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Abstract

In this paper, we investigate how to improve
tagging-based Grammatical Error Correction
models. We address two issues of current
tagging-based approaches, label imbalance is-
sue, and tagging entanglement issue. Then we
propose to down-weight the loss of correctly
classified labels using Focal Loss and decou-
ple the error detection layer from the label tag-
ging layer through an extra self-attention-based
matching module. Experiments on three recent
Chinese Grammatical Error Correction datasets
show that our proposed methods are effective.
We further analyze choices of hyper-parameters
for Focal Loss and inference tweaking.

1 Introduction

Grammatical Error Correction (GEC) has been re-
ceiving increasing interest from the natural lan-
guage processing community with the surging pop-
ularity of intelligent writing assistants like Gram-
marly. In the English language, a series of bench-
marks (Ng et al., 2013, 2014; Bryant et al., 2019)
have been created for the evaluations of different
methods. In many other languages, various emerg-
ing datasets with language-specific challenges are
also attracting plenty of attention (Trinh and Ro-
zovskaya, 2021; Korre and Pavlopoulos, 2022; Ná-
plava et al., 2022; Zhang et al., 2022; Xu et al.,
2022; Jiang et al., 2022).

Existing methods for GEC can be cate-
gorized into sequence-to-sequence approaches,
tagging-based approaches, and hybrid approaches.
Sequence-to-sequence approaches require a larger
amount of training data and usually rely on syn-
thetic data for pretraining (Rothe et al., 2021;
Stahlberg and Kumar, 2021; Kaneko et al., 2020).
Tagging-based approaches adopt editing operations
between the source text and the target text as train-
ing objectives (Malmi et al., 2019; Awasthi et al.,
2019). These methods are faster in inference and
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can achieve competitive performance as sequence-
to-sequence approaches. Hybrid models separate
the tagging process and the insertion process into
two stages, and can easily change word order with
an extra pointer network module (Mallinson et al.,
2022). In average cases, hybrid approaches can
achieve sub-linear inference time.

In this work, we are interested in tagging-based
models due to their simplicity and high efficiency
and would like to investigate how to further im-
prove their performance. In the literature, there
is also work on improving the performance of ex-
isting tagging-based models. For example, Tar-
navskyi et al. (2022) explored ensembles of recent
Transformer encoders in large configurations with
various vocabulary sizes. For general-purpose im-
provements, existing methods range from optimiz-
ing training schemes to changing inference tech-
niques. For training, Li et al. (2021) explore how
to enhance a model through generating valuable
training instances and applying task-specific pre-
training strategies. For inference, Sun and Wang
(2022) propose Align-and-Predict Decoding (APD)
to offer more flexibility for the precision-recall
trade-off. From the perspective of system com-
bination, Qorib et al. (2022) propose a simple logis-
tic regression algorithm to combine GEC models
effectively.

Different from the methods discussed above, we
focus on improving tagging-based models from
the perspective of model designing and learning.
Currently, GECToR (Omelianchuk et al., 2020)
is one of the representative tagging-based models.
GECToR contains a pretrained transformer-based
encoder with two linear classification layers as the
tagger. One of the linear layers is used for label
tagging, and the other for error detection. How-
ever, we identify the following issues with cur-
rent tagging-based models: (1) Label imbalance
issue. The training labels contain a large portion of
easy-to-learn labels and the distribution is highly
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Figure 1: Model structure with error detection decou-
pled from label tagging.

skewed. Existing learning methods use cross en-
tropy with label smoothing as the loss function
which is deemed as sub-optimal for this scenario.
(2) In current tagging-based models, sequence la-
beling and error detection are two linear classifi-
cation layers over the same hidden representation.
This entanglement may also hurt the performance
of models.

To solve the problems discussed above, we pro-
pose the following modifications to tagging-based
models: (1) We use Focal Loss (Lin et al., 2017)
to counteract class imbalance and down-weight the
loss assigned to correctly classified labels. (2) We
decouple error detection from label tagging using
extra attention matching module (Wang and Jiang,
2017).

We then verify the effectiveness of the proposed
method over three recent Chinese grammatical er-
ror correction datasets. Through our experiments,
we find that both focal loss and matching mecha-
nisms contribute to performance gain.

2 Method

Suppose we have an edit operation set O for
the manipulation of text at token level. Given
a piece of source context denoted as x =
(x1, x2, . . . , xN ) and its corrected target sequence
w = (w1, w2, . . . , wM ), to construct a map-
ping from the (x,w) to O, we use a tagging
scheme T to first compute alignments between
the two sequences. Then we assign each to-

ken in the sequence with candidate operations.
The tagged label sequence is denoted as yl =
{(y1, y2, . . . , yN )|yi ∈ O} = T (x,w). Its cor-
responding error detection target is named as yd.

Tagging Scheme. We use a tagging scheme from
GECToR (Omelianchuk et al., 2020) with adapted
vocabularies and operations by MuCGEC (Zhang
et al., 2022). Specifically, the scheme computes
an optimal token-level alignment between x and w.
Then for each aligned pair of tokens, there will be
four choices for tagging labels: (1) KEEP for iden-
tical tokens, (2) DELETE if the token comes from
x only, (3) REPLACE_w if the token from x is re-
placed by the one from w, (4) APPEND_w if the to-
ken comes from w only. For example, APPEND_，
and REPLACE_识 in Figure 1. Notice that if mul-
tiple insertions appear within one alignment, only
the first one is used for training. The error detection
labels are constructed from the tagging labels. It
will be a correct label COR if tagged as KEEP else
error label ERR.

Encoder. We use a transformer-based encoder to
process the tokenized input text. We enclose the
context with special tokens [CLS] and [SEP]
and pass them into the BERT model. We use the
last layer of BERT as the encoded hidden represen-
tation for the context. Considering our tagging sys-
tem is consistent with GECToR, we also use a mis-
matched encoder to get hidden representations of
the original word, denoted as H = (h0, . . . ,hN ).

Tagger. Our tagger contains two separate linear
classification heads. The label tagging head is con-
ducted over the encoder’s hidden representation H
directly:

pl = Linear(Dropout(H)) (1)

The error detection head is decoupled from the la-
bel tagging head using an input constructed from H
with a matching mechanism over its self-attended
representation:

α = softmax (HH⊤) (2)

A = α⊤H (3)

M = Linear([H,A]) (4)

pd = Linear(LayerNorm(M)) (5)

Training Objective. In this paper, we choose Fo-
cal Loss to down-weight correctly classified labels:

FL(p, y) = −
∑

t

(1− pt)
γ log pt (6)
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where γ is a hyper-parameter to control the loss
assigned to these labels. Both label tagging and
error detection contribute to the final loss. The final
loss is a linear combination of label tagging loss
and error detection loss:

L = FL(pl,yl) + λFL(pd,yd) (7)

where λ is a positive hyper-parameter.

3 Experiments

We evaluate our method on three recent Chinese
Grammar Error Correction datasets.

3.1 Datasets

We use three recent grammar error correc-
tion datasets from the Chinese language,
MuCGEC (Zhang et al., 2022), FCGEC (Xu
et al., 2022) and MCSCSet (Jiang et al., 2022).
Statistics of the three datasets are listed in Table 1.
MuCGEC is a combination of multiple sources
covering diverse types of Chinese grammatical
errors. FCGEC is a human-annotated corpus
with multiple references collected mainly from
multiple-choice questions in public school Chinese
examinations. MCSCSet is a high-quality Chinese
Spelling Correction dataset from the medical do-
main collected from extensive real-world medical
queries from Tencent Yidian. The corresponding
misspelled sentences are manually annotated by
medical specialists.

Train Dev Test

MuCGEC 1,187,605 1,125 5,938
FCGEC 36,340 2,000 3,000
MCSCSet 157,194 19,652 19,650

Table 1: Statistics of used datasets.

The evaluation metric reported in this paper
is span level correction F0.5 scores evaluated us-
ing ChERRANT, a Chinese version of ERRANT1.
Specifically, ChERRANT computes an optimal se-
quence of char-level edits with the minimal edit
distance given an input sentence and a correc-
tion. Then consecutive char-level edits are further
merged into span-level, resulting in the following
error types: (1) Missing, (2) Redundant, (3) Substi-
tution, (4) Word-Order.

1https://github.com/chrisjbryant/
errant

We analyze validation sets of all used datasets
using ChERRANT and show the error type distri-
bution in Figure 2. The distribution indicates the
difficulty of each dataset which will be discussed
in Section 3.3.
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Figure 2: Error type distribution over validation set of
used datasets. For MCSCSet, the numbers are divided
by 10 to make them fit into the figure.

3.2 Settings
We use a GECToR model released by MuCGEC2

as our checkpoint. The model uses StructBERT-
Large (Wang et al., 2020) as the transformer en-
coder and it is the best tagging-based model over
MuCGEC. It has 7375 labels for token-level opera-
tion and 2 labels for error detection. We evaluate
our model on the official benchmark websites for
MuCGEC3 and FCGEC4.

For all our experiments, we use a learning rate
of 1e−5 with batch size 128 and run three epochs
for training. The hyper-parameter λ is chosen as
1. The default γ for Focal Loss is chosen as 2. We
use the maximum F0.5 score over the validation
set to choose the best model for evaluation. To be
consistent with MuCGEC, we use iterative refine-
ment for five iterations to get the final corrected
results. No inference tweaking tricks are used for
our main results in Section 3.3. However, we will
conduct further analysis on inference tweaking in
Section 3.5.

The training costs are computed on a NVIDIA
GeForce RTX 3090 GPU. For MuCGEC, the cost
is 14 GPU hours . For FCGEC, the cost is 3.5 GPU
hours. For MCSCSet, the cost is 3 GPU hours. Our
code has been released on Github5.

2https://github.com/HillZhang1999/
MuCGEC

3https://tianchi.aliyun.com/dataset/
131328

4https://codalab.lisn.upsaclay.fr/
competitions/8020

5https://github.com/VisualJoyce/TERepo
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Model MuCGEC FCGEC MCSCSet

GECToR 39.59 27.45 82.13
+ FL 41.22 29.03 82.47
+ FL + TD 41.41 30.74 83.09

Table 2: Comparison of our proposed methods and the
GECToR model over test split.

3.3 Main Results

We use the GECToR model as the baseline for
comparison. For our proposed methods, we show
incremental results of adding Focal Loss (FL) and
Tagger Decouple (TD), denoted as GECToR + FL
and GECToR + FL + TD.

We report evaluation scores over the test split
of each dataset in Table 2. The baseline scores for
MuCGEC and FCGEC are quoted directly from
their original papers. The baseline score for MC-
SCSet is offered by us. We then list the scores of
our proposed methods.

The table shows that using Focal Loss for train-
ing can improve performance for all datasets. If we
further decouple error detection from label tagging,
extra gains can be achieved consistently.

It is worth noting that error type distribution
reflects the complexity of a specific dataset. For
example, MCSCSet is easier than the other two
even if it comes from a different domain since the
error types are mostly Substitution.

3.4 Analysis over choices of γ

It remains to be answered whether we should
choose a larger γ to make the model more ag-
gressive about harder labels. We conduct exper-
iments over MuCGEC using different γ. To evalu-
ate the generalizability of the trained models, we
further adopt a zero-shot setting using the test split
of FCGEC. We don’t use MCSCSet for zero-shot
evaluation due to its low domain similarity with
MuCGEC and low error type diversity.

In Table 3, we list results for GECToR and GEC-
ToR + FL using different γs. On MuCGEC, using
larger gamma helps the model to do better in eval-
uation. However, if we take the zero-shot setting
into consideration, the performance over FCGEC is
not consistent with the increase of γ. This indicates
that larger γ tends to make the model overfit the
training data.

Model MuCGEC FCGEC

GECToR 39.59 18.06
GECToR + FL(γ=1) 40.53 22.83
GECToR + FL(γ=2) 41.22 20.67
GECToR + FL(γ=5) 41.60 18.65

Table 3: Comparison of our proposed methods with
different γ values over MuCGEC and FCGEC.

3.5 Analysis over inference tweaking

Inference tweaking has been used as a post-
processing technique to further improve the per-
formance of tagging-based models. The method
searches two hyper-parameters (δ, β) over the vali-
dation set. δ is a threshold for sentence-level mini-
mum error probability. β is a positive confidence
bias for keeping the source token.

Considering inference tweaking promotes F0.5

scores through trading off precision and recall, we
conduct experiments to compare how our proposed
methods perform against it. We use validation and
test split of MuCGEC for the illustration. In Ta-
ble 4, we list the best scores achieved after applying
inference tweaking and place the difference value
in the bracket. All scores over the validation split
increase by roughly 0.5 points. However, on the
test split, the tweaked results are not rising consis-
tently. Although inference tweaking is effective,
it’s not guaranteed the (δ, β) searched over the val-
idation set works for each specific model.

Model (δ, β) Dev Test

GECToR (0.40, 0) 35.63 (+0.45) 39.87 (+0.28)
+ FL (0.35, 0) 38.80 (+0.51) 41.21 (−0.01)
+ FL + TD (0.35, 0) 39.18 (+0.56) 41.79 (+0.38)

Table 4: Performance differences over validation split
and test split after applying inference tweaking.

4 Limitations

In this work, we have been focusing on improving
the performance of tagging-based Grammatical Er-
ror Correction. Our work has the following limita-
tions: (1) We work on three recent Chinese Gram-
matical Error Correction datasets. But there are
many emerging datasets from various languages.
We will add support for these languages on our
GitHub repository and make all resources publicly
accessible. (2) We point out a limitation of infer-
ence tweaking, but it remains to be explored how to
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explain the phenomenon and derive better tweaking
methods.

5 Conclusion

In conclusion, focal training and tagger decoupling
are effective in improving current tagging-based
Grammatical Error Correction models. However, it
is also important to choose a suitable γ for Fo-
cal Loss considering the generalizability of the
model. For the widely adopted post-processing
technique inference tweaking, it depends on the
model whether there will be significant perfor-
mance gain.
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