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Abstract

This study presents a dynamic structured neu-
ral topic model, which can handle the time-
series development of topics while capturing
their dependencies. Our model captures the
topic branching and merging processes by
modeling topic dependencies based on a self-
attention mechanism. Additionally, we intro-
duce citation regularization, which induces at-
tention weights to represent citation relations
by modeling text and citations jointly. Our
model outperforms a prior dynamic embedded
topic model (Dieng et al., 2019) regarding per-
plexity and coherence, while maintaining suffi-
cient diversity across topics. Furthermore, we
confirm that our model can potentially predict
emerging topics from academic literature.

1 Introduction

Topic models are dominant tools for discovering
the underlying semantic structure in a collection of
documents. As a part of such topic models that can
capture the chronological transition of topics have
been intensively studied in recent years.

The dynamic topic model (DTM; Blei and Laf-
ferty, 2006) is a pioneering work that captures the
time-series evolution of topics. It successfully vi-
sualizes the changes in the topic proportion and
the word distributions of each topic over time. Re-
cently, neural networks have empowered topic mod-
els to handle a significant collection of documents.
The dynamic embedded topic model (D-ETM; Di-
eng et al., 2019) introduces word embeddings and
amortized variational inference into DTM, which
significantly improves topic quality while reducing
computational time. D-ETM is widely applied to
large-scale time-series documents, such as scien-
tific papers and social media (Churchill and Singh,
2022; Murakami et al., 2021).

However, DTM and D-ETM assume that top-
ics evolve independently without interaction. This
assumption is inappropriate, particularly for mod-
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Figure 1: Comparison between (a) DTM/D-ETM and
(b) DSNTM (ours)

eling scientific papers, where documents are de-
pendent on each other through citation relations.
For example, the recent text-to-image techniques
are evolved from multiple topics such as image
processing, natural language processing, and deep
learning. Conventional dynamic topic models can-
not capture how past topics contributed to the emer-
gence of new topics. Furthermore, these models
cannot predict emerging topics because the poste-
rior word distribution of topics is parameterized for
each time step, as explained later in detail.

To overcome these challenges, we propose a
dynamic structured neural topic model (DSNTM),
which captures the dependencies among topics over
time (Fig. 1). Specifically, DSNTM models topic
dependencies based on a self-attention mechanism
(Vaswani et al., 2017; Lin et al., 2017), which re-
veals how past topics branches or merges into new
topics. We can quantitatively evaluate which past
topics contributes to the emergence of new topic by
observing attention weights. In addition, the self-
attention mechanism shares the parameters used
for inferring topics at each time step, enabling the
model to predict emerging topics.

Additionally, we introduce citation regulariza-
tion, which induces attention weights to reflect
the citation relations among documents. Citation
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regularization enables DSNTM to model text and
citation jointly, improving the inferred topics’ qual-
ity and accurately capturing their transitions. Due
to the high expressive power of the self-attention
mechanism and additional citation information,
our model can capture the complex branching and
merging processes of topics over time.

In the experiment, we used datasets consisting of
over 20,000 scientific papers on computer science
and natural language processing retrieved from the
Semantic Scholar Open Research Corpus (S2ORC;
Lo et al., 2020). Experimental results show that
DSNTM outperforms recent neural topic models
(Dieng et al., 2019, 2020) regarding perplexity and
coherence, while maintaining sufficient diversity
across topics. We also confirmed that DSNTM
accurately captures the topic branching and merg-
ing processes and can potentially predict emerging
topics in the academic literature.

2 Related Work

Extending the dynamic topic model (Blei and Laf-
ferty, 2006), several variants have been proposed,
such as the dependent Dirichlet processes mixture
model (Lin et al., 2010), infinite dynamic topic
model (Ahmed and Xing, 2010), and D-ETM (Di-
eng et al., 2019). However, these studies treat time-
series changes in topics independently and cannot
capture dependencies among topics.

Relating to structured topic models, several mod-
els have been proposed such as tree-structured topic
model (Griffiths et al., 2003; Isonuma et al., 2020;
Chen et al., 2021) and pachinko allocation models
(Li and McCallum, 2006; Mimno et al., 2007). In
addition, several studies have modeled the struc-
ture among documents by jointly modeling citation
network and text (Nallapati et al., 2008; Tu et al.,
2010; Chang and Blei, 2010; Lim and Buntine,
2015). However, these studies were not intended
to track the time series transitions of topics.

The dynamic and static topic model (DSTM;
Hida et al., 2018) extends the pachinko allocation
model to capture the dynamic structure over time
and the static structure among topics at each time
step. DSTM has several drawbacks against our
model. It cannot capture topic dependencies across
multiple time steps, and thus, incorporating cita-
tion information is challenging. In addition, it can-
not predict emerging topics as topic transitions are
parameterized for each time step. Moreover, col-
lapsed Gibbs sampling is used to infer posteriors,

which is not scalable for large datasets.
The dynamic topic model on networked docu-

ments (NetDTM; Zhang and Lauw, 2022) models
time-series documents and citation networks simul-
taneously. However, NetDTM does not capture
the relations between topics nor predict emerging
topics, which significantly differ from ours.

Contrary to the aforementioned studies, our work
introduces amortized variational inference using
the self-attention mechanism. This inference tech-
nique enables us to capture the topic branching and
merging process across multiple time steps with
significant scalability. Furthermore, our model can
predict emerging topics from past topics.

3 Background

We first review the embedded topic model (ETM;
Dieng et al., 2020), and then explain D-ETM,
which combines ETM with DTM before introduc-
ing our DSNTM.

3.1 Embedded Topic Model (ETM)
ETM (Dieng et al., 2020) is a topic model that intro-
duces word embeddings into LDA. The generative
process of documents is the following:

1. For each document index d ∈ {1, . . . , D}:

Draw topic proportion: θd ∼ LN (0, I) (1)

2. For each word index n∈{1, . . . , Nd} in d:

Draw topic assignment: zd,n ∼ Cat(θd) (2)

Draw word: wd,n ∼ Cat(βzd,n) (3)

Here, Cat(·) and LN (·, ·) denote the categorical
distribution and logistic-normal distribution (Atchi-
son and Shen, 1980), respectively. βk ∈ RV rep-
resents the word distribution of the kth topic com-
puted as follows:

βk = softmax(ρ⊤αk). (4)

where ρ ∈ RL×V denotes the L-dimensional word
embeddings of the entire vocabulary. The ρv ∈ RL

corresponds to the vth word embedding. αk ∈
RL denotes the embedding representation of the
kth topic in the semantic space of words, which is
called topic embedding.

3.2 Dynamic Embedded Topic Model
(D-ETM)

D-ETM (Dieng et al., 2019) analyzes time-series
documents by changing the topics over time. Con-
trary to ETM, D-ETM assumes a discrete-time
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Markov chain for the topic embedding in Eq. (5)
and the topic proportion mean in Eq. (7). The
generative process of documents is described as
follows:

1. For each time step t ∈ {1, . . . , T}:

Draw word distribution for each topic k:

α
(t)
k ∼ N (α

(t−1)
k , σ2I) (5)

β
(t)
k = softmax(ρ⊤α(t)

k ) (6)

Draw topic proportion mean:

ηt ∼ N (ηt−1, δ
2I) (7)

2. For each document index d∈{1, . . . , D}:

Draw topic proportion: θd∼LN (ηtd , γ
2I) (8)

3. For each word index n∈{1, . . . , Nd} in d:

Draw topic assignment: zd,n ∼ Cat(θd) (9)

Draw word: wd,n ∼ Cat(β(td)
zd,n

) (10)

where α
(t)
k and β

(t)
k are the topic embedding and

word distribution assigned to the kth topic in the
tth time step, respectively. σ, δ , and γ are model
hyperparameters, which control the variance of nor-
mal distributions.

Dieng et al. (2019) approximate the posterior dis-
tribution of α, η and θ with amortized variational
inference (Kingma and Welling, 2014; Rezende
et al., 2014). Particularly, for the topic embeddings
α, the mean-field family is used for the approxima-
tion as follows:

q(α
(t)
k ) = N (µ

(t)
k ,σ

(t)
k ) (11)

q(α) =
∏

k

∏

t

q(α
(t)
k ) (12)

where µ
(t)
k ∈RL and σ

(t)
k ∈RL are learnable vec-

tors representing the mean and variance of α(t)
k ,

respectively.
However, this mean-field approximation has two

limitations.

Dependencies among topics cannot be modeled
Eq. (12) assumes that topics are independent of
each other. This assumption is typically inappro-
priate for time-series documents. For instance, aca-
demic topics sometimes emerge from interactions
among several past topics. Topic dependencies
must be modeled to consider such interactions.

Emerging topics cannot be predicted D-ETM
infers a topic by parameterizing µ

(t)
k and σ

(t)
k for

each time step t. As documents in the tth time step

are used to infer these parameters, topics cannot be
inferred for the time steps that are not contained in
the dataset. The parameters must be shared across
all time steps to predict emerging topics.

To overcome these limitations, our DSNTM in-
troduces the self-attention mechanism to infer those
parameters. The self-attention mechanism enables
DSNTM to capture the topic dependencies, while
sharing the parameters across all time steps.

4 Dynamic Structured Neural Topic
Model (DSNTM)

This section describes the proposed DSNTM. The
generative process of documents is the same as that
of D-ETM.

4.1 Inference of Topic Embeddings
Contrary to D-ETM, we use structured variational
inference to infer the topic embeddings. We com-
pute a topic embedding from all previous topic
embeddings using the self-attention mechanism.

α̃
(t)
k = self − attention(α̃

(1:t−1)
1:K ) (13)

q(α
(t)
k |α̃(1:t−1)

1:K ) = N (fµ(α̃
(t)
k ), fσ(α̃

(t)
k )) (14)

where α̃
(t)
k ∈ RL denotes the transformed topic

embedding. fµ and fσ are multi-layer perceptrons
(MLP) that convert α̃(t)

k to a variational normal
distribution.

Computation of Self-attention We present an
outline of the self-attention mechanism in Fig.
2. To calculate Eq. (13), we obtain the key
K

(1:t−1)
1:K ∈ RK(t−1)×L and value V

(1:t−1)
1:K ∈

RK(t−1)×L from all previous transformed topic em-
beddings α̃

(1:t−1)
1:K . On the other hand, the query

q
(t−1)
k ∈RL is obtained from the kth transformed

topic embedding α̃
(t−1)
k at time step t−1.

K
(1:t−1)
1:K = fk(α̃

(1:t−1)
1:K ) (15)

V
(1:t−1)
1:K = fv(α̃

(1:t−1)
1:K ) (16)

q
(t−1)
k = fq(α̃

(t−1)
k ) (17)

where fk, fv and fq denote MLPs. Subsequently,
we compute the attention weight a(t)

k ∈ RK(t−1)

between each past topic and the kth topic at time
step t, similar to Vaswani et al. (2017).

a
(t)
k = softmax(

q
(t−1)
k K

(1:t−1)⊤
1:K√
L

) (18)
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Figure 2: The process of generating the transformed topic embedding α̃ by the self-attention mechanism. The
parameters of fk, fv , and fq are shared across all topics and time steps. ak′(t′)→k(t) is the attention weight between
the k′th topic at time t′ and the kth topic at time t. f denotes the residual connection and layer normalization.

Then, we obtain α̃
(t)
k by calculating the sum of

V
(1:t−1)
1:K weighted by the attention weights. We use

a residual connection to obtain α̃
(t)
k for preventing

gradient explosion and disappearance (Simonyan
and Zisserman, 2014).

∆α̃
(t)
k = a

(t)
k V

(1:t−1)
1:K (19)

α̃
(t)
k = LayerNorm(∆α̃

(t)
k + α̃

(t−1)
k ) (20)

Here, we use the layer normalization (Ba et al.,
2016) to compute the transformed topic embed-
dings. At the time step t = 1, we initialize the
transformed topic embeddings α̃(1)

k from a normal
distribution.

α̃
(1)
k ∼ N (0, σ2I) (21)

Note that the prior distribution assumes that α(t)
k

is drawn from a normal distribution as follows:
α

(t)
k ∼N (α

(t−1)
k , σ2I). This assumption regular-

izes α(t)
k to be close to its previous topic α

(t−1)
k .

Motivations behind Self-attention We use the
self-attention mechanism for the following reasons:

(1) Instead of the self-attention mechanism, we
can also capture the dependencies among topics
by simply parameterizing the topic embeddings as
follows:

α̃
(t)
1:K=Wα̃

(t−1)
1:K (22)

Here, W ∈ RK×K is a learnable weight matrix,
where wi,j represents the dependency between
topic i and j. However, this parameterization can-
not capture the dependencies across multiple time

steps, and a method that allows an arbitrary num-
ber of inputs is required. The self-attention mecha-
nism, which handles an arbitrary-length sequence,
satisfies this requirement and captures the topic
dependencies across multiple time steps.

(2) The self-attention mechanism parameterizes
MLP fq, fk, and fv to compute the embeddings
of subsequent topics from previous topics. As the
parameters of MLPs are shared over time, the self-
attention mechanism allows DSNTM to predict the
emerging topic embeddings.

4.2 Overall Inference and ELBO
Under our proposed probabilistic model, the likeli-
hood of documents is given by

p(w1:D|σ, δ, γ)

=

∫ {∏

d

∏

n

∑

zd,n

p(wd,n|β(td)
zd,n)p(zd,n|θd)p(θd|ηtd)

}

{∏

t

∏

k

p(ηt|ηt−1)p(α
t
k|αt−1

k )
}
dθdηdα

=

∫ {∏

d

∏

n

(β(td) · θd)wd,np(θd|ηtd)
}

{∏

t

∏

k

p(ηt|ηt−1)p(α
t
k|αt−1

k )
}
dθdηdα (23)

Subsequently, let q(θ,η,α) be the varia-
tional distribution of the posterior distribution
p(θ,η,α|w1:D). Following D-ETM, q(θ,η,α)
is computed as follows:

q(θ,η,α)

=
∏

d

q(θd|ηtd ,wd)×
∏

t

q(ηt|η1:t−1, w̃t)

×
∏

t

∏

k

q(α
(t)
k |α̃(1:t−1)

1:K ) (24)
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q(θd|ηtd ,wd) = LN (fµ(θ̃td), fσ(θ̃td))

θ̃td = fθ([ηtd ;wd])
(25)

q(ηt|η1:t−1, w̃t) = N (fµ(η̃t), fσ(η̃t))

η̃t = [ht;ηt−1]
(26)

where wd is the bag-of-words (BoW) representa-
tion of document d. ht is the hidden state of a long-
short term memory network (LSTM; Hochreiter
and Schmidhuber, 1997) that uses the normalized
BoW representation w̃t of all documents at time t
as input. [·; ·] denotes the concatenation of vectors.

The evidence lower bound (ELBO) for the doc-
ument log-likelihood is derived as follows:

Ldoc=
∑

d

E
q(θd)q(ηt)q(α

(t)
k )

[
w⊤

d log(β(td) · θd)
]

−
∑

t

∑

k

DKL

[
q(α

(t)
k |α(1:t−1)

1:K )||p(α(t)
k |α(t−1)

k )
]

−
∑

d

DKL

[
q(θd|ηtd ,wd)||p(θd|ηtd)

]

−
∑

t

DKL

[
q(ηt|η1:t−1, w̃t)||p(ηt|ηt−1)

]
(27)

5 Citation Regularization

DSNTM has difficulty interpreting the attention
weights among topics. Ideally, the attention should
model the dependency among topics, representing
citation relations between documents. Therefore,
we let the attention weights to be interpretable by
regularizing them to correspond with citation re-
lations. Citation regularization also improves the
quality of the inferred topics by jointly modeling
the text and citations.

To regularize the attention weights, we model
the citations between documents based on the topic
proportion θ, the attention weights a, and the paper
proportion ϕ as shown in Fig. 3. Formally, for each
document pair (i, j) ∈ {1, . . . , D} × {1, . . . , D},
the citation is modeled as follows:

1. Draw citing topic assignment: zi ∼ Cat(θi)
(28)

2. Draw cited topic assignment: zj∼Cat(a(ti)
zi )
(29)

3. Draw cited document: dj ∼ Cat(ϕzj ) (30)

where a
(ti)
k ∈ RK(ti−1) is the attention weight,

which denotes the probability distribution across
all previous topics zj ∈ {1, . . . ,K}×{1, . . . , ti−
1}. The paper proportion ϕk ∈ RD denotes the
probability distribution of cited documents where
a topic k is assigned, as explained in next section.

topic proportion 
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Figure 3: Citation modeled by topic proportion, atten-
tion weights, and paper proportion.

5.1 Obtaining paper proportion

From Bayes’ theorem, we calculate the probability
where a paper dj ∈ {1, . . . , D} is cited according
to a topic zj as follows:

p(dj |zj) =
p(zj |dj)p(dj)

p(zj)

∝ p(zj |dj)
(31)

Here, we assume that the prior p(dj) is uniformly
distributed, and p(zj) can be ignored because it is
constant regardless of dj . As p(dj |zj)=ϕ

(dj)
zj and

p(zj |dj)=θ
(zj)
dj

, ϕ(dj)
zj can be simply computed by

normalizing θ
(zj)
dj

:

ϕ
(dj)
zj =

θ
(zj)
dj∑

dj
θ
(zj)
dj

(32)

5.2 Overall Inference and ELBO

Hence, under our modeling assumption, the likeli-
hood of a citation ci,j ∈ {0, 1} is given by

p(ci,j=1|θ,α)

=
K∑

k

K∑

k′
p(dj |ϕk′)p(zj=k′|a(ti)

k )p(zi=k|θi)

(33)

where ci,j=1 indicates that the document di cites
the document dj . Finally, the likelihood of both
documents and citations can be described as fol-
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lows:

p(w1:D, c1,1, . . . , cD,D|σ, δ, γ)

=

∫ {∏

i

∏

n

(β(ti) · θi)wi,np(θi|ηti)
}

{∏

t

∏

k

p(ηt|ηt−1)p(α
t
k|αt−1

k )
}

{∏

i

∏

j

p(ci,j |θ,α)
}
dθdηdα (34)

The ELBO for both document and citation log-
likelihood is derived as follows:

L=
∑

i

Eq(θi)

[
w⊤

i log(β(ti) · θi)
]

−
∑

t

∑

k

DKL

[
q(α

(t)
k |α(1:t−1)

1:K )||p(α(t)
k |α(t−1)

k )
]

−
∑

i

DKL

[
q(θi|ηti ,wi)||p(θi|ηti)

]

−
∑

t

DKL

[
q(ηt|ηt−1, w̃t)||p(ηt|ηt−1)

]

+
∑

i

∑

j

E
q(θi)q(ηt)q(α

(t)
k )

[
log p(ci,j |θ,α)

]

= Ldoc + Lcit (35)

Here, Ldoc is defined in Eq. (27), and Lcit is de-
fined as the following equation:

Lcit =
D∑

i

D∑

j

BCE [p(ci,j |θ,α), ci,j ] (36)

where BCE denotes the binary cross entropy.

6 Experiment

6.1 Experimental Setup1

Dataset In our experiments, we used ACL and CS
dataset, which were based on the Semantic Scholar
Open Research Corpus (S2ORC; Lo et al., 2020)2.
S2ORC contains over 136 million academic papers,
each of which contains publication year, abstract
text, cited paper’s data, ACL ID, and field of study.
We used the abstracts of papers that are published
at *ACL conferences (ACL ID is not “None”) from
2006 to 2019 for ACL dataset. For CS dataset, we
used the abstracts of papers where the field of study
includes “Computer Science” and are published
from 2006 to 2019. We used the top 40,000 papers
w.r.t. the number of citations for CS dataset.

1https://github.com/miyamotononno/DSNTM
2https://github.com/allenai/s2orc

Dataset ACL CS

# of time steps 7 7
# of words in vocabulary 5,540 10,449
# of docs for training 14,110 23,991
# of docs for validation 4,704 7,997
# of docs for evaluation 4,704 7,998

Table 1: Summary statistics of the datasets.

The papers were randomly splitted into 3:1:1
ratio for training, validation, and evaluation. We
also filtered out stop words, i.e., words with a doc-
ument frequency of 70% or above, words appear-
ing in less than ten documents, numbers, punctu-
ation marks, and stop words used in Dieng et al.
(2019). The papers published in two consecutive
years were grouped into a single time step so that
each time step contained a sufficient number of pa-
pers. For example, papers published between 2006
and 2007 were grouped into t=1. The statistics of
the datasets are summarized in Table 1.

Baseline Methods As baseline methods, we mea-
sured the performance of ETM (Dieng et al., 2020)
and D-ETM (Dieng et al., 2019) by using the pub-
lished code of ETM3 and D-ETM4. To evaluate the
effectiveness of the self-attention mechanism, we
also compared DSNTM that adopts a linear layer
instead of the self-attention as shown in Eq. (22).
We denote it by “DSNTM w/o self-attention.”

Implementation Details The number of topics
was set to 20 for all models and kept constant over
time for fair comparison with the baseline models.
Hyperparameters of each model were tuned based
on the validation perplexity in ACL dataset. Further
details are provided in Appendix A.

6.2 Experimental Results

We quantitatively evaluated the performance of
topic models using the following three criteria. We
run each model eight times and show the average
performance and its 95% confidence interval in Ta-
ble 2 and 3. Lower is better for perplexity, while
higher is better for coherence and diversity.

Perplexity We used perplexity (Rosen-Zvi et al.,
2004) to evaluate the generalization ability of topic
models as a generative model. It measures the

3https://github.com/adjidieng/ETM
4https://github.com/adjidieng/DETM
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Perplexity Coherence Diversity

ETM (Dieng et al., 2020) 1,590.6± 2.4 0.023±0.003 0.911±0.010
D-ETM (Dieng et al., 2019) 1,187.8± 7.4 0.091±0.003 0.788±0.016
DSNTM w/o self-attention 1,260.5±37.8 0.054±0.005 0.631±0.043
DSNTM 1,079.9± 8.9 0.084±0.006 0.851±0.009
DSNTM w/ citation regularization 1,054.0± 7.4 0.101±0.006 0.895±0.014

Table 2: Evaluation of each model for ACL dataset.

Perplexity Coherence Diversity

ETM (Dieng et al., 2020) 3,011.8± 4.4 0.022±0.002 0.956±0.006
D-ETM (Dieng et al., 2019) 2,519.0±41.8 0.078±0.004 0.954±0.010
DSNTM w/o self-attention 2,195.2±25.2 0.078±0.004 0.904±0.019
DSNTM 2,185.0±19.2 0.079±0.009 0.929±0.009
DSNTM w/ citation regularization 2,156.8±30.5 0.105±0.005 0.948±0.006

Table 3: Evaluation of each model for CS dataset.

ability to predict words in unseen documents. Per-
plexity is computed as follows:

Perplexity = exp
(
−
∑D

d=1 log p(wd)∑D
d=1Nd

)
(37)

where Nd is the number of words in the test doc-
ument d. As computing p(wd) is intractable, we
calculated perplexity using ELBO following Miao
et al. (2017); Srivastava and Sutton (2017).

Across the two datasets, our DSNTM achieved
a lower perplexity than the baseline models.
DSNTM outperformed D-ETM by a large margin
specifically for CS dataset. In addition, DSNTM
with citation regularization outperformed DSNTM,
indicating that citation information contributed to
the generalization ability of the topic model.

Coherence We measured topic coherence by cal-
culating the average pointwise mutual information
(Mimno et al., 2011) to assess the interpretability
of topics. Specifically, we used the normalized
pointwise mutual information (NPMI; Lau et al.,
2014) of the two words included in the top 10 most
likely words of the topic k.

Coherence

=
1

K

K∑

k

1

45

10∑

i=1

10∑

j=i+1

NPMI(w
(k)
i ,w

(k)
j ) (38)

NPMI is calculated using the following formula:

NPMI(wi, wj) =
log

P (wi,wj)
P (wi)P (wj)

logP (wi, wj)
(39)

where P (wi, wj) is the probability where words wi

and wj co-occurs in a document, and P (wi) is the
marginal probability of word wi.

Our DSNTM significantly outperformed ETM
and DSNTM without self-attention, while achiev-
ing a slightly lower score than D-ETM. However,
the citation regularization let DSNTM outperform
D-ETM. This result demonstrates that the topic in-
terpretability is sufficiently ensured by the citation
regularization.

Diversity We calculated the percentage of unique
words in the top 25 frequent words of all topics to
measure the diversity of topics following Dieng
et al. (2020, 2019).

Diversity=
Nu

25K
(40)

where Nu denotes the number of unique words
that appear in all topics. Both models achieved
competitive scores with the baseline models. This
result indicates that our models improves the topic
quality, while ensuring sufficient topic diversity.

7 Discussion

7.1 Visualization of Topic Transition
We discuss that the attention weights capture aca-
demic topics merging and branching processes.

Fig. 4 presents an example of topic merging on
CS dataset. We show a topic about motion track-
ing in 2018-2019 (i.e., citing topic) and the two
most influential topics on its emergence with re-
spect to the attention weights in 2016-2017 (i.e.,
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Figure 4: Example of topic merging process. We show
the seven most frequent words in each topic. The edge
values indicate the attention weight.

cited topic). Each cited topic represents motion
tracking and reinforcement learning. To investi-
gate the validity of this topic merging, we checked
the citation relations between the top 50 papers
w.r.t. the citing topic’s paper proportion and the top
50 papers w.r.t. the cited topic’s paper proportion
using the test dataset. While many papers on the
citing topic refer to papers on motion tracking in
previous years, some papers refer to papers on re-
inforcement learning. As reinforcement learning is
used as the learning method of a tracker to achieve
a light computation and satisfactory tracking ac-
curacy for object tracking, the topic of reinforce-
ment learning greatly influences the topic of object
tracking. The attention weights reveal the merging
process of academic topics.

Subsequently, we present an example of topic
branching using ACL dataset (Fig. 5). We show
a topic about machine translation in 2014-2015
(i.e., cited topic) and three subsequent topics that
are most highly influenced by the cited topic (i.e.,
citing topic). Each citing topic describes machine
translation (2016-2017) and neural network (2016-
2017 and 2018-2019). We assessed the validity of
this branching in the same manner as topic merging.
As of 2014-2015, statistical machine translation
(SMT) was predominant, whereas neural machine
translation (NMT) was a nascent area in machine
translation research. After 2016, NMT was inten-
sively studied by incorporating SMT knowledge of
SMT, while NMT models were imported into other
text generation tasks (e.g., summarization). This
trend induced the topics on neural network in 2016-
2019. DSNTM successfully captures such topic
branching processes in the academic literature.

Finally, we present an overview of the topic tran-
sition process using ACL dataset (Fig. 6). The
topics in the first, second, and third rows represent
graph, neural network, and social media, respec-
tively. We can follow the prevalence of the neural
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art state show 
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machine English 
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neural model 
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models word art

0.09

Figure 5: Example of topic branching process. We show
the seven most frequent words in each topic. The edge
values represent the influence on each topic, which is
calculated in Appendix B.
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Figure 6: Example of topic transition. We present the
top five most frequent words in each topic. The thick-
ness of edges represent the attention weight (0.05 for
thick edges and 0.02− 0.05 for thin edges).

network techniques to other research areas, such as
graphs and social media, by observing the frequent
words in the topic and attention weights. DSNTM
enables us to grasp the current trends in the research
area without following the citations of articles.

7.2 Prediction of Emerging Topics
In this section, we discuss the predictive perfor-
mance of emerging topics using DSNTM on CS
dataset. We trained DSNTM on the papers in 2006-
2017 and predicted topics in 2018-2019 by comput-
ing the posterior word distribution for each topic
using the self-attention mechanism (Eq. (6), (13),
and (14)). We then prepared another model trained
on the papers from 2006-2019. The topics inferred
by this model are regarded as a proxy for the ground
truth of predicted topics. We discuss the quality
of the predicted topics by comparing the inferred
topics in 2018-2019 across two models.

To measure the prediction performance, we cal-
culated the minimum KL divergence between the
word distribution of the predicted topics and ground
truth topics:

∑K
i=1minj DKL[β

pred
i ,βtruth

j ]/K.
This value measures the difference between the pre-
dicted topics and their nearest ground truth topics.
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We computed this value for topics in 2018-2019
and compared it with the average value computed
for topics in 2006-2017, which provides the base-
line of the predictive performance.

We show that the average KL divergence for
2018-2019 (i.e., predictive performance) is 5.33,
whereas that for 2006-2017 (i.e., baseline) is 5.24.
This result indicates that the predicted topics are
sufficiently close to the ground truth topics. Al-
though further studies are needed, this result sug-
gests that DSNTM can potentially predict emerging
topics in the academic literature.

8 Conclusion

In this study, we proposed a novel dynamic-
structured neural topic model, DSNTM, which cap-
tures dependencies among topics using the self-
attention mechanism. We also introduced a citation
regularizer, which induces the attention weights to
correspond to citation relations.

Experimental results demonstrated that DNSTM
outperforms previous dynamic topic models re-
garding perplexity and coherence while maintain-
ing sufficient diversity across topics. In addition,
DSNTM can identify the process of topic merg-
ing and branching while showing the potential to
predict emerging topics. We expect that DSNTM
will make it easier for non-specialists to keep track
of the evolution of topics in a given research area
without retracing the citations of copious articles
and assist their search for a novel topic.

Limitations

As a limitation of the modeling assumption,
DSNTM assumes that the number of topics is con-
stant over time; however, this assumption is inap-
propriate for some time-series documents, such as
scientific papers. As the number of scientific pa-
pers is increasing annually, increasing the number
of topics over time would be appropriate for model-
ing the time-series evolution of academic literature.

We used the abstracts of the papers as text, and
the attention was computed using textual informa-
tion. However, citations mainly appear in the body
text when a paper cites other papers. Therefore,
there might be a discrepancy between the atten-
tion among topics and the citation relation among
papers because the attention cannot not consider
information in the body text. In future work, it
would be desirable to evaluate our model using a
corpus containing the body text of the papers.

Generally, topic models sometimes infer the in-
correct information about topics, such as the fre-
quent words appearing in topics, the topic pro-
portion in each document, and the dependencies
among topics. It would be the potential risk to
induce the misunderstanding of users.
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Our study complies with the ACL Ethics Policy.
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S2ORC is a collection of academic papers and
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uniquely identifies individual people or offensive
content. We did not use the author’s information in
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A Implementation Details

The hyperparameters of each model were tuned
based on the perplexity of the validation set in the
ACL. The model was trained using Adam (Kingma
and Ba, 2015) with a batch size of 512. DSNTM
and ETM were trained for 200 epochs with a learn-
ing rate of 6.0 × 10−4. As D-ETM was slow to
converge, D-ETM was trained for 600 epochs with
a learning rate of 8.0× 10−4. We applied the learn-
ing rate decay for each model.

To infer the topic embedding q(α
(t)
k |α(1:t−1)

1:K ),
we used a linear layer for fq, fk, fv, fµ, fσ to com-
pute the self-attention and the variational distri-
bution in Eq. (14). The dimension of the topic
embedding was set L = 300. We used the multi-
head attention (Vaswani et al., 2017) for the self-
attention mechanism, where the number of parallel
attention heads is 10.

Regarding the following hyperparameters, we
set the same hyperparameters as those used in D-
ETM.

To infer the topic proportion q(θd|ηtd ,wd), We
used one-hidden-layer MLPs with 800 hidden units
and ReLU activation for fθ and a linear layer for
fµ and fσ to compute the variational distribution
in Eq. (25).

To construct the inference of the topic proportion
mean q(ηt|η1:t−1, w̃t), we first applied a linear
layer to the BoW representation of documents at
the time step t and obtain 200-dimensional input
vector for LSTM. Then, we applied LSTM with
three layers of 200 hidden units to the input, and
obtain the hidden states of each time step ht. We
used a linear layer for fµ and fσ to compute the
variational distribution in Eq. (26).

The variances of the priors were set to δ2=σ2=
0.005 and γ2=1. We used 300-dimensional word
embeddings pretrained with a skip-gram (Mikolov
et al., 2013) used in ETM and D-ETM.

We ran experiments with a single NVIDIA
GeForce RTX 2080 Ti for each model. The com-
putational cost and parameters of each model are
reported in Table 4. Our DSNTM converged faster
than D-ETM regardless citation regularization. The
training time was longer when using the citation
regularization as it calculates the loss in Eq. (36)
with time complexity O(D2).

Our code is implemented with Python v3.9.13,
PyTorch v1.9.0 (Paszke et al., 2019). We use the
pretrained word embeddings published by Dieng

et al. (2019)5. NPMI is computed using the code
distributed by Lau et al. (2014)6.

B Computing the Influence Among Topics

In Fig. 5, we do not directly use the attention
weights to represent how much a past topic influ-
ences the emergence of new topics. This section
describes its reason and how to calculate the influ-
ence of a topic on emerging topics.

We assume that the influence of a topic zj on
the emergence of topic zi can be represented by
the probability where zi emerges given zj . From
Bayes’ theorem, we can calculate its probability as
follows:

p(zi|zj) =
p(zj |zi)p(zi)

p(zj)

∝ p(zj |zi)p(zi)
(41)

where p(zj) can be ignored because it is constant re-
gardless of zi. p(zj |zi) is represented by the atten-
tion weight from zi to zj , denoted as azi→zj . p(zi)
indicates the marginal probability where topic zi
appears across all documents, which is calculated
by the sum of its topic proportions across all docu-
ments.

p(zi) =
∑

d

p(zi|d)p(d)

=
∑

d

θ
(zi)
d

(42)

where we assume that p(d) is uniformly distributed.
Thus, we can obtain probability p(zi|zj) as follows:

vi,j = azi→zj

∑

d

θ
(zi)
d (43)

p(zi|zj) =
vi,j∑
j vi,j

(44)

Therefore, we calculate the influence of a topic zj
on the emergence of topic zi by considering the
marginal probability of topic zi.

5https://github.com/adjidieng/ETM
6https://github.com/jhlau/topic_

interpretability
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Dataset ACL CS
Parameters Time Memory Parameters Time Memory

ETM (Dieng et al., 2020) 5,111,640 6 44 9,038,840 25 84
D-ETM (Dieng et al., 2019) 7,287,480 33 22 12,196,480 81 42
DSNTM w/o self-attention 7,480,380 9 22 12,389,380 23 42
DSNTM 8,022,780 9 23 12,931,780 29 43
DSNTM w/ citation regularization 8,022,780 14 23 12,931,780 55 44

Table 4: Computational cost of each model. Parameters, Time, and Memory denote the total number of model
parameters, the total training time (minute) and the peak amount of the memory usage (MB), respectively.
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