
Findings of the Association for Computational Linguistics: ACL 2023, pages 5931–5945
July 9-14, 2023 ©2023 Association for Computational Linguistics

Hybrid-Regressive Paradigm for Accurate and Speed-Robust
Neural Machine Translation

Qiang Wang1,2, Xinhui Hu2, Ming Chen2∗
1Zhejiang University, Hangzhou, China

2RoyalFlush AI Research Institute, Hangzhou, China
{wangqiang3, huxinhui}@myhexin.com, chm@zju.edu.cn

Abstract

This study provides empirical evidence that
non-autoregressive translation (NAT) is less ro-
bust in decoding batch size and hardware set-
tings than autoregressive translation (AT). To
address this issue, we demonstrate that incor-
porating a small number of AT predictions can
significantly reduce the performance gap be-
tween AT and NAT through synthetic experi-
ments. In line with this, we propose hybrid-
regressive translation (HRT), a two-stage trans-
lation prototype that combines the strengths of
AT and NAT. Specifically, HRT initially gen-
erates discontinuous sequences using autore-
gression (e.g., making predictions for every
k tokens, k > 1), and then fills in all previ-
ously skipped tokens simultaneously in a non-
autoregressive manner. Experimental results on
five translation tasks show that HRT achieves
comparable translation quality to AT while pro-
viding at least 1.5x faster inference, irrespective
of batch size and device. Moreover, HRT suc-
cessfully retains the desirable characteristics of
AT in the deep-encoder-shallow-decoder archi-
tecture, enabling further speed improvements
without sacrificing BLEU scores.1

1 Introduction

Autoregressive translation (AT) such as Trans-
former has been the de facto standard for Neu-
ral Machine Translation (NMT) (Vaswani et al.,
2017). However, AT predicts only one target
word at a time, resulting in slow inference speed.
To overcome this limitation, non-autoregressive
translation (NAT) attempts to generate the entire
target sequence in one step by assuming condi-
tional independence among target tokens (Gu et al.,
2018). While NAT offers efficiency, it often suffers
from significant degradation in translation qual-
ity. Achieving a better trade-off between inference
speed and translation quality remains an active area

∗Corresponding author.
1https://github.com/wangqiangneu/hrt

of research for NAT (Wang et al., 2018a; Ran et al.,
2020; Qian et al., 2021; Huang et al., 2022b,a).

One of the most successful approaches to this
issue is the iterative refinement mechanism (IR-
NAT) proposed by Lee et al. (2018), which has
been widely adopted by several leading systems
(Ghazvininejad et al., 2019; Kasai et al., 2020a;
Guo et al., 2020; Saharia et al., 2020; Geng et al.,
2021; Huang et al., 2022b). Specifically, IR-NAT,
also known as multi-shot NAT, takes the translation
hypothesis from the previous iteration as a refer-
ence to refine the new translation until it reaches
the predefined iteration count I or no translation
changes. Although a larger I can improve transla-
tion accuracy, it may also lead to a speedup degra-
dation (Kasai et al., 2020b).

In this work, we build upon the findings of Ka-
sai et al. (2020b) and examine the robustness of
IR-NAT compared to AT. Our comprehensive ex-
aminations confirm that the inference speed of IR-
NAT is consistently less robust than that of AT
when involving various decoding batch sizes and
computing hardware. For example, when using a
GPU, the ten-iteration non-autoregressive model
has 1.7/1.2/0.7/0.4 times the inference speed of the
AT model for decoding batch sizes of 1/8/16/32,
respectively. However, when switching to CPU, the
relative speed ratio drops to 0.8/0.4/0.3/0.3 times.
Previous studies have highlighted the complemen-
tary nature of AT and NAT in terms of both trans-
lation quality (AT being superior) and inference
speed (NAT being superior) (Wang et al., 2018a;
Ran et al., 2020). Our findings, however, suggest
that there is also complementary robustness in in-
ference speed (AT being superior).

Taking a further step, we investigate how much
target context (i.e., the number of target tokens)
is sufficient for one-shot NAT to rival multi-shot
NAT through synthetic experiments. Our findings
suggest that given a well-trained CMLM model,
even if 70% of AT translations are masked, the

5931

https://github.com/wangqiangneu/hrt

1 8 16 32

0

1

5

10

Decoding Batch Size

R
el

at
iv

e
Sp

ee
du

p
R

at
io

(α
)

CMLM1

CMLM4

CMLM10

Figure 1: Relative speedup ratio (α) of CMLM com-
pared to AT on GPU (solid) and CPU (dashed). α < 1
indicates that CMLM is slower than AT. CMLM1 can
be regarded as the representative of one-shot NAT in
inference speed.

remaining target context can help the CMLM1 with
greedy search compete with the standard CMLM10

with beam search (see Figure 2). This could enable
us to build the desired target context more cheaply,
replacing expensive multiple iterations. To our best
knowledge, this is the first study of the masking
rate issue in the inference phase of NAT.

Based on the observations from these experi-
ments, we have proposed a novel two-stage trans-
lation prototype called hybrid-regressive transla-
tion (HRT). This method combines the advan-
tages of autoregressive translation (AT) and non-
autoregressive translation (NAT) by first using an
autoregressive decoder to generate a discontinu-
ous target sequence with an interval of k (k > 1),
and then filling the remaining slots in a lightweight
non-autoregressive manner. We have also created
a multi-task learning framework, enhanced by cur-
riculum learning, for effective and efficient train-
ing without adding any model parameters. Results
on WMT En↔Ro, En↔De, and NIST Zh→En
show that HRT outperforms prior work combining
AT and NAT, and is competitive with state-of-the-
art IR-NAT models. Specifically, HRT achieved
a BLEU score of 28.27 on the WMT En→De
task, and is 1.5x faster than AT regardless of
batch size and device. Additionally, HRT equipped
with a deep-encoder-shallow-decoder architecture
achieved up to 4x/3x acceleration on GPU/CPU,
respectively, without sacrificing BLEU.

2 Background

Given a source sentence x = {x1, x2, . . . , xM}
and a target sentence y = {y1, y2, . . . , yN}, there
are several ways to model P (y|x):

Autoregressive Translation (AT) AT is the
predominant technique in NMT, decomposing
P (y|x) using the chain rule: P (y|x) =∏N

t=1 P (yt|x, y<t), where y<t denotes the prefix
translation generated before time step t. Neverthe-
less, autoregressive models must wait for yt−1 to
be generated before predicting yt, thus hindering
parallelism over the target sequence.

Non-Autoregressive Translation (NAT) NAT
has been proposed to generate target tokens si-
multaneously (Gu et al., 2018). This approach
replaces the traditional autoregressive formula-
tion of y<t with a target-independent input z, re-
sulting in the following formulation: P (y|x) =
P (N |x)×∏N

t=1 P (yt|x, z). Various approaches
have been proposed for modeling z, such as us-
ing source embedding (Gu et al., 2018; Guo et al.,
2019), reordering the source sentence (Ran et al.,
2019), or using a latent variable (Ma et al., 2019;
Shu et al., 2019).

Iterative Refinement based Non-Autoregressive
Translation (IR-NAT) IR-NAT extends the tradi-
tional one-shot NAT by introducing an iterative re-
finement mechanism (Lee et al., 2018). We choose
CMLM (Ghazvininejad et al., 2019) as the rep-
resentative of IR-NAT due to its excellent perfor-
mance and simplification. During training, CMLM
randomly masks a fraction of tokens on y as the
alternative to z, and is trained as a conditional
masked language model (Devlin et al., 2019). De-
noting ym/yr as the masked/residual tokens of y,
we have: P (y|x) = ∏|ym|

t=1 P (ym
t |x,yr). At infer-

ence, CMLM deterministically masks tokens from
the hypothesis in the previous iteration ŷ(i−1) ac-
cording to prediction confidences. This process is
iterated until ŷ(i−1)=ŷ(i) or i reaches the maximum
iteration count.

3 Acceleration Robustness Problem

In this section, we comprehensively analyze the
inference acceleration robustness problem in IR-
NAT. Without loss of generality, we take CMLM
as the agency of IR-NAT.2

Problem Description The inference overhead of
the autoregressive translation model mainly con-

2From the perspective of inference speed, we note that
most one-shot NAT models are closed to CMLM1. Especially,
existing one-shot NAT models with CTC loss, such as GLAT
and Fully-NAT, are theoretically slower than CMLM1 because
they require a longer target sequence for inference.

5932

centrates on the decoder side(Hu et al., 2020). Sup-
pose that the decoder’s computational cost is pro-
portional to the size of its input tensor (B,N,H),
where B is the batch size, N is the target sequence
length, and H is the network dimension. We omit
H for convenience due to its invariance in NAT
and AT. Thus, the total cost of AT model is about
Cat ∝ N × O(B × 1) 3. Likely, the cost of I-
iteration NAT is Cnat ∝ I × O(B × N). Given
a fixed test set, We can use TD(·) to represent the
translation time on computing device D. This al-
lows us to calculate the relative speedup ratio α
between I-iteration NAT and AT as:

α =
TD(Cat)

TD(Cnat)
∝ N

I
× E(B,D), (1)

where E(B,D)= TD(O(B×1))
TD(O(B×N)) ≤ 1, denotes the par-

allel computation efficiency over sequence under
batch size B and device D. When fixing N and I ,
α is completely determined by E(B,D). We note
that most previous NAT studies only report the
inference speed with D=GPU and B=1, without
considering cases where B or D change.

Setup We systematically investigate the infer-
ence speed of CMLM 4 and AT under varying envi-
ronments, including batch size B ∈ {1, 8, 16, 32},
device D ∈ {GPU,CPU}5, and the number of it-
erations I ∈ {1, 4, 10}, using a beam size of 5.
We test inference speed on the widely used WMT
En→De newstest2014 test set and report the av-
erage results over five runs (see Appendix A for
details).

Results We plot the curve of relative speedup
ratio (α) in Figure 1 and observe that:

i. α decreases as decoding batch size increases
regardless of the number of iterations, as noted
by Kasai et al. (2020b).

ii. α on CPU generally performs worse than
GPU, except when using one iteration.

iii. The benefit of non-autoregressive decoding is
more prone to disappear for larger numbers of
iterations (I).

3Though the decoder self-attention module considers the
previous i tokens, we omit it here for the sake of clarity.

4We use the officially released CMLM models from https:
//github.com/facebookresearch/Mask-Predict

5We use 2080Ti GPUs and Intel Xeon(R) E5-2683 v4 CPU,
unless otherwise stated.

For instance, when decoding a single sentence on
the GPU, the inference speed of the ten-iteration
non-autoregressive model is 170% that of the au-
toregressive model. However, when switching to
batches of 32 on CPU, the IR-NAT model only
reaches 30% of the AT model’s inference speed.
These results demonstrate that AT and NAT possess
different strengths, and combining the advantages
of both models could be an effective way to achieve
robust acceleration.

4 Synthetic Experiments

According to Equation 1, reducing the iteration
count I helps to increase α. Recalling the refine-
ment process of IR-NAT, we hypothesize that the
essence of multiple iterations is to provide the de-
coder with a good enough target context (deter-
ministic target tokens). This raises the question
of how many target tokens need to be provided to
make one-shot NAT competitive with IR-NAT? To
answer it, we conduct synthetic experiments on
WMT En→Ro and En→De to control the size of
the target context by masking the partial transla-
tions generated by a pre-trained AT model. We
then use a pre-trained CMLM model to predict
these masks and observe the BLEU score curves
under different masking rates.

Models We use the official CMLM models.
Since the authors did not release the AT baselines,
we used the same data to retrain AT models with the
standard Transformer-Base configuration (Vaswani
et al., 2017) and obtain comparable performance
with the official ones (see Appendix B for details).

Decoding AT models decode with beam sizes of
5 on both tasks. Then we replace a certain per-
centage of AT tokens with [MASK] and feed them to
CMLM. The used CMLM model only iterates once
with beam size 1. We substitute all [MASK]s with
CMLM’s predictions to obtain the final translation.
We report case-sensitive tokenized BLEU scores
by multi-bleu.perl.

Mask Strategies We tested four strategies to
mask AT results: HEAD, TAIL, RANDOM, and CHUNK.
Given the masking rate pmask and the transla-
tion length N , the number of masked tokens is
Nmask=max(1, ⌊N×pmask⌋). Then HEAD/TAIL
always masks the first/last Nmask tokens, while
RANDOM masks the translation randomly. CHUNK is
slightly different from the above strategies. It first
divides the target sentence into C chunks, where

5933

https://github.com/facebookresearch/Mask-Predict
https://github.com/facebookresearch/Mask-Predict

0 0.2 0.4 0.6 0.8 1

25

30

35

b=1, I=1

b=5, I=1

b=1, I=10

b=5, I=10

masking rate pmask

B
L

E
U

Sc
or

e
(%

)

head tail random chunk

0 0.2 0.4 0.6 0.8 1
15

20

25

30

b=1, I=1

b=5, I=1

b=1, I=10

b=5, I=10

masking rate pmask

B
L

E
U

Sc
or

e
(%

)

head tail random chunk

Figure 2: Comparison of four masking strategies {HEAD, TAIL, RANDOM, CHUNK} in synthetic experiments on WMT
En→Ro (Left) and En→De (Right) test sets. For CHUNK, we test the chunk size from {2, 3, 4}. Dashed lines are the
official CMLM scores. b stands for “beam size,” and I stands for “the number of iterations”.

C = Ceil(N/k) and k is the chunk size. Then
in each chunk, we retain the first token but mask
other k−1 tokens. Thus, the actual masking rate in
CHUNK is 1− 1/k instead of pmask. We ran RANDOM
three times with different seeds to exclude random-
ness and report the average results.

Results The experimental results in Figure 2
demonstrate that CHUNK is moderately and consis-
tently superior to RANDOM, and both strategies sig-
nificantly outperform HEAD and TAIL. We attribute
this success to the use of (1) bidirectional con-
text (Devlin et al., 2019) (vs. HEAD and TAIL),
and (2) the uniform distribution of deterministic
tokens (vs. RANDOM)6. Furthermore, when using
the CHUNK strategy, we find that exposing 30% AT
tokens as the input of the decoder is enough to
make our CMLM1(beam=1) competitive with the
official CMLM10(beam=5), which emphasizes the
importance of a good partial target context.

5 Hybrid-Regressive Translation

We propose a novel two-stage translation paradigm,
Hybrid-Regressive Translation (HRT), which im-
itates the CHUNK process. In HRT, a discontinu-
ous sequence with a chunk size of k is autore-
gressively generated in stage I, followed by non-
autoregressive filling of the skipped tokens in stage
II.

5.1 Architecture

Overview HRT consists of three components: en-
coder, Skip-AT decoder (for stage I), and Skip-
CMLM decoder (for stage II). All components
adopt the Transformer architecture (Vaswani et al.,
2017). The two decoders have the same network
structure, and we share them to make the param-
eter size of HRT the same as the vanilla Trans-
former. The only difference between the two de-
coders lies in the masking pattern in self-attention:
The Skip-AT decoder masks future tokens to guar-
antee strict left-to-right generation like the autore-
gressive Transformer. In contrast, the Skip-CMLM
decoder eliminates it to leverage the bi-directional
context like CMLM (Ghazvininejad et al., 2019).

No Target Length Predictor Thanks to Skip-AT,
we can obtain the translation length as a by-product:
Nnat=k ×Nat, where Nat is the sequence length
produced by Skip-AT. Our approach has two major
advantages over most NAT models, which jointly
train both the translation length predictor and the
translation model. Firstly, there is no need to care-
fully adjust the weighting coefficient between the
sentence-level length prediction loss and the word-
level target token prediction loss. Secondly, the
length predicted by Skip-AT is more accurate due
to its access to the already-generated sequence in-
formation.

6CHUNK ensures that each masked token (except the last k-1
ones in the sequence) meets two deterministic tokens within
the window size of k. However, RANDOM may degrade into
HEAD/TAIL in extreme cases.

5934

[B]

y1

y1

y2

y2

y3

y3

y4

y4

[E]

Skip-AT Decoder

(a) TASK-AT

y1

[P]

[M]

y2

[M]

y3

y4

[P]

[E]

[P]

Skip-CMLM Decoder

(b) TASK-CMLM

[B2]

y2

y2

y4

y4

[E]

Skip-AT Decoder

(c) TASK-SKIP-AT

[M]

y1

y2

[P]

[M]

y3

y4

[P]

[E]

[P]

Skip-CMLM Decoder

(d) TASK-SKIP-CMLM

Figure 3: Examples of training samples for four tasks, where (a) and (b) are auxiliary tasks and (c) and (d) are
primary tasks. To make the explanation clearer, the source sequence has been omitted. The special tokens [BOS],
[EOS], [PAD], and [MASK] are represented by [B], [E], [P], and [M], respectively. Additionally, [B2] is the [BOS] for k=2
and the loss at [P] is not taken into account.

5.2 Training

Next, we elaborate on how to train the HRT model
efficiently and effectively. Please refer to Ap-
pendix C for the entire training algorithm.

Multi-Task Framework We learn HRT by
jointly training four tasks: two primary tasks
(TASK-SKIP-AT, TASK-SKIP-CMLM) and two aux-
iliary tasks (TASK-AT, TASK-CMLM). All tasks use
cross-entropy as the training objective. Figure 3 il-
lustrates the differences in training samples among
these tasks. Notably, TASK-SKIP-AT shrinks the
sequence length from N to N/k, while preserv-
ing the token positions from the original sequence.
For example, in Figure 3 (c), the position of
TASK-SKIP-AT input ([B2], y2, y4) is (0, 2, 4). Aux-
iliary tasks are necessary to leverage all tokens in
the sequence, as the two primary tasks are limited
by the fixed k. For example, in Figure 3 (c) and (d),
y1 and y3 cannot be learned as the decoder input of
either TASK-SKIP-AT or TASK-SKIP-CMLM.

Curriculum Learning To ensure the model is
not overly biased towards auxiliary tasks, we pro-
pose gradually transferring the training tasks from
auxiliary tasks to primary tasks through curriculum
learning (Bengio et al., 2009). We start with a batch
of original sentence pairs B, and let the propor-
tion of primary tasks in B be pk=0. We construct
the training samples of TASK-AT and TASK-CMLM
for all pairs, then gradually increase pk to intro-
duce more learning signals for TASK-SKIP-AT and
TASK-SKIP-CMLM until pk=1. We schedule pk by
pk = (t/T)λ, where t and T are the current and
total training steps, and λ is a hyperparameter set
to 1 for linear increase.

Skip-CMLM Decoder

catThe sat on the mat

Append masks

[E] [E]

cat[M] [M] on [M] mat [M] [E]

cat on mat [E]

[B2] cat on mat

Skip-AT Decoder

Figure 4: The decoding process of HRT with k=2. For
the sake of clarity, we omit the source sentence.

5.3 Inference

As illustrated in Figure 4, HRT adopts a two-stage
generation strategy. In the first stage, the Skip-AT
decoder autoregressively generates a discontinuous
target sequence ŷat = (z1, z2, . . . , zm) with chunk
size k, starting from [BOSk] and ending with [EOS].
Then, the input of Skip-CMLM decoder ynat is
constructed by appending k − 1 [MASK]s before
every zi. The final translation is generated by re-
placing all [MASK]s with the predicted tokens after
one iteration of the Skip-CMLM decoder. If multi-
ple [EOS]s exist, we truncate to the first [EOS]. The
beam sizes bat and bnat can be different from each
other, as long as bat ≥ bnat. In our implementation,
we use standard beam search in Skip-AT (bat >1)
and greedy search in Skip-CMLM (bnat=1). Ta-
ble 3 provides more details on the beam size setting
in HRT. The translation hypothesis with the high-
est score S(ŷ) is chosen by summing the Skip-AT

5935

score and the Skip-CMLM score:

m∑

i=1

logP (zi|x, z<i)

︸ ︷︷ ︸
Skip-AT score

+
m−1∑

i=0

k−1∑

j=1

logP (ŷi×k+j |x,ynat)

︸ ︷︷ ︸
Skip-CMLM score

(2)

where zi=ŷi×k.

5.4 Discussion
The basic idea of HRT is to apply Autoregres-
sive Transformation (AT) and Non-Autoregressive
Transformation (NAT) in sequence. This concept
has been investigated before (Kaiser et al., 2018),
Ran et al. (2019), and Akoury et al. (2019). The
main differences between these methods lie in the
content of the AT output, such as latent variable
(Kaiser et al., 2018), reordered source tokens (Ran
et al., 2019), and syntactic labels (Akoury et al.,
2019). In contrast, our approach uses the deter-
ministic target token following Ghazvininejad et al.
(2019).

HRT is related to chunk-wise decoding, another
line incorporating AT and NAT. Table 1 shows the
differences between HRT and prior studies, includ-
ing SAT (Wang et al., 2018a), RecoverSAT (Ran
et al., 2020), and LAT (Kong et al., 2020). SAT
and LAT follow the generation order of from-left-
to-right, behaving similarly to HEAD as described
in Section 4. In contrast, RecoverSAT and HRT
generate discontinuous target contexts, which have
been shown to perform better than HEAD according
to our synthetic experiments. However, Recover-
SAT cannot accurately generate the discontinuous
context "a,c,e" via non-autoregression, resulting in
error propagation for generating "b,d,f". However,
HRT produces "a,c,e" through accurate autoregres-
sion. Additionally, although HRT requires more
decoding steps, its non-autoregressive process is in-
expensive due to greedy searches. In contrast, other
methods require larger beams to explore transla-
tions of different lengths.

6 Experimental Results

Setup We conduct experiments on five tasks, in-
cluding WMT’16 English↔Romanian (En↔Ro,
610k), WMT’14 English↔German (En↔De,
4.5M) and long-distance language pair NIST
Chinese-English (Zh→En, 1.8M). For fair com-
parisons, we replicate the same data processing
as Ghazvininejad et al. (2019) in four WMT
tasks and follow the setup of Wang et al. (2018b)
for Zh→En. Like previous work, we train

Method Generation
SAT a, b→ c, d→ e, f

RecoverSAT a, c, e→ b, d, f
LAT {a→ b→ c, d→ e→ f}

HRT (Our) a→ c→ e 99K b, d, f

Table 1: Examples of generating the sequence of
“a, b, c, d, e, f” by different methods. The elements in
“{}” are generated in parallel. “→” denotes a new de-
coding step conditioned on the prefix with beam search,
while “99K” is its greedy search version.

bat bnat En→Ro En→De α(AG) α(AC)
1 1 34.16 28.19 2.1 2.8
5 1 34.37 28.27 1.7 1.6
5 5 34.36 28.50 N/A 1.1

Table 3: Effects of different beam sizes in HRT. α(AG)
and α(AC) denotes the average relative speedup ratio
with batch size {1,8,16,32} on GPU and CPU, respec-
tively (see Appendix A for details). “N/A” denotes
decoding failed with batch size 32 due to insufficient
GPU memory.

HRT through sequence-level knowledge distilla-
tion (Kim and Rush, 2016). Specifically, we use
the standard Transformer-Base as teacher models
for En↔Ro and Zh→En, while we use the deep
PreNorm Transformer-Base with a 20-layer en-
coder for harder En↔De. We run all experiments
on four 2080Ti GPUs. Unless noted otherwise, we
use the chunk size k=2. We fine-tune HRT models
on pre-trained AT models and take 100k/300k/100k
training steps for En↔Ro/En↔De/Zh→En, re-
spectively. Other training hyperparameters are the
same as Vaswani et al. (2017) or Wang et al. (2019)
(deep-encoder). We report both case-sensitive to-
kenized BLEU scores and SacreBLEU 7. We also
report COMET as suggested by Helcl et al. (2022).

Beam Size on HRT We first verify the influence
of two beam sizes of HRT (bat and bnat) on the
BLEU score and relative speedup ratio by testing
three different setups. The results are listed in Ta-
ble 3. Consistent with our observations in synthetic
experiments, using bnat=1 only slightly reduces
BLEU but significantly improves decoding effi-
ciency. Considering the trade-off between trans-
lation quality and speed, and for a fair comparison
with other baselines (most prior related work uses
beam size of 5), we use bat=5 and bnat=1 unless

7Signature: BLEU+case.mixed+lang.source-
target+numrefs.1+smooth.exp+tok.13a+version.1.5.1

5936

System Param. Iter. WMT’16 WMT’14 COMET
En-Ro Ro-En En-De De-En

Existing systems

N
AT

AXE (Ghazvininejad et al., 2020a) - 1 30.75 31.54 23.53 27.90 -
GLAT+CTC (Qian et al., 2021) - 1 32.79 33.84 26.39 29.54 -
Fully-NAT (Gu and Kong, 2021) - 1 33.79 34.16 27.49 31.39 -
DA-Transformer (Huang et al., 2022a) 73M 1 - - 27.91 31.95 -

It
er

at
iv

e
N

AT

CMLM (Ghazvininejad et al., 2019) 76M 10 33.08 33.31 27.03 30.53 0.4338
LevTransformer (Gu et al., 2019) - Adaptive - - 27.27 - -
JM-NAT (Guo et al., 2020) - 10 33.52 33.72 27.69 32.24 -
SMART (Ghazvininejad et al., 2020b) - 10 - - 27.65 31.27 -
DisCO (Kasai et al., 2020a) - Adaptive 33.22 33.25 27.34 31.31 -
Imputer (Saharia et al., 2020) - 8 34.40 34.10 28.20 31.80 -
RewriteNAT (Geng et al., 2021) - Adaptive 33.63 34.09 27.83 31.52 -
CMLMC (Huang et al., 2022b) - 10 34.57 34.13 28.37 31.41 -

Se
m

i-N
AT SAT (Wang et al., 2018a) - N/2 - - 26.90 - -

SynST (Akoury et al., 2019) - N/6 + 1 - - 20.74† 25.50† -
ReorderNAT (Ran et al., 2019) - N + 1 31.70 31.99 26.49 31.13 -
RecoverSAT (Ran et al., 2020) - N/2 32.92 33.19 27.11 31.67 -

Our implementations

R
aw

AT (teacher for En↔Ro) 61M N 34.25(34.2†) 34.40(34.0†) 27.45(26.9†) 31.86(31.6†) 0.4779
AT20−6 (teacher for En↔De) 105M N - - 28.79(28.2†) 33.02(32.8†) 0.5201
HRT 61M N/2 + 1 33.59(33.5†) 32.98(32.9†) 26.69(26.2†) 30.58(30.3†) 0.4331

D
is

til
la

tio
n AT 61M N 34.14(33.9†) 34.06(33.8†) 28.24(27.7†) 31.95(31.7†) 0.4922

SAT 61M N/2 - - 26.47(25.9†) 29.40(29.1†) 0.1848
GLAT-CTC 62M 1 - - 26.59(26.0†) 29.73(29.4†) 0.1712
HRT 61M N/2 + 1 34.37(34.2†) 34.14(33.9†) 28.27(27.7†) 32.02(31.7†) 0.4881
HRT20−6 105M N/2 + 1 - - 29.06(28.5†) 33.20(32.9†) 0.5098

Table 2: Results of BLEU, SacreBLEU (denoted by †), and COMET on four WMT tasks. By default, these models
have a 6-layer encoder and a 6-layer decoder. The subscript X − Y is used to denote the X-layer encoder and
Y -layer decoder. Boldface results are significantly better (p<0.01) than those of the autoregressive counterparts in
the same network capacity trained by raw data, as indicated by paired bootstrap resampling (Koehn, 2004).

Model MT04 MT05 MT08
AT (teacher) 43.86 52.91 33.94

CMLM10 42.47 52.16 33.09
HRT 43.81 52.99 34.17

Table 4: BLEU scores on NIST Zh→En task.

otherwise stated.

Main Results We compare the performance of
HRT with existing systems in different transla-
tion paradigms on four WMT tasks, as shown
in Table 2. HRT with distillation data consis-
tently outperforms that of raw data and most ex-
isting NAT, IR-NAT, and Semi-NAT models, ob-
taining a BLEU score of 28.27 on the widely used
En→De task. Compared to the re-implemented typ-
ical semi-autoregressive model (SAT) and one-shot
non-autoregressive model (GLAT-CTC), HRT ob-
tains an improvement of approximately 1.7 BLEU
points, with a more significant margin in COMET
score. Moreover, HRT20−6 can improve by 0.7
BLEU and 0.02 COMET when using a deeper
encoder. Interestingly, the evaluation results of
BLEU and COMET are inconsistent, as observed

by Helcl et al. (2022). For instance, HRT20−6 has
higher BLEU score than AT20−6 on En→De, but its
COMET score is still lower. Furthermore, the ex-
perimental results on the Zh→En task, as reported
in Table 4, demonstrate that the effectiveness of
HRT is agnostic to language pairs, as it is close or
superior to the original AT and CMLM model. We
attribute this to two reasons: (1) HRT is fine-tuned
on a well-trained AT model; (2) Multi-task learning
on autoregressive and non-autoregressive tasks has
better regularization than training alone.

7 Analysis

Impact of Chunk Size We tested chunk size k
on the En→De task, as shown in Table 5. We ob-
served that larger values of k had a more significant
speedup on the GPU, as fewer autoregressive steps
were required. However, as k increased, the per-
formance of HRT dropped sharply; for example,
k=4 was about 1.24 BLEU points lower than k=2
on the test set. This suggests that the training dif-
ficulty of Skip-AT increases as k becomes larger.
Further investigation into more sophisticated train-
ing algorithms to address this is left for our future
work.

5937

Chunk Valid Test α(AG) α(AC)

2 26.44 28.27 1.7 1.6
3 26.34 27.92 2.5 2.3
4 25.60 27.03 3.2 2.9

Table 5: Effects of chunk size (k) on BLEU and α.

Stage I Stage II BLEU ∆

HRT HRT 28.27 ref.
HRT20−6 HRT20−6 29.06 +0.79

HRT HRT20−6 28.42 +0.15
HRT20−6 HRT 28.88 +0.61

Table 6: Swapping two decoding stages between HRT
(weak model) and HRT20−6 (strong model).

Which decoding stage is more important? To
understand the importance of the two decoding
stages of HRT, we exchange the intermediate re-
sults of two HRT models (A and B). Specifically,
we use the Skip-AT decoder of A to generate its dis-
continuous target sequence, which is then forced
decoded by B’s Skip-AT decoder to obtain cor-
responding encoding representations and autore-
gressive model scores. Finally, B’s Skip-CMLM
decoder generates the complete translation result
based on these. We can reverse the order of A and
B as well. We use two models (HRT and HRT20−6)
with a large performance gap as A and B, respec-
tively. As shown in Table 6, we find that using the
result of stage I of the strong model brings a greater
improvement (+0.61 BLEU) than that of stage II
(+0.15 BLEU). This result supports our hypothesis
that a good partial target context is essential.

Deep-encoder-shallow-decoder Architecture
Kasai et al. (2020b) showed AT with deep-
encoder-shallow-decoder architecture can speed
up translation without sacrificing accuracy, while
CMLM fails. To validate whether HRT can
inherit this, we compared HRT and AT with a
12-layer encoder and 1-layer decoder (HRT12−1

and AT12−1), using the same distillation data. As
Table 7 shows, both AT12−1 and HRT12−1 benefit
from the layer allocation, achieving comparable
BLEU scores and double the decoding speed of the
vanilla models. Specifically, HRT12−1 achieved
an average acceleration of 4.2x/3.1x over the AT
baselines. This suggests HRT12−1’s success was
due to Skip-AT rather than Skip-CMLM. However,
its COMET scores are lower than 6-6 architecture.

Model BLEU COMET α(AG) α(AC)

AT 28.24 0.4922 ref. ref.
AT12−1 28.40 0.4539 2.7 2.1
HRT 28.27 0.4881 1.7 1.6
HRT12−1 28.24 0.4152 4.2 3.1

Table 7: Effects of deep-encoder-shallow-decoder archi-
tecture on En→De test set. All models use distillation
data.

System BLEU ∆

HRT (T=300k) 28.27 ref.
−FT 28.00 -0.27
−CL (pk=1) 27.53 -0.74
−CL (pk=0.5) 27.75 -0.52
−TS (T=100k) 27.82 -0.45
−ALL 26.59 -1.68

Table 8: Ablation study on En→De task.

Further research into decoder depth and COMET
correlation will be conducted.

Ablation Study In Table 8, we conduct an abla-
tion study on the En→De task to investigate the
contribution of fine-tuning from pre-trained AT
(FT), training steps (TS), and curriculum learning
(CL). We test two settings about CL: Fixing pk=1
is equivalent to removing auxiliary tasks; Fixing
pk=0.5 assigns the same probability to the primary
and auxiliary tasks. The results show that all com-
ponents contribute to the performance, but CL and
TS are the most critical, with a reduction of 0.74
and 0.45 BLEU points, respectively. Excluding all
components from the vanilla HRT (-ALL) leads to
a total reduction of 1.68 BLEU points.

Case study Table 9 presents a translation ex-
ample from En→De validation set. Comparing
CMLM5 and HRT, both having the same masking
rate (50%), two main distinctions can be observed:
(1) The distribution of masked tokens in CMLM
is more discontinuous than in HRT (as indicated
by the blue marks); (2) The decoder input of HRT
contains more accurate target tokens than CMLM,
due to the Skip-AT decoder (as indicated by the
wavy marks). These differences make our model
more effective in producing high-quality transla-
tions than CMLM, and suggest that our model can
generate appropriate discontinuous sequences.

5938

Source Also problematic : civil military jurisdiction
will continue to be uph@@ eld .

Reference
Auch problematisch : Die zivile Mil-
itär@@ geri@@ chts@@ barkeit soll weiter
aufrechterhalten bleiben .

CMLM10

(5th)

Problem@@ atisch : Die zivile mil-
itärische Gerichts@@

:::::
barkeit wird weiterhin

aufrechterhalten . [EOS]

HRT
Auch

::::::::::
problematisch :

:::
Die zivile

::::::::
Militär@@

geri@@
::::::

chts@@ barkeit wird weiterhin
::::::::::::
aufrechterhalten werden . [EOS] [EOS]

Table 9: A case study in En→De validation set. Blue
denotes the original input is [MASK]. We add a wavy

line under the target context tokens (black) that hit the
reference translation. We also report the CMLM10 in
the 5th iteration that has closing mask rate to HRT.

8 Conclusion

We noted that IR-NAT has robustness issues with
inference acceleration. Inspired by our findings in
synthetic experiments, we proposed HRT to take
advantage of the strengths of both AT and NAT.
Our experiments demonstrated that our approach
surpasses existing semi-autoregressive and IR-NAT
methods, providing competitive performance and
consistent speedup, making it a viable alternative
to autoregressive translation.

9 Limitations

The main limitation of HRT is that its upper bound
on the inference speedup is lower than that of
single-iteration NAT under the same network archi-
tecture. As demonstrated in Appendix A, the aver-
age speedup of single-iteration NAT (i.g., CMLM1)
is 4.7x/3.2x on GPU/CPU, respectively, while that
of HRT is 1.7x/1.6x. To achieve higher accel-
eration, HRT needs to employ the deep-encoder-
shallow-decoder architecture. Increasing the chunk
size is a simple way to reduce the autoregressive
cost, yet it results in severe BLEU degradation (see
Table 5). Further research should be conducted to
maintain high translation performance with fewer
autoregressive prompts.

Acknowledgements

We would like to thank the anonymous reviewers
for their helpful comments. We also thank Shuqin
Pan for the writing suggestions.

References
Nader Akoury, Kalpesh Krishna, and Mohit Iyyer.

2019. Syntactically supervised transformers for
faster neural machine translation. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 1269–1281.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning.
In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML ’09, page
41–48, New York, NY, USA. Association for Com-
puting Machinery.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

Xinwei Geng, Xiaocheng Feng, and Bing Qin. 2021.
Learning to rewrite for non-autoregressive neu-
ral machine translation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 3297–3308, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Marjan Ghazvininejad, Vladimir Karpukhin, Luke
Zettlemoyer, and Omer Levy. 2020a. Aligned cross
entropy for non-autoregressive machine translation.
In ICML 2020: 37th International Conference on
Machine Learning, volume 1, pages 3515–3523.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Paral-
lel decoding of conditional masked language mod-
els. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 6112–6121, Hong Kong, China. Association
for Computational Linguistics.

Marjan Ghazvininejad, Omer Levy, and Luke Zettle-
moyer. 2020b. Semi-autoregressive training im-
proves mask-predict decoding. arXiv preprint
arXiv:2001.08785.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In International
Conference on Learning Representations.

Jiatao Gu and Xiang Kong. 2021. Fully non-
autoregressive neural machine translation: Tricks
of the trade. In ACL 2021: 59th annual meeting
of the Association for Computational Linguistics,
pages 120–133.

5939

https://doi.org/10.1145/1553374.1553380
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.emnlp-main.265
https://doi.org/10.18653/v1/2021.emnlp-main.265
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=B1l8BtlCb

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019.
Levenshtein transformer. In Advances in Neural
Information Processing Systems, pages 11179–
11189.

Junliang Guo, Xu Tan, Di He, Tao Qin, Linli Xu, and
Tie-Yan Liu. 2019. Non-autoregressive neural ma-
chine translation with enhanced decoder input. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3723–3730.

Junliang Guo, Linli Xu, and Enhong Chen. 2020.
Jointly masked sequence-to-sequence model for
non-autoregressive neural machine translation. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
376–385.

Jindřich Helcl, Barry Haddow, and Alexandra Birch.
2022. Non-autoregressive machine translation: It’s
not as fast as it seems. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1780–1790, Seattle,
United States. Association for Computational Lin-
guistics.

Chi Hu, Bei Li, Yinqiao Li, Ye Lin, Yanyang Li, Cheng-
long Wang, Tong Xiao, and Jingbo Zhu. 2020. The
NiuTrans system for WNGT 2020 efficiency task.
In Proceedings of the Fourth Workshop on Neural
Generation and Translation, pages 204–210, Online.
Association for Computational Linguistics.

Fei Huang, Hao Zhou, Yang Liu, Hang Li, and Minlie
Huang. 2022a. Directed acyclic transformer for non-
autoregressive machine translation. In Proceedings
of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine
Learning Research, pages 9410–9428. PMLR.

Xiao Shi Huang, Felipe Perez, and Maksims Volkovs.
2022b. Improving non-autoregressive transla-
tion models without distillation. In International
Conference on Learning Representations.

Lukasz Kaiser, Samy Bengio, Aurko Roy, Ashish
Vaswani, Niki Parmar, Jakob Uszkoreit, and Noam
Shazeer. 2018. Fast decoding in sequence mod-
els using discrete latent variables. In International
Conference on Machine Learning, pages 2390–2399.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and
Jiatao Gu. 2020a. Non-autoregressive machine trans-
lation with disentangled context transformer. In
ICML, pages 5144–5155.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James
Cross, and Noah A. Smith. 2020b. Deep encoder,
shallow decoder: Reevaluating the speed-quality
tradeoff in machine translation. arXiv preprint
arXiv:2006.10369.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 1317–1327.

Philipp Koehn. 2004. Statistical significance tests
for machine translation evaluation. In Proceedings
of the 2004 Conference on Empirical Methods
in Natural Language Processing, pages 388–395,
Barcelona, Spain. Association for Computational Lin-
guistics.

Xiang Kong, Zhisong Zhang, and Eduard Hovy. 2020.
Incorporating a local translation mechanism into non-
autoregressive translation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1067–1073,
Online. Association for Computational Linguistics.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural
sequence modeling by iterative refinement. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
1173–1182, Brussels, Belgium.

Xuezhe Ma, Chunting Zhou, Xian Li, Graham
Neubig, and Eduard Hovy. 2019. Flowseq:
Non-autoregressive conditional sequence genera-
tion with generative flow. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4273–4283.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang,
Lin Qiu, Weinan Zhang, Yong Yu, and Lei
Li. 2021. Glancing transformer for non-
autoregressive neural machine translation. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 1993–2003, Online. Association for Computa-
tional Linguistics.

Qiu Ran, Yankai Lin, Peng Li, and Jie Zhou. 2019.
Guiding non-autoregressive neural machine transla-
tion decoding with reordering information. arXiv
preprint arXiv:1911.02215.

Qiu Ran, Yankai Lin, Peng Li, and Jie Zhou. 2020.
Learning to recover from multi-modality errors for
non-autoregressive neural machine translation. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
3059–3069, Online. Association for Computational
Linguistics.

Chitwan Saharia, William Chan, Saurabh Saxena, and
Mohammad Norouzi. 2020. Non-autoregressive
machine translation with latent alignments. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1098–1108.

Raphael Shu, Jason Lee, Hideki Nakayama, and
Kyunghyun Cho. 2019. Latent-variable non-
autoregressive neural machine translation with de-
terministic inference using a delta posterior. arXiv
preprint arXiv:1908.07181.

5940

https://doi.org/10.18653/v1/2022.naacl-main.129
https://doi.org/10.18653/v1/2022.naacl-main.129
https://doi.org/10.18653/v1/2020.ngt-1.24
https://doi.org/10.18653/v1/2020.ngt-1.24
https://proceedings.mlr.press/v162/huang22m.html
https://proceedings.mlr.press/v162/huang22m.html
https://openreview.net/forum?id=I2Hw58KHp8O
https://openreview.net/forum?id=I2Hw58KHp8O
https://aclanthology.org/W04-3250
https://aclanthology.org/W04-3250
https://doi.org/10.18653/v1/2020.emnlp-main.79
https://doi.org/10.18653/v1/2020.emnlp-main.79
https://doi.org/10.18653/v1/D18-1149
https://doi.org/10.18653/v1/D18-1149
https://doi.org/10.18653/v1/2021.acl-long.155
https://doi.org/10.18653/v1/2021.acl-long.155
https://doi.org/10.18653/v1/2020.acl-main.277
https://doi.org/10.18653/v1/2020.acl-main.277

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in Neural Information
Processing Systems, pages 6000–6010.

Chunqi Wang, Ji Zhang, and Haiqing Chen. 2018a.
Semi-autoregressive neural machine translation. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
479–488.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S.
Chao. 2019. Learning deep transformer mod-
els for machine translation. In Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics, pages 1810–1822, Flo-
rence, Italy.

Qiang Wang, Fuxue Li, Tong Xiao, Yanyang Li, Yin-
qiao Li, and Jingbo Zhu. 2018b. Multi-layer repre-
sentation fusion for neural machine translation. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 3015–3026.

A Detailed inference speed

In Table 10, we list the exact decoding time and rel-
ative speedup ratio of different models under vary-
ing environments on the En→De test set. When
changing the batch size from 1 to 32, the decod-
ing time of AT reduces 20.4x/4.6x on GPU/CPU,
respectively, while that of CMLM10 only reduces
3.7/0.8x. In contrast, HRT inherits the good charac-
ter of AT and achieves an 18.7x/3.8x speedup. On
the other hand, HRT has more robust acceleration
than multi-shot NAT, such as CMLM4, CMLM10.
When using the deep-encoder-shallow-decoder ar-
chitecture, HRT12−1 performance approaches the
one-shot NAT (CMLM1) on both GPU and CPU.
Besides, the overall results of HRT-20L are simi-
lar to those of HRT because the translation time is
mainly consumed in the decoder. We also report
the change of inference speed along with chunk
size k.

B AT Transformers in synthetic
experiments

We trained all AT models in the synthetic experi-
ment with the standard Transformer-Base configu-
ration: layer=6, dim=512, ffn=2048, head=8. The
difference from Ghazvininejad et al. (2019) is that
they trained the AT models for 300k steps, but we
updated 50k/100k steps on En→Ro and En→De,
respectively. Although fewer updates, as shown in
Table 11, our AT models have comparable perfor-
mance with theirs.

C Training algorithm

Algorithm 1 describes the training process of
HRT. The HRT model is pre-initialized by a pre-
trained AT model (Line 1). Then according to

the schedule strategy pk =
(

t
T

)λ
, we can di-

vide the training batch B into two parts: Bp for
primary tasks and Ba for auxiliary tasks, where
|Bp|/|B| = pk (Line 4-5). Next, we construct
four kinds of training samples based on correspond-
ing batches: Bat

p (TASK-SKIP-AT), Bat
a (TASK-AT),

Bnat
p (TASK-SKIP-CMLM) and Bnat

a (TASK-CMLM).
Finally, we collect all training samples together
and accumulate their gradients to update the model
parameters, which results in the batch size being
twice that of standard training.

5941

https://www.aclweb.org/anthology/P19-1176
https://www.aclweb.org/anthology/P19-1176

Model BLEU↑ B=1 B=8 B=16 B=32 Avg

Time↓ α ↑ Time↓ α ↑ Time↓ α ↑ Time↓ α ↑ α ↑
On GPU

AT(raw data) 27.45 857.2 1.0 137.8 1.0 73.1 1.0 40.1 1.0 1.0
AT12−1 28.40 294.7 2.9 49.1 2.8 28.1 2.6 16.7 2.4 2.7
CMLM1 18.05 89.4 9.6 28.8 4.8 26.3 2.8 26.2 1.5 4.7
CMLM4 25.94 223.5 3.8 59.2 2.3 52.0 1.4 52.4 0.8 2.1
CMLM10 27.03 492.7 1.7 116.0 1.2 106.1 0.7 105.0 0.4 1.0
SAT 26.47 523.0 1.6 87.1 1.6 48.0 1.5 26.2 1.5 1.6
HRT (bat=1, bnat=1) 28.19 377.5 2.3 66.4 2.1 34.9 2.1 20.5 2.0 2.1
HRT 28.27 478.9 1.8 77.8 1.8 41.9 1.7 24.3 1.7 1.7
HRT (bat=5, bnat=5) 28.50 482.4 1.8 81.2 1.7 46.5 1.6 N/A N/A N/A
HRT12−1 28.24 192.5 4.6 31.4 4.3 18.4 4.0 11.1 3.7 4.2
HRT (k=3) 27.92 323.9 2.6 54.9 2.5 29.5 2.5 18.2 2.2 2.5
HRT (k=4) 27.03 256.0 3.3 43.1 3.2 23.3 3.1 12.7 3.2 3.2

On CPU
AT (raw data) 27.45 1118.0 1.0 314.1 1.0 246.3 1.0 201.3 1.0 1.0
AT12−1 28.40 405.4 2.8 149.0 2.1 130.4 1.9 110.7 1.8 2.1
CMLM1 18.05 207.3 5.4 116.0 2.7 97.6 2.5 85.9 2.3 3.2
CMLM4 25.94 635.1 1.8 341.7 0.9 329.8 0.7 319.4 0.6 1.0
CMLM10 27.03 1390.9 0.8 820.1 0.4 789.3 0.3 776.9 0.3 0.4
SAT 26.47 737.5 1.5 248.7 1.3 205.6 1.2 158.9 1.3 1.3
HRT (bat=1, bnat=1) 28.19 457.1 2.4 116.1 2.7 82.4 3.0 65.9 3.1 2.8
HRT 28.27 663.1 1.7 186.3 1.7 157.8 1.6 138.0 1.5 1.6
HRT (bat=5, bnat=5) 28.50 811.0 1.4 294.5 1.1 247.6 1.0 235.2 0.9 1.1
HRT12−1 28.24 249.6 4.5 111.5 2.8 85.1 2.9 83.9 2.4 3.1
HRT (k=3) 27.92 448.7 2.5 134.8 2.3 111.7 2.2 90.7 2.2 2.3
HRT (k=4) 27.03 360.0 3.1 111.4 2.8 85.8 2.9 71.9 2.8 2.9

Table 10: Compare the BLEU score, elapsed time, and relative speedup ratio (α) of decoding En→De newstest14
under different settings. We use bat=5, bnat=1 and k=2 for HRT unless otherwise stated. HRT(bat=5, bnat=5)
cannot decode data with batch size 32 (denoted by N/A) on GPU due to insufficient GPU memory. We bold the best
results. Green denotes the result is worse than AT baseline.

AT Transformer En-Ro En-De

Vaswani et al. (2017) - 27.3
Ghazvininejad et al. (2019) 34.28 27.74

Our implementation 34.25 27.45

Table 11: The performance of autoregressive models in
the synthetic experiment.

5942

Algorithm 1 Training Algorithm for Hybrid-Regressive Translation

Input: Training data D, pretrained AT model Mat, chunk size k, schedule coefficient λ
Output: Hybrid-Regressive Translation model Mhrt

1: Mhrt ← Mat ▷ fine-tune on pre-trained AT
2: for t in 1, 2, . . . , T do
3: B = ⟨xi,yi⟩|ni=1 ▷ fetch a batch B from D
4: pk ← (t

T)
λ ▷ curriculum learning

5: Bp,Ba ← B
[
: ⌊n× pk⌋

]
,B

[
⌊n× pk⌋ :

]
▷ split batch for different tasks

6: Bat
p ,Bnat

p ← construct training samples of primary tasks based on Bp

7: Bat
a ,Bnat

a ← construct training samples of auxiliary tasks based on Ba

8: Optimize Mhrt using Bat
p ∪Bat

a ∪Bnat
p ∪Bnat

a ▷ joint training
9: end for

5943

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Left blank.

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
Left blank.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Footnote 5 in section 3

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

5944

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 6

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 3

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 6

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

5945

