KG-BERT (Yao et al., 2019) and

StAR (Wang et al., 2021) both leverage pre-trained
language models to produce the representation of
entities. SimKGC (Wang et al., 2022) train the
model with much more negatives by incorporating
three types of negatives.

3.3 Implementation Details

The generator is implemented using the Hugging-
Face library (Wolf et al., 2019) with the pre-trained
weight of BART-base (Lewis et al., 2019). The
predictor is initialized with BERT (Devlin et al.,
2018). And we first train the generator with Lgen

as the objective until validation accuracy did not
significantly increase for 5k steps. Most hyperpa-
rameters except training epochs are shared across
all datasets to avoid dataset-specific tuning.

Follow SimKGC (Wang et al., 2022), the entity
descriptions are truncated to a maximum of 50
tokens for a fair comparison. The size of N q

gen is
set to 10. We use AdamW optimizer with linear
learning rate decay, the learning rate is initialized to
3× 10−5. Models are trained with batch size 1024.
All experiments were performed using 4 NVIDIA
A100 GPUs. For the WN18RR, FB15k-237, and
Wikidata5M datasets, we train for 50, 10, and 1
epochs, respectively.

4 Experiment Results

4.1 Main Results

Table 2 shows the performance of the baselines
and our method variants on WN18RR and FB15k-
237 tasks (statistically significant with p < 0.05).
While Table 3 further demonstrates the perfor-
mance and inference speed of baselines and our
methods on Wikidata5M dataset, which has a much
larger scale. We have the following observations.

First, the superiority of GHN is significant in
terms of performance. Compared to previous
text-based methods, GHN shows consistent per-
formance improvement in all three tasks. Com-
pared to embedding-based methods, GHN has a sig-
nificant performance advantage in WN18RR and
Wikidata5M, while marginally trailing in FB15k-
237. All of the text-based methods lag behind

5870

Method WN18RR FB15k-237

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

embedding-based methods

TransE 24.3 4.3 44.1 53.2 27.9 19.8 37.6 44.1
DistMult 44.4 41.2 47.0 50.4 28.1 19.9 30.1 44.6
RotatE 47.6 42.8 49.2 57.1 33.8 24.1 37.5 53.3
TuckER 47.0 44.3 48.2 52.6 35.8 26.6 39.4 54.4

text-based methods

KG-BERT 21.6 4.1 30.2 52.4 - - - 42.0
MTL-KGC 33.1 20.3 38.3 59.7 26.7 17.2 29.8 45.8
StAR 40.1 24.3 49.1 70.9 29.6 20.5 32.2 48.2
SimKGC 66.6 58.7 71.7 80.0 33.6 24.9 36.2 51.1

GHN-SL 67.3 59.3 71.5 80.9 33.8 25.1 36.3 51.5
GHN 67.8 59.6 71.9 82.1 33.9 25.1 36.4 51.8

Table 2: Main results for WN18RR and FB15k-237 datasets. GHN-SL denotes the proposed GHN without
self-information-enhanced training. Following previous work, MRR and Hits@k are reported under the filtered
setting (Bordes et al., 2013) for a fair comparison.

embedding-based methods on FB15k-237 dataset
for now. The possible reason is that many links in
FB15k-237 dataset are not predictable based on the
available information (Cao et al., 2021) and may
harm the training of text-based models.

Second, though GHN already surpasses most
baselines without the self-information-enhanced
training method, this training method further im-
proves the performance on link prediction tasks, es-
pecially reflected in Hits@10 metric. This improve-
ment shows that the self-information-enhanced
training method may lead to a more generalized
KGC model by introducing more diverse negatives.
Please refer to section 4.3 for more details.

Third, GHN also significantly accelerates the in-
ference speed on Wikidata5M dataset. To perform
link prediction on a test set, SimKGC needs to do
2× |T |+ |E| times BERT forward pass, where |T |
and |E| denote the size of the test set and the num-
ber of entities in corresponding KG, respectively.
While GHN needs up to 2×|T |× (|Nc|+1) times
BERT forward pass and ∼ 2 × |Nc| × |T | times
BART generation process. Since in large-scale
datasets such as Wikidata5M, |T | << |E| (5,163
test samples and ∼ 4.6M entities for Wikidata5M),
the significant acceleration is as expected. Note
that the two-stage inference is not enforced, in the
case that there are too many queries or the KG’s
scale is relatively small, GHN has the same infer-
ence speed as SimKGC.

4.2 Overall Impacts of Generative Hard
Negative mining

One of the key designs in GHN is leveraging a
sequence-to-sequence model to generate hard neg-
atives. To further investigate the impact of gener-
ated negatives, we construct an approximate near-
est neighbor negative sampling strategy (ANN)
inspired by Xiong et al. (2020); Kalantidis et al.
(2020) and replace the generative negative sam-
pling strategy in GHN with it. Specifically, we
use the current predictor to find entities that are
close to the golden tail entity among all entities as
the hard negatives. Since the computation cost of
producing representations for all entities is unaf-
fordable, we randomly sample 500 entities for each
query and pick the top 10 entities by their represen-
tations’ cosine similarity with the representation
of the golden tail entity. Table 4 shows the per-
formance comparison between GHN, ANN, and
four variants of SimKGC with different negative
sampling strategies.

Intuitively, since ANN picks the nearest entities
to the anchor as negatives which are more “harder”
than generated ones, it should further improve link
prediction performance. However, it does not show
the expected performance improvement. The possi-
ble reason is that the balance between vicinity and
uniformity is critical since these picked negatives
apparently have better vicinity than generated neg-

5871

Method Wikidata5M

MRR Hits@1 Hits@3 Hits@10 Inference Speed

embedding-based methods

TransE 25.3 17.0 31.1 39.2 -
RotatE 29.0 23.4 32.2 39.0 -

text-based methods

DKRL 16.0 12.0 18.1 22.9 ∼ 3×
KEPLER 21.0 17.3 22.4 27.7 ∼ 5×
SimKGC 35.8 31.3 37.6 44.1 ∼ 4×
GHN-SL 36.2 31.5 37.8 44.8 ∼ 1×
GHN 36.4 31.7 38.0 45.3 ∼ 1×

Table 3: Main results with inference speed comparison for Wikidata5M datasets.

Method WN18RR
MRR H@1 H@3 H@10

IB 67.1 58.5 73.1 81.7
IB+PB 66.6 57.8 72.3 81.7
IB+SN 66.7 58.8 72.1 80.5
IB+SN+PB 66.6 58.7 71.7 80.0
ANN 66.7 58.9 71.4 79.2
GHN 67.8 59.6 71.9 82.1

Table 4: Ablation study on WN18RR dataset. NN de-
notes that we replace the proposed negative sampling
strategy with the approximate nearest neighbor sam-
pling strategy to obtain negative samples. IB, IB+PB,
IB+SN, and IB+SN+PB denote the four variants of
SimKGC(IB, PB, and SN denote the variant of SimKGC
with in-batch, pre-batch, and self-negative sampling
strategy, respectively (Wang et al., 2022).).

atives but lead to worse performance(more details
in section 4.3). Besides, GHN also shows perfor-
mance superiority to SimKGC with four different
negative sampling strategies, which further demon-
strates the effectiveness of our generative negative
sampling strategy.

4.3 Effects on Representation Learning

To further examine what makes GHN excel and
how the self-information-enhanced training method
impacts the generated negatives. We conduct a fur-
ther investigation from the perspective of represen-
tation learning by computing two metrics Mv and
Muni to measure the vicinity and uniformity for
negatives produced by different sampling strategies,
inspired by Wang and Isola (2020) and Tabassum
et al. (2022b). Specifically, we use the average co-

Figure 2: Vicinity, uniformity, and MRR metrics.The
x/y axes correspond to Muni and Mv, respectively.
GNH and GHN-SL denote the proposed negative sam-
pling strategy with or without self-information, respec-
tively. IB denotes the in-batch sampling strategy. ANN
denotes the nearest neighbor negative sampling strategy.

sine distance of negatives between the anchor to
measure the vicinity Mv for each negative sam-
pling strategy. To measure the uniformity Muni of
negatives’ distribution on the hypersphere, we com-
pute the logarithm of the average pairwise Gaussian
potential between all negatives’ embedding. Here
we choose two variants of GHN, ANN, and IB
negative sampling strategies to conduct the com-
parison. The reason we did not add PB and SN
negative sampling strategy to the comparison is as
follows: PB sampling strategy shares almost the

5872

same Mv and Muni with IB. SN sampling strat-
egy only picks the head entity itself in the query
as the only negative sample and it is impossible to
calculate Muni for this sampling strategy.

Figure 2 shows that our GHN is able to produce
negatives with better uniformity but worse vicinity
compared to the ANN sampling strategy, while the
opposite is true when compared to IB sampling
strategy. Meanwhile, our generative sampling strat-
egy has a better MRR score than both NN and IB
strategies (67.8 v.s. 66.7 and 67.1 MRR score).

Leveraging self-information-aware contrastive
learning (SL) to enhance the training of the gener-
ator is another key design in GHN. Figure 2 also
demonstrates that SL training method significantly
improves the uniformity of generated negatives
while the improvement of vicinity is also visible,
which empirically verified that SL method could
lead to a more diverse generation.

Figure 3: MRR score of GHN and SimKGC with differ-
ent number of negatives.

4.4 Effects on Training Efficiency

An abundance of negative samples is critical for
contrastive learning (Chen et al., 2020; Wang et al.,
2022) while causing more demands on GPU mem-
ory. Figure 3 illustrates the MRR metrics on
WN18RR dataset vary for GHN and SimKGC un-
der different numbers of negatives for each query.
By introducing generated negatives, our GHN leads
to much efficiency training: GHN only needs
511 negatives to reach a similar performance as
SimKGC does with 1023 negatives. Note that
we do not count the pre-batch negatives used in
SimKGC for a fair comparison. This observation
re-emphasizes the effectiveness of the proposed
generative negative mining strategy.

5 Related Work

Text-based KGC methods aims to leverage text
information in KGs to assist KGC. DKRL (Xie
et al., 2016) obtained text representations by CNN.
KEPLER (Wang et al., 2019) leveraged the typical
KGE training objective into the masked language
model training. MTL-KGC (Kim et al., 2020) pro-
posed to learn more relational properties in KGs
with multi-task learning method. KG-BERT (Yao
et al., 2019) and StAR (Wang et al., 2021) lever-
aged pre-trained language models to produce en-
tity embeddings in the cross-encoder style and bi-
encoder style, respectively. SimKGC (Wang et al.,
2022) increase the number of negatives by incorpo-
rating three types of negatives and achieved notable
performance improvements.

Negative Mining aims to find property negatives
to assist contrastive representation learning (Mao
et al., 2021). The most effective way is to use
the samples within the same mini-batch for neg-
ative candidates (Wang et al., 2022; Chen et al.,
2020). Another effective and widely used method
is to store negative samples with an asynchronous
update mechanism (Zhang et al., 2018; He et al.,
2019), which allows more negative candidates to
be involved during training. To make contrastive
pairs difficult to discriminate, Zhang et al. (2013);
Chen et al. (2017); Xiong et al. (2020) compute
propensity score for each <query, sample candi-
date> pair. Ying et al. (2018) further utilizes Page-
Rank score to calculate weights for negative can-
didates. Motivated by the generative adversarial
networks (Goodfellow et al., 2014), Wang et al.
(2020) proposed a sampling strategy by adaptively
receiving knowledge-aware rewards. And Hu et al.
(2020) proposed to adversarially generate the hard
negative samples together with the representation
network.

6 Conclusion

We have presented our method for KGC tasks,
which incorporate generative methods with a novel
self-information-enhanced training strategy to pro-
duce high-quality negatives. And we further reveal
that the proposed method systematically balances
uniformity and vicinity, two essential properties
for negative sample selection. Empirical results on
three widely-used datasets (WN18RR, FB15k-237,
Wikidata5M) have verified the superiority of our
method.

5873

7 Limitations

For now, the superiority of the proposed two-stage
inference speed-up method cannot adapt to induc-
tive datasets since the generated sequences are dif-
ficult to map to unseen entities. Therefore, we will
explore how to efficiently perform KGC under the
inductive setting in the future.

Like the other text-based KGC methods, our
GHN lag behind embedding-based methods on
FB15k-237 dataset. Cao et al. (2021) claims that
many links in the FB15k-237 dataset are not pre-
dictable based on the information in the KG and
we hypothesize this may harm the training of text-
based models. In the future, we intend to examine
this more thoroughly.

Acknowledgements

We thank anonymous reviewers for their valuable
comments. This work was supported in part by the
National Key R&D Program of China under Grants
No.2022YFF0902703.

References
Ivana Balažević, Carl Allen, and Timothy M

Hospedales. 2019. Tucker: Tensor factorization
for knowledge graph completion. arXiv preprint
arXiv:1901.09590.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data, pages 1247–1250.

Antoine Bordes, Nicolas Usunier, Alberto García-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NIPS.

Yixin Cao, Xiang Ji, Xin Lv, Juanzi Li, Yonggang Wen,
and Hanwang Zhang. 2021. Are missing links pre-
dictable? an inferential benchmark for knowledge
graph completion. arXiv preprint arXiv:2108.01387.

Long Chen, Fajie Yuan, Joemon M. Jose, and Weinan
Zhang. 2017. Improving negative sampling for word
representation using self-embedded features. Pro-
ceedings of the Eleventh ACM International Confer-
ence on Web Search and Data Mining.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Wanyun Cui, Yanghua Xiao, Haixun Wang, Yangqiu
Song, Seung won Hwang, and Wei Wang. 2019.
Kbqa: Learning question answering over qa corpora
and knowledge bases. ArXiv, abs/1903.02419.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2017. Convolutional 2d knowl-
edge graph embeddings. In AAAI Conference on
Artificial Intelligence.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C.
Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. In NIPS.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross B. Girshick. 2019. Momentum contrast for
unsupervised visual representation learning. 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 9726–9735.

Qianjiang Hu, Xiao Wang, Wei Hu, and Guo-Jun Qi.
2020. Adco: Adversarial contrast for efficient learn-
ing of unsupervised representations from self-trained
negative adversaries. 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 1074–1083.

Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji rong
Wen, and Edward Y. Chang. 2018. Improving se-
quential recommendation with knowledge-enhanced
memory networks. The 41st International ACM SI-
GIR Conference on Research & Development in In-
formation Retrieval.

Shaoxiong Ji, Shirui Pan, E. Cambria, Pekka Marttinen,
and Philip S. Yu. 2020. A survey on knowledge
graphs: Representation, acquisition, and applications.
IEEE Transactions on Neural Networks and Learning
Systems, 33:494–514.

Yannis Kalantidis, Mert Bulent Sariyildiz, No’e Pion,
Philippe Weinzaepfel, and Diane Larlus. 2020. Hard
negative mixing for contrastive learning. ArXiv,
abs/2010.01028.

Bosung Kim, Taesuk Hong, Youngjoong Ko, and
Jungyun Seo. 2020. Multi-task learning for knowl-
edge graph completion with pre-trained language
models. In Proceedings of the 28th International
Conference on Computational Linguistics, pages
1737–1743, Barcelona, Spain (Online). International
Committee on Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

5874

https://doi.org/10.18653/v1/2020.coling-main.153
https://doi.org/10.18653/v1/2020.coling-main.153
https://doi.org/10.18653/v1/2020.coling-main.153

Xin Lv, Yankai Lin, Yixin Cao, Lei Hou, Juanzi Li,
Zhiyuan Liu, Peng Li, and Jie Zhou. 2022. Do pre-
trained models benefit knowledge graph completion?
a reliable evaluation and a reasonable approach. In
Findings.

Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai,
Zhenhua Dong, Xi Xiao, and Xiuqiang He. 2021.
Simplex: A simple and strong baseline for collabo-
rative filtering. Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge
Management.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra,
and Stefanie Jegelka. 2021. Contrastive learning with
hard negative samples. In International Conference
on Learning Representations.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.
2022. Sequence-to-sequence knowledge graph com-
pletion and question answering. In Annual Meeting
of the Association for Computational Linguistics.

Apoorv Saxena, Aditay Tripathi, and Partha Pratim
Talukdar. 2020. Improving multi-hop question an-
swering over knowledge graphs using knowledge
base embeddings. In Annual Meeting of the Associa-
tion for Computational Linguistics.

Claude E. Shannon. 1948. A mathematical theory of
communication. Bell Syst. Tech. J., 27:623–656.

Haitian Sun, Tania Bedrax-Weiss, and William W. Co-
hen. 2019a. Pullnet: Open domain question answer-
ing with iterative retrieval on knowledge bases and
text. ArXiv, abs/1904.09537.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019b. Rotate: Knowledge graph embed-
ding by relational rotation in complex space. arXiv
preprint arXiv:1902.10197.

Afrina Tabassum, Muntasir Wahed, Hoda Eldardiry,
and Ismini Lourentzou. 2022a. Hard negative sam-
pling strategies for contrastive representation learn-
ing. ArXiv, abs/2206.01197.

Afrina Tabassum, Muntasir Wahed, Hoda Eldardiry,
and Ismini Lourentzou. 2022b. Hard negative sam-
pling strategies for contrastive representation learn-
ing. arXiv preprint arXiv:2206.01197.

Kristina Toutanova and Danqi Chen. 2015a. Observed
versus latent features for knowledge base and text
inference. In Workshop on Continuous Vector Space
Models and their Compositionality.

Kristina Toutanova and Danqi Chen. 2015b. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Composi-
tionality, pages 57–66, Beijing, China. Association
for Computational Linguistics.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Interna-
tional conference on machine learning, pages 2071–
2080. PMLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying
Wang, and Yi Chang. 2021. Structure-augmented
text representation learning for efficient knowledge
graph completion. In Proceedings of the Web Confer-
ence 2021, pages 1737–1748.

Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming Liu.
2022. Simkgc: Simple contrastive knowledge graph
completion with pre-trained language models. ArXiv,
abs/2203.02167.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo.
2017. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on
Knowledge and Data Engineering, 29:2724–2743.

Tongzhou Wang and Phillip Isola. 2020. Understanding
contrastive representation learning through alignment
and uniformity on the hypersphere. In International
Conference on Machine Learning, pages 9929–9939.
PMLR.

Xiang Wang, Yaokun Xu, Xiangnan He, Yixin Cao,
Meng Wang, and Tat-Seng Chua. 2020. Reinforced
negative sampling over knowledge graph for recom-
mendation. Proceedings of The Web Conference
2020.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhiyuan
Liu, Juan-Zi Li, and Jian Tang. 2019. Kepler: A
unified model for knowledge embedding and pre-
trained language representation. Transactions of the
Association for Computational Linguistics, 9:176–
194.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In AAAI Conference on Artifi-
cial Intelligence.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and
Maosong Sun. 2016. Representation learning of
knowledge graphs with entity descriptions. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 30.

5875

https://openreview.net/forum?id=CR1XOQ0UTh-
https://openreview.net/forum?id=CR1XOQ0UTh-
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval.
ArXiv, abs/2007.00808.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2014. Embedding entities and relations
for learning and inference in knowledge bases. arXiv
preprint arXiv:1412.6575.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Kg-
bert: Bert for knowledge graph completion. ArXiv,
abs/1909.03193.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombat-
chai, William L. Hamilton, and Jure Leskovec. 2018.
Graph convolutional neural networks for web-scale
recommender systems. Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining.

Tong Zhang, Wei Ye, Baosong Yang, Long Zhang,
Xingzhang Ren, Dayiheng Liu, Jinan Sun, Shikun
Zhang, Haibo Zhang, and Wen Zhao. 2021.
Frequency-aware contrastive learning for neural ma-
chine translation. ArXiv, abs/2112.14484.

Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu.
2013. Optimizing top-n collaborative filtering via
dynamic negative item sampling. Proceedings of
the 36th international ACM SIGIR conference on
Research and development in information retrieval.

Yongqi Zhang, Quanming Yao, Yingxia Shao, and Lei
Chen. 2018. Nscaching: Simple and efficient nega-
tive sampling for knowledge graph embedding. 2019
IEEE 35th International Conference on Data Engi-
neering (ICDE), pages 614–625.

5876

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

7

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
1 3 4 6

�3 B1. Did you cite the creators of artifacts you used?
1 3 4 6

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
3 4

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
3

C �3 Did you run computational experiments?
4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
3

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

5877

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
3

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
3

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

5878

