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Abstract
Large language models (LLMs) have revolu-
tionized NLP by solving downstream tasks
with little to no labeled data. Despite their
versatile abilities, the larger question of their
ability to reason remains ill-understood. This
paper addresses reasoning in math word prob-
lems (MWPs) by studying symbolic versions
of the numeric problems, since a symbolic
expression is a “concise explanation” of the
numeric answer. We create and use a symbolic
version of the SVAMP dataset and find that
GPT-3’s davinci-002 model also has good zero-
shot accuracy on symbolic MWPs. To evaluate
the faithfulness of the model’s reasoning, we
go beyond accuracy and additionally evaluate
the alignment between the final answer and
the outputted reasoning, which correspond to
numeric and symbolic answers respectively for
MWPs. We explore a self-prompting approach
to encourage the symbolic reasoning to align
with the numeric answer, thus equipping the
LLM with the ability to provide a concise
and verifiable reasoning and making it more
interpretable. Surprisingly, self-prompting also
improves the symbolic accuracy to be higher
than both the numeric and symbolic accuracies,
thus providing an ensembling effect. The
SVAMP-Sym dataset will be released for
future research on symbolic math problems.

1 Introduction

Large language models (LLMs), with hundreds
of billions of parameters, can solve a wide
range of NLP tasks such as machine translation,
question-answering, etc., taking us closer to
general-purpose intelligent agents. The initial
success of GPT-3 (Brown et al., 2020) has led
to many other LLMs (Rae et al., 2021; Smith
et al., 2022; Chowdhery et al., 2022) which have,
perhaps surprisingly, taken big strides in solving

∗Some clarification on affiliation.
† Most of the work was performed while at Princeton

University and after graduating, but before joining Google.

difficult tasks like common sense reasoning, math
and science problems (Lewkowycz et al., 2022),
and writing code (Li et al., 2022).

Despite the incredible successes, we have little un-
derstanding of why LLMs are effective at problems
that require reasoning. In fact we have limited
techniques to quantifiably study the question of
reasoning beyond just evaluating accuracy. Recent
ideas like Chain-of-Thought prompting (CoT)
(Wei et al., 2022b; Kojima et al., 2022) encourage
the model to “think step by step” and output a
verbose reasoning in text. However, verifying such
reasoning at scale will incur the infeasible cost of
manually going over the text outputs. Furthermore,
we would like the model’s reasoning to be con-
sistent with its outputted answer, in order to trust
the presented reasoning. For these considerations,
we would like our models to output a concise
reasoning or explanation for its answer that can
be automatically verified. In particular, we desire
reasoning in the form of explanations that are

• Verifiable: For ease of evaluating correctness
of the outputted reasoning, and

• Concise: For scalability of verification. Manu-
ally going through text reasoning can quickly
get cumbersome

For instance, instead of a text description of
an algorithm to solve a problem, a Python
implementation of the algorithm would be a more
concise explanation for the reasoning behind
the algorithm1. Similarly, a simple linear model
or decision tree explaining the answers of a
black-box neural network also achieves the same
goal (Ribeiro et al., 2016). Concise explanations
can provide clearer insights into the reasoning
abilities of models, and verifiable explanations aid
interpretability and help foster trust in models, in

1We can automatically verify the answer not just for one
problem, but for all instance of that problem
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line with explainable AI (Samek et al., 2019).

In this work we use concise and verifiable
explanations to study reasoning abilities of LLMs
in math word problems (MWPs). LLMs have
shown to achieve good zero-shot accuracy on many
numeric MWP benchmarks (Kojima et al., 2022).
Chain-of-thought like ideas encourage LLMs to
first general a step-by-step explanation (in text)
before generating the answer. However, this does
not satisfy the criteria of being concise or easily
verifiable2. We address reasoning by considering
symbolic versions of numeric MWPs, because a
symbolic expression can be viewed as a concise
explanation for a numeric answer and can also be
automatically evaluated. Thus in this reasoning
framework for MWPs, we require an LLM to out-
put both, a numeric answer and a concise symbolic
expression, such that we have: (1) high accuracy
for the predicted numeric answer, (2) high align-
ment of the symbolic expression with the predicted
numeric answer. While most prior studies focus on
goal (1), we argue that goal (2) is equally important
for interpretability of these models and to trust
the its reasoning. Our main finding is that LLMs
can also do reasonably well on goal (2), either
by generating a numeric answer and symbolic
explanation together, or by generating the answer
first and then a post-hoc symbolic explanation. In
this context, we make the following contributions:

Symbolic evaluation. We construct a symbolic
version of the SVAMP dataset (Patel et al.,
2021) called SVAMP-Sym to evaluate LLMs.
Firstly we find, perhaps surprisingly, that GPT-3’s
davinci-002 model already achieves good zero-shot
accuracy on symbolic problems (64.2%), compa-
rable to the numeric accuracy of 68.9%. Secondly,
this observation provides a simple way to get good
accuracy and alignment for numeric problems by
first solving symbolic versions and then substitut-
ing back the values for variables. This approach
generates the numeric answer and a symbolic
explanation in one go, thus trivially achieving3 an
accuracy of 64.2% and alignment of 100%.

Self-prompting. There are two key drawbacks
with the above approach: (a) symbolic accuracy of
64.2% is lower than the numeric accuracy (68.9%),
(b) alignment of symbolic expressions, as post-hoc

2It is not uncommon for the outputted reasoning to be
inconsistent with the final answer

3If a “calculator” can evaluate symbolic expressions.

explanation to the original numeric answers, is very
low (∼ 50%). To get a better post-hoc explanation,
we propose a novel self-prompting approach that
first prompts the LLM with the numeric problem
and its response to the problem, and then asks
it to solve the symbolic problem; see Figure 1.
Self-prompting significantly improves alignment
with numeric answers to 74% (a 24% absolute
improvement). Surprisingly, self-prompting also
improves the symbolic accuracy to 71.7%, higher
than both the raw numeric and symbolic accuracies
of 68.9% and 64.2% respectively. This suggests
that self-prompting has an ensembling effect.

We perform further ablation studies and analyses
and hope that these insights will aid future work
on using LLMs for reasoning problems.

1.1 Related Work

Language models like GPT-3 (Brown et al., 2020)
and MLMs like BERT (Devlin et al., 2019) have
demonstrated impressive emergent behaviors (Wei
et al., 2022a) at scale. For math problems, Minerva
(Lewkowycz et al., 2022) was fine-tuned from
PaLM (Chowdhery et al., 2022) to do well on many
MWP benchmarks. Instead of fine-tuning, Wei
et al. (2022b) uses in-context learning and finds
that asking the model to “think step by step” (CoT
prompting) improves few-shot accuracy on MWPs;
Kojima et al. (2022) verify this for zero-shot
setting as well, which is the focus of our work.

There is limited theoretical work for the down-
stream success of LMs (Saunshi et al., 2021;
Xie et al., 2022) and the emergent behaviors of
LLMs through scaling laws (Kaplan et al., 2020).
Our idea of self-prompting is motivated by the
efficacy of in-context learning (Brown et al., 2020)
and prompting (Liu et al., 2023) in LMs. The
ensembling effect of self-prompting idea could
be related to self-calibration abilities of LMs
(Kadavath et al., 2022). Finally, Ho et al. (2022)
survey the progress of LMs on various notions
of reasoning; we consider a weaker notion of
“concise post-hoc explanations” here.

2 Math Word Problems with LLMs

2.1 SVAMP-Sym Dataset

We choose the SVAMP dataset (Patel et al.,
2021) for testing LMs on MWPs because it
provides numeric answers in the form of numeric
expressions (rather than just numeric values). This
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Figure 1: LMs can be queried to solve numeric/symbolic math problems. Self-prompting includes the numeric
problem and the LM’s solution to it before passing the symbolic problem. This encourages the model to output the
answer that aligns with the numeric answer. The symbolic expression w-x-y serves as a concise explanation/reason-
ing for the numeric answer of 2.

lets us automatically convert the dataset into a
symbolized version, without manual annotation.
The main idea is to replace all occurrences of
numbers in the problem statement with newly
introduced variables, e.g. (w,x,y,z). Appendix A
provides more details on the dataset construction.
The dataset is released in https://github.com/
vedantgaur/Symbolic-MWP-Reasoning.

2.2 Querying and Evaluating LMs
Broadly, our evaluation pipeline has four phases:
(1) get a verbose response from the LLM for the
math problem, (2) prompt the LLM to extract just
the answer (number or symbolic expression) from
its initial response, (3) refine the extracted answer
using a novel filtering step, (4) compare the filtered
answer to the ground-truth answer.

Initial response. We query the LM with the
problem statement and an optional CoT prompt,
i.e. "Q: <Problem> A:" or "Q: <Problem> A:
Let’s think step by step.". <Problem> could
either be a numeric or symbolic problem. Table 3
summarizes the prompts used for various settings.

Answer extraction. Since the LLM outputs a
long text response (Figure 1), we use an extraction
prompt to isolate the answer, similar to Kojima
et al. (2022). We query the LM with the transcript
so far, followed by the question and the prompt
"The final answer (only the number) is:"
to isolate the numeric answer. Table 3 has the
similar prompt for symbolic problems.

Answer filtering. The extraction prompt does
not always isolate the final answer and sometimes
outputs a sentence, especially for symbolic
problems. Thus we add a LM-independent filtering
step which includes stripping escape sequences,
removing commas, de-latexifying equations,

picking the longest symbolic expression, among
others; more details in Appendix C.2.

Answer evaluation. We compare the filtered
answer to the ground-truth answer (symbolized
expression or numeric value). Since there are mul-
tiple ways to express the same symbolic expression
(e.g. "w + (y + x)" and "w + x + y"), we
compare two expressions through their evaluations
on 20 random variable assignments. If they match
on all 20 assignments, we adjudge them to be
equivalent, making a (reasonable) assumption that
20 random assignments will avoid false positives.

3 Experimental Results

We pick 150/1000 examples from the SVAMP
dataset (due to budget constraints) and run each
examples 5 times. We use GPT-3’s davinci-002
model with temperature 0.0 for (mostly) determin-
istic outputs, with a max token length of 256.

3.1 Numeric and Symbolic Evaluations
We discuss the accuracies for solving numeric
and symbolic math problems from SVAMP and
SVAMP-Sym respectively.

Numeric accuracy. The zero-shot numeric
accuracy both with chain-of-thought (CoT) prompt
and without (vanilla) are presented in Table 1;
they are 68.9% and 65.6% respectively. This good
performance is unsurprising given prior work
(Kojima et al., 2022). Our accuracies are ∼ 5-7%
higher than Kojima et al. (2022), due in part to
better answer extraction and filtering.

Symbolic accuracy. We also evaluate raw
symbolic problems from SVAMP-Sym in the
vanilla and CoT settings with 3 natural choices for
variables: (w,x,y,z), (i,j,k,l) and (p,q,r,s).
Firstly we observe, in Table 1, that GPT-3 can
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Numeric Symbolic
(w,x,y,z) (p,q,r,s) (i,j,k,l)

Evaluation Raw (-F) Raw (-F) SP (-F) SP + AP Raw Raw

Accuracy
Vanilla 65.6 (61.6) 59.7 (47.6) 61.9 (40) 68.3 62.3 53.5

CoT 68.9 (65.9) 64.2 (48.8) 67.9 (48.6) 71.7 64.4 58.4

Alignment
Vanilla - 52.9 (40.7) 60.3 (40) 64.9 56.3 44.7

CoT - 51.2 (39.1) 63.1 (44.9) 74 51.9 47.1
Similarity Vanilla - 27.8 44.2 49.8 27.1 26.8

(BLEU) CoT - 21.3 53.9 57.6 22.7 21.4
Similarity Vanilla - 56.5 65.2 71.3 56.8 55.4

(Levenshtein) CoT - 44.9 75.6 79.8 45.4 43.9

Table 1: Zero-shot accuracy and alignment evaluations using GPT-3. All values are reported in %. “Raw” refers to
evaluation on the SVAMP and (SVAMP-Sym) dataset for numeric (symbolic) MWPs; (-F) refers to the output before
the filtering step. “SP” is the new self-prompting method and “SP + AP” refers to two-stage self-prompting where
we an additional “Alignment Prompt” is added when needed; see Section 3.3. CoT prompting consistently elicits
higher accuracy from the model for numeric and symbolic problems. While accuracy and alignment only look at the
final answers, we also measure similarity between the full responses for numeric and symbolic problems. As evident,
self-prompting significantly improves the similarity under BLEU score and Levenshtein metric; Appendix B.1 has
more details on these metrics.

achieve pretty high symbolic accuracies with
variables (w,x,y,z): vanilla and CoT settings
achieve 59.7% and 64.2% respectively, which is
just 4-5% lower than numeric accuracy. Further-
more, we notice that variables (i,j,k,l) have
slightly worse accuracy than other variable settings,
possibly because (w,x,y,z) and (p,q,r,s) are
more popular choice for variables in the training
data for language models.

Effect of filtering. We report the accuracies
without the filtering step in Table 1; these are
the (-F) entries. While there is a 4-5% drop in
the numeric accuracy without filtering, the drop
is 12-14% for symbolic problems, suggesting
that filtering is much more crucial for symbolic
problems4. Our extraction and filtering steps still
have issues and there is scope for improvement.

3.2 Reasoning and Alignment

While prior work only cares about the accuracy
on MWPs, we also study of reasoning abilities
of LLMs by requiring them to generate a concise
explanation for numeric answers in the form of
a symbolic expressions. We evaluate “reasoning
ability” through an alignment metric that checks
if the outputted numeric answer and symbolic
expression compute to the same value. In general
there is no consistent zero-shot method to return
a perfectly aligned symbolic expression. A natural

4Intuitively it makes sense that extracting an expression/e-
quation is harder than extracting a single number

attempt to generate such an expression is to
directly solve the symbolic versions of numeric
problem. However this approach has very low
alignment, i.e. the symbolic output does not reflect
the way in which the model solved the numeric
problem. Specifically in Table 1, the average
alignment score for raw symbolic outputs is only
52.9% and 51.2% for Vanilla and CoT respectively.
This motivates self-prompting.

3.3 Self-prompting

In order to improve alignment, we propose a two-
step procedure that first inputs the numeric MWP
and the LM’s response to it, followed by the
symbolic version of the MWP. In particular the
prompt looks like "Q: <Numeric Question> A:
<Model Response> Q: <Symbolic Question>
A:". Given the in-context tendencies of LMs, we
hope that this encourages the symbolic response to
imitate the numeric response and thus return a well
aligned expression. We find in Table 1 that this ap-
proach (termed SP) indeed improves the alignment
by ∼ 10% over the naive approach.

We take this one step further: whenever the
numeric and symbolic answers do not align,
we add another “alignment prompt” before the
symbolic problem that explicitly asks the model
to copy the numeric answer; see Table 3 for the
exact format. Results in the SP+AP column
of Table 1 verify that this leads to another 11%
improvement over SP and ∼ 22% improvement
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over raw symbolic. Surprisingly we find that
SP+AP has higher accuracy than raw numeric and
raw symbolic, suggesting a “best of both worlds”
or ensembling phenomenon in action. Further
analysis in Figure 7 reveals how self-prompting
combines the benefits of numeric and symbolic.

We also compute the similarity between the full
numeric and symbolic responses. Table 1 reveals
that the average similarity is significantly higher for
SP and SP+AP compared to raw symbolic. So not
only do the answers align more but also the full text
responses are very similar. Histograms of similarity
scores can be found in Appendix B.1. Additional
analyses and results can be found in Appendix B.

4 Conclusions and Future Work

This paper studies reasoning in LLMs for MWPs
and results suggest that LMs are good at zero-shot
solving of symbolic MWPs, and that this ability
can lead to concise explanations. Self-prompting
emerges as a promising idea to generate better ex-
planations and the ensembling effect demonstrated
by it can potentially have other applications (left
for future work). Alignment with self-prompting,
while significantly better than with raw symbolic
outputs, still has a lot of scope for improvement.
Aspects that are not considered are few-shot learn-
ing of explanations and the role of temperature,
which could improve accuracy and alignment.
Finally the notion of “concise explanation” to study
reasoning can have implications beyond MWPs.

Broader Impact Statement. Given the incredi-
ble successes of LLMs, it is becoming increasingly
important to study why they work and how to de-
bug them when they are wrong. There are ongoing
debates and discussions about whether LMs are
simply “stochastic parrots” (Bender et al., 2021)
or they actually “understand” language. Besides
there are also privacy concerns (Carlini et al., 2021)
associated with LLMs trained on extremely large
corpora. Our work attempts to formalize a weak
notion of “reasoning” in math problems that could
help with improving the intepretability, and thus
trustworthiness, of such models. This is extremely
important if LLMs are to be deployed in real-life
applications. That said, any preliminary notion or
definition of “reasoning in LLMs”, including the
one in this paper, should be taken with a healthy
dose of skepticism.
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A Symbolized Dataset

We employ a multi-step process to convert the orig-
inal SVAMP (Patel et al., 2021) prompts into its
symbolic version SVAMP-Sym, motivated by the
symbolic construction in Gaur and Saunshi (2022).
The SVAMP dataset is under the MIT License.
Our SVAMP-Sym dataset has exactly the same
set of 1000 problems as SVAMP. Given a com-
mon math word problem (MWP) from SVAMP,
we parse through the given text for all numbers,
which are stored in a list. Using regex, the index
of the numbers can be found and replaced with
keys for future replacement with variables. We use
<i> (where i ∈ [1, 4] as there are at most four
numbers in each problem definition) as keys. As
shown in Figure 4, by generalizing the converted
prompt, we allow for easy manipulation of prompts
to whatever variable a user wants to use and test
for downstream tasks. We then convert the keys
to their respective variables. For our tests we pri-
marily use the variables (w,x,y,z) for a few main
reasons:

1. This set of variables is the most common in
general mathematical word problems and thus
makes the most sense to use as variables as op-
posed to an arbitrary sequence of random, or
even consecutive letters.

2. We find that the use of variables such as x1, x2,
..., xn (x1, x2, ..., xn when inputted into the
model) many times confuses the model into con-
flating the simulated subscript as a coefficient.

3. We are able to see that the model achieves sim-
ilar, if not greater accuracies with the use of
(w,x,y,z) as opposed to other sequences of
variables, see Table 1.

Moreover, the use of a predetermined length of
variables is also possible due to the aforementioned
maximum number of four numbers for each prompt
in the SVAMP dataset.

See Figure 4 for an example problem, its answer,
and our symbolized version of it.
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B Ablations and Analysis

B.1 Response Similarity
To find the syntactical similarity between the nu-
meric and symbolic responses, we employ two
main metrics: BLEU Scores and Levenshtein Dis-
tances. BLEU score is a standard metric used to
judge similarity between sentences based on the
n-grams they share. Levenshtein distance (also
known as edit distance) is a standard metric to
distance between two strings: the minimum of
swap/deletion/insertion operations that are needed
to convert one string to another. To measure simi-
larity between s1 and s2, we use (maxlen(s1, s2)−
Levenshtein(s1, s2))/maxlen(s1, s2)/ Using the
nltk.translate.bleu_score module, we define the av-
erage of BLEU-1, BLEU-2 and BLEU-3 metrics
by passing weights=[1/3, 1/3, 1/3] in the sen-
tence_bleu function. For computing Levenshtein
Distances, we utilize the python-Levenshtein pack-
age’s distance function. As described in the his-
tograms presented in Figure 5 and Figure 6, we
find much higher similarity scores when employing
self-prompting. This logically follows the higher
alignment values of such runs. More specifically,
however, the similarity of the two scores is ulti-
mately more contingent on the verbiage of the out-
put. As indicated in Figure 1, the SP often closely
tracks the exact output of the numeric response
and simply replaces the numbers with the respec-
tive variables/symbolic expressions, and outputs an
expression instead of a final number. While metri-
cally evident in the provided plots, we see that this
“mirroring” phenomenon occurs frequently with
the use of SP, evident through the high density of
similarity scores close to 1 in Figure 5.

B.2 More on Alignment
While we find that the use of the alignment prompt
is effective in raising both the accuracy and align-
ment of a symbolic problem, we run a few supple-
mentary experiments to investigate this behavior
even further. When giving the model the align-
ment prompt (see Table 3) from the beginning, not
simply when the numeric and symbolic outputs
do not align, we actually find a decrease in accu-
racy from the self-prompting + alignment prompt
run. CoT accuracy is 62% and vanilla accuracy is
60.9%. Similarly, alignment accuracies are 61.5%
and 60.4% for CoT and vanilla, respectively. When
evaluating alignment for the base self-prompting
run, we find that the model aligns 83.9% when

the numeric output is correct, and 29.7% when
it is wrong. Such numbers possibly suggest the
model’s cognizance of whether or not the numeric
evaluation was performed correctly; an implicit
understanding of mathematical problem solving.

B.3 Difficulty of Problems

We highlight a metric for the difficulty of a problem
with respect to the primary operation performed in
the answer to the prompt. The SVAMP dataset
stores a “Type” key that denotes the primary ele-
mentary mathematical operation performed to get
to the answer (primary in cases where there is more
than one operation). We see that when graphing the
accuracies of various evaluation methods while iso-
lating the operation of the problem that the numeric
and symbolic runs exhibit a somewhat complemen-
tary behavior. While numeric does on average bet-
ter on problems with division, symbolic runs have
higher accuracy on multiplication, see Figure 7.
Table 2 has breakdowns of the exact accuracies
per each tag. Interestingly, the self-prompting ap-
proach seems to do well on both multiplication and
division, and its performance is close to the max
of the numeric and symbolic performance for each
category, thus hinting to a “best of both worlds”
phenomenon.

C Additional Details

C.1 Prompt formats

In the SVAMP dataset, each problem contains a
problem statement and a question. For both raw
numeric and symbolic evaluations, we input the
problem into the model with the CoT prompt if
appropriate. For self-prompting, however, in order
to increase alignment between the numeric and
symbolic outputs, we add the entire transcript of the
numeric evaluation (problem, answer prompting,
symbolic problem). A detailed transcript of each
of the different prompts and use cases can be found
in Table 3.

C.2 Filtering

Since there is high variability in the LM’s out-
puts, due to the necessity to reason when solving
a MWP, we employ several filtering techniques in
a filter() function that cleans up the extracted
numeric or symbolic output. A few main steps in
the filtering pipeline are as follows:

• Character replacing
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Accuracy (%)
Evaluation Addition Subtraction Multiplication Division

Numeric CoT 64.7 64.3 68 88.1
Vanilla 54.1 62.8 68 87.4

Symbolic
{w, x, y, z}

CoT 64.1 58.8 90 70.4
Vanilla 41.2 63 90 62.2

Self-prompting
{w, x, y, z}

CoT 67.6 66.1 94 85.2
Vanilla 60 61.3 80 73.3

Table 2: While the accuracies presented are fairly consistent within each separate evaluation run, we see that there
are clear biases in which the model is able to perform certain types of problems better depending on the context of
the run. Significantly, it should be noted that the self-prompting is able to employ both the efficiencies of numeric,
and symbolic runs with the increased alignment.

Example <Numeric Setup> = "Adam had 5 apples. He ate 2 of them for breakfast."
<Numeric Question> = "How many apples will he have left if he eats 1 more?"
<Symbolic Setup> = "Adam had w apples. He ate x of them for breakfast."
<Symbolic Question> = "How many apples will he have left if he eats y more?"

Prompts <CoT Prompt> = "Let’s think step by step."
<Numeric Extract Prompt> = "The final answer (only the number) is:"
<Symbolic Extract Prompt> = "The final answer (only the expression in terms
xxxxxxxxxxxxxxxxxxxxxxxxxxxx of given variables) is:"
<Align Prompt> = "Copy the above numeric response word to word but
xxxxxxxxxxxxxxxxx replace numbers with the right symbolic expression."

Numeric Q: <Numeric Setup> <Numeric Question>
A: <CoT Prompt> <Numeric Response> // language model’s verbose response
<Numeric Question> <Numeric Extract Prompt>
<Numeric Extracted>

Symbolic Q: <Symbolic Setup> <Symbolic Question>
A: <CoT Prompt> <Symbolic Response> // language model’s verbose response
<Symbolic Question> <Symbolic Extract Prompt>
<Symbolic Extracted>

Self-prompt Q: <Numeric Setup> <Numeric Question>
A: <CoT Prompt> <Numeric Response>
<Align Prompt> // [optional] only if alignment fails without it
Q: <Symbolic Setup> <Symbolic Question>
A: <CoT Prompt> <Symbolic Response>
<Symbolic Question> <Symbolic Extract Prompt>
<Symbolic Extracted>

Table 3: We present the prompting pipeline for various methods. Prompts in blue are the ones we pass to the model,
while the text in green are the output of the language model. In each of these methods, we include a final filtering
step on top of the extracted answers.

– Dollar signs

– Percentages

• Cleaning up the output by removing all words
besides the expression and/or final number

• Addressing cases of outputs such as code or
LATEX

• Isolating the outputted/final expression if the
answer is given in terms of an equation (say
“z = w + x”)

The detailed (pseudo) code of the function can be
found at the end.
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Original Question

All numbers converted into key <i>

Keys converted into inputted variables

Symbolized prompt

Run prompt on GPT-3 Without Steps prompt

With Steps prompt

First run output

Extract final answer

Filter extracted output

Final output

Compare converted expression and final output

Return 1

Return 0

Original Expression

Symbolized expression

without steps

with steps

expression?

incorrect

correct

Figure 2: Flowchart of the pipeline from an original expression to correct or incorrect outputs. The purple cells
represent the outputs of the GPT-3 model as well as output processing. Both the "Original Expression" and "Original
Question" at the top in rectangular cells are numeric, baseline prompts.
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Figure 3: Examples of the input-output GPT-3 sequence of both numeric (above) and symbolic (below) runs. CoT
prompting, as reported in previous papers, elicits much more detailed, and oftentimes correct outputs from the model
through the additional reasoning step. We find that the use of the prompt is not exclusive to numeric reasoning, and
are able to identify similar processes in symbolic runs.

Figure 4: The process of converting a numeric problem into a symbolic one. The answer to the problem is an
expression given by the SVAMP dataset, so we can easily convert it to a symbolic equation. Appendix A has more
details on how this symbolization was implemented.
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(a) Raw symbolic (b) Self-Prompting (c) Self-Prompting + Alignment Prompt

Figure 5: Levenshtein distance calculated on raw symbolic, self-prompting, and self-prompting with an additional
alignment prompt outputs. Values near 1.0 (to the right) denote two sentences with very similar syntactic similarity.
As evident in the graphs above, the distribution of both (b) and (c) are much more heavily skewed to the right with
unimodal peaks near 1.0, whereas the distribution in (a) is shifted much more to the left. This means that both (b)
and (c) are much more similar to the outputs they were compared with (numeric) than (a), highlighting the efficacy
of self-prompting in mirroring numeric responses.

(a) Raw symbolic (b) Self-Prompting (c) Self-Prompting + Alignment Prompt

Figure 6: BLEU Scores calculated on raw symbolic, self-prompting, and self-prompting with an additional alignment
prompt outputs. As with Figure 5, values near 1.0 (to the right) denote two sentences with very similar syntactic
similarity. In this instance, the BLEU Score was calculated by tokenizing and comparing the numeric outputs with
respective outputs in (a), (b), and (c). This value was then normalized and plotted as described in the figures above.
Both (b) and (c) both show more left-skewed distributions, while (a) models a right-skewed one. Similar to Figure 5,
the use of BLEU Scores highlights how self-prompting helps with the alignment of numeric and symbolic outputs.
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Figure 7: Accuracies of the “tag” of the prompt inputted into the model based on the evaluation method of the
model. We observe that numeric consistently performs above average at division, symbolic at multiplication,
and self-prompting at both. By combining the strengths of both numeric and symbolic evaluation, we see that
self-prompting is able to perform as well, if not better than both numeric and symbolic prompting. Furthermore,
as with general accuracy CoT also seems to provide boosts to addition accuracies, emphasized especially when
comparing symbolic evaluations (Vanilla and CoT).
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def filter_symbolic(response):

response = response.lower()
response = response.strip('\n')
print(f"Original Output: {response}")

# De -latexifying
response = LatexNodes2Text ().latex_to_text(response)
response = response.replace("$", "")

# Using * as multiplication operator
response = response.replace('.', '*')

# Handling the division symbol
response = response.replace("%", "")
response = response.replace('\u00F7', '/')

# Remove spaces and construct a boolean array denoting whether
# the character is in the set {'w', 'x', 'y', 'z', '/', '*', '+', '-', '(', ')'}
math_sym_set = set(['w', 'x', 'y', 'z', '/', '*', '+', '-', '(', ')'] +\
[str(a) for a in range(10)])

# Check for "words" that only contain chars from math_sym_set
response = response.replace("=", " = ")
words = response.lower().split()
is_math_sym = np.array([np.all([c in math_sym_set for c in word])*len(word) for

word in words])

# Pick the substring with non -zero entries that has the largest sum ,
# i.e. the largest substring of the original string that is an equation/

expression
idx , len_ = longest_sum(is_math_sym)
response = ''.join(words[idx:idx+len_])
print(response)

# Add multiplication operator * if needed.
# Logic: If neither of two consecutive characters is an operator
# then likely a multiplication operator needs to be added between them.
# Some edges cases like '(p' or 'q)' are handled
op_set = set(['/', '*', '+', '-'])
digit_set = set([str(a) for a in range(10)])
new_response = []
for i in range(len(response)):

new_response.append(response[i])
# Check if '*' needs to be added
if i < len(response)-1 and response[i] not in op_set and response[i+1] not

in op_set:
# No need to add '*' if the consecutive chars of the type '(p' or 'q)'

of '25'
if (response[i] != '(' and response[i+1] != ')') and (response[i] not in

digit_set or response[i+1]
not in digit_set):

new_response.append('*')

print(f"Final Output: {new_response}")
return ''.join(new_response)
return output

def filter_numeric(response):
output = str(response).replace(",", "")
output = output.replace("$", "")
output = output.strip('\n')
try:

output = int(re.findall('\d+', output)[0])
except:

output = output
return output
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