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Abstract

Recent research has shown that large-scale
pretrained language models, specifically
transformers, tend to exhibit issues relating
to racism, sexism, religion bias, and toxicity
in general. Unfortunately, these pretrained
language models are used almost universally
in downstream tasks, and natural language
processing is often applied to make real-world
predictions. Thus, debiasing these language
models as early in development as possible
is increasingly crucial for preventing unin-
tentional harms caused by natural language
systems. To this end, we propose a new tech-
nique called partitioned contrastive gradient
unlearning (PCGU), a gray-box method for
debiasing pretrained masked language models.
PCGU aims to optimize only the weights that
contribute most to a specific domain of bias,
doing so by computing a first-order approxi-
mation based on the gradients of contrastive
sentence pairs. Our experiments show that
PCGU is both low-cost and seems particularly
effective at pinpointing the sources of implicit
social bias in large pretrained transformers.
Although we train using PCGU in the gender-
profession domain only, we find that doing so
can also partially mitigate bias across other
domains. All code for our implementation
and experiments can be found at https:
//github.com/CharlesYu2000/
PCGU-UnlearningBias.

1 Introduction

In the past few years, extraordinary improvements
have been made to most applications of natural lan-
guage processing due to the prevalence of large
pretrained language models, particularly Trans-
formers (Vaswani et al., 2017). These language
models achieve remarkable performance not only
because of mechanisms like attention (Bahdanau
et al., 2016), but because of rich and diverse nat-
ural language corpora scraped from literature and
the internet. However, in spite of some measures

to ensure that these natural language sentences
are high quality (Radford et al., 2019), recent
work has shown that pretraining corpora contain
many toxic/biased sentences and that neural mod-
els trained on such data readily capture and exhibit
these biases (Caliskan et al., 2017; May et al., 2019;
Gehman et al., 2020; Kurita et al., 2019).

Previous studies suggest that embeddings and
models encode harmful social biases (Bolukbasi
et al., 2016; Caliskan et al., 2017; Kaneko and Bol-
legala, 2021; Dev et al., 2019; Nangia et al., 2020;
Kurita et al., 2019; Nadeem et al., 2020). This
can be problematic, as the lack of interpretability
in modern language models means that negative
stereotypes and social biases encoded in models
may lead to unfairness and harms in production
systems. Without effective mitigation techniques,
finetuned models utilizing these flawed language
representations might accidentally inherit spurious
correlations not representative of the real world or
their target task.

To mitigate the representational harms explained
in Barocas et al. (2017); Blodgett et al. (2020), we
might aim for two goals of different granularities.
The first goal proposes to debias a model such that
its predictions encode the least bias. The second
aims to remove social bias throughout a model such
that the model minimally represents constructs that
can cause itself to be biased in its predictions. Re-
gardless of the debiasing goal, the north star is to
eliminate harms caused by the model, so we must
be motivated by how pretrained language models
are used.

Minimizing the cost of adoption for debiased
language models is a high priority for debiasing, as
any barriers may cause people to be skeptical of the
societal benefits. To ensure that people have little
reason not to use our debiased model, we aim to
minimize representing bias while still maximizing
the representation ability of the model. In this study,
we focus on debiasing pretrained language models
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used directly for masked language modeling. Cru-
cially, we modify only their weights post-hoc with-
out any changes to the architecture or additional
modules. In this way, we enable key stakeholders
to swap out their masked language models (by sim-
ply loading a different set of weights) but still use
the exact same code for masked predictions, just
as they might with any other finetuned model. Fur-
thermore, stakeholders need not rely on the people
pretraining the model to have incorporated debias-
ing procedures during the pretraining process. We
restrict our study to masked language modeling, as
the use cases of language models for other down-
stream tasks are disparate, and extrinsic evaluation
of bias in those tasks is often be confounded by
task-specific finetuning (Meade et al., 2022).

We expect, based on the results from Kaneko and
Bollegala (2021); Vig et al. (2020), that problem-
atic social biases propagate throughout large por-
tions of language models. Furthermore, based on
the Lottery Ticket Hypothesis (Frankle and Carbin,
2019), we hypothesize that most bias is encoded
by specific groups of neurons rather than individ-
ual weights throughout the model. So, we propose
a gradient-based debiasing method called parti-
tioned contrastive gradient unlearning (PCGU)
to locate where in the model these problematic
inferences originate from and to systematically re-
train those parts of the model to unlearn this bi-
ased behavior. In our experiments, we use PCGU
to unlearn biases in the gender-profession domain
and evaluate our approach using prior association
tests for bias/stereotypes. We find that PCGU is
seemingly effective both in mitigating bias for the
gender-profession domain that it is applied to as
well as for generalizing these effects to other un-
seen domains. In addition, we observe that the
procedure exhibits results quickly, requiring very
few iterations over the tuning dataset and very little
real time until convergence. The hyperparameter
search space can be found in Appendix A.

2 Related Work

Motivated by the idea that the words in sentences
are the root of all the information flowing through
language models, static word embeddings were
the first target for debiasing (Bolukbasi et al., 2016;
Zhao et al., 2018b; Sheng et al., 2019; Nangia et al.,
2020; Dev et al., 2019; Karve et al., 2019; Zhang
et al., 2018). These methods typically operate via
projection onto some subspace that does not en-

code the targeted bias. However, modern language
models do not use external embeddings, so it is
not immediately clear that such methods can be
applied to transformers.

Further efforts have been made to extend those
patterns for contextualized embeddings (Dev et al.,
2019; Karve et al., 2019; Ravfogel et al., 2020;
Kaneko and Bollegala, 2021). However, such stud-
ies typically do not account for interactions be-
tween different parts of the model when used in
actual sentences. Instead, they focus either on the
(static) word embedding layer or on aggregate rep-
resentations of specific words.

Methods that propose debiasing models beyond
the word level have also been proposed (Liang et al.,
2020; Cheng et al., 2021). However, most of these
methods aim only to improve the case where an-
other model will further use the sentence represen-
tations generated by the text encoder. Crucially,
this does not solve any word-level problems such
as masked language modeling. For example, meth-
ods like Cheng et al. (2021) add on extra modules,
which means that the cost of adoption is more than
simply loading a new weights file. In a different
vein, methods like Schick et al. (2021) utilize mul-
tiple iterative prompts to debias generations only.

Recently, much work in this field has been fo-
cused on changing the pretraining or finetuning
process to prevent bias from being learned by the
language model. Many approaches aim to change
the training process for embeddings, classifiers, or
encoders, either through changing the training pro-
cedure or adding bias-aware terms to the training
loss function (Zhao et al., 2018a; Lauscher et al.,
2021). Some of this work has achieved success
by attempting to “neutralize" the language models’
representation of biased words over some bias sub-
space by finetuning (Kaneko and Bollegala, 2021)
or prompt tuning (Yang et al., 2023), or by extend-
ing these ideas by reformulating the bias dimen-
sions as a set of implicit dimensions from social
psychology (Omrani et al., 2023). Other methods
propose changing or augmenting the training data
in some way, typically by adding high-quality un-
biased or antistereotypical sentences, eliminating
blatantly biased or stereotypical sentences, or a
combination of the two by replacing texts in the
training corpus (Elazar and Goldberg, 2018; Guo
et al., 2022; Qian et al., 2022). Yet other techniques
utilize counterfactual or adversarial signals to dis-
suade models from encoding biases (Zhao et al.,
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Figure 1: This illustration shows the framework of PCGU, which follows 3 steps as described in Section 3.

2018a; Elazar and Goldberg, 2018; Zhang et al.,
2018; Zmigrod et al., 2019; Hall Maudslay et al.,
2019; Webster et al., 2020).

Perhaps most similar to our method is actually
work done in the knowledge editing space. Such
tasks propose explicitly editing specific knowledge
in a model without affecting unrelated knowledge
(Sinitsin et al., 2020; Zhu et al., 2020). This is quite
similar to our task in that we aim to remove spe-
cific social bias from our model without affecting
unrelated inference ability. However, our method
attempts to remove generalized forms of these bi-
ases, as opposed to removing/changing the more
targeted and specific knowledge that knowledge
editing methods attempts to do. Recent studies in-
clude gradient-based methods that train separate
networks to predict efficient gradient updates for
removing or replacing models’ knowledge (Cao
et al., 2021; Mitchell et al., 2021).

3 Methods

At a high-level, PCGU is composed of three parts.
First, gradients must be computed for a contrast-
ing pair of sentences whose difference is in the
domain that the model is biased in. Next, we apply
a weight importance algorithm, based on gradients,
to compute a ranked ordering of weights that are
most important to our criterion (i.e., the weights
that seem to most encode the biases we wish to
unlearn). Finally, taking the earlier gradients and
ordered weights as input, we compute a first-order
approximation of the bias gradient and perform a
standard optimization step of our language model.

In our experiments, we apply this procedure to
debias a group of masked transformer language
models for the gender-profession domain such that
their final parameters encode less inequality for
MLM predictions. Specifically, we aim to update
the models such that they are not generally biased
toward a stereotypical sentence nor an antistereo-
typical sentence, since even antistereotypes can be
harmful (McGowan and Lindgren, 2006). We later
evaluate PCGU’s efficacy using existing evaluation
benchmarks.

3.1 Contrastive Gradients

Formally, we can consider BERT (Devlin et al.,
2019), or any masked language model in this class,
as a probability function M parameterized by its
weights θ ∈ Rd (d is the number of parameters
of the model). M computes the probability of a
token (which should be masked due to contextual
embeddings) conditioned on its right and left con-
texts. So, given a sentence si = [w1

i , w
2
i , . . . , w

n
i ]

where wj
i = [MASK], we can compute the proba-

bility distribution of all possible tokens at index j
to investigate the model’s biases.

To calculate contrastive gradients in the gender-
profession domain, we will employ a subset of
the Winogender Schemas dataset (Rudinger et al.,
2018). This subset is composed of 240 minimal
sentence pairs, where the only difference between
the sentences is the gender, either male or female1,

1We do not claim that gender is binary. However, as the
dataset only consists of three pronouns (male, female, neutral
such as “they"), we use only the male and female versions
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of the pronoun coreferent with the subject of the
sentence. The subject of the sentence is always a
person referred to by their occupation, so we can
interpret the probabilities assigned to the male and
female pronouns as the model’s stereotype for each
occupation. For example, we may have a pair of
sentences

s1 = “The professor could not attend the talk
because he was preparing for the keynote."
s2 = “The professor could not attend the talk
because she was preparing for the keynote."

The pronoun must be assumed by the model, as
none of the context entails a gender. For domains
other than gender-profession, an analogous dataset
with minimally different sentence pairs could be
utilized (or sentence tuples for non-binary domains,
as described in Appendix E).

For each of the sentences in the minimal pair, we
compute the probability that the model assigns to
the differing token. Using standard backpropaga-
tion, we then calculate the gradients,∇1,∇2 ∈ Rd,
of the probabilities with respect to the model’s
weights θ.

3.2 Determining Importance of Weights

Partitioning the Weights. Now, using∇1 and∇2,
we will determine which dimensions of θ are the
ones that seem most important to the representa-
tion of bias. To make this method robust, we parti-
tion θ into a set of weight vectors θ1 ∈ Rd1 , θ2 ∈
Rd2 , . . . , θm ∈ Rdm (where d1 + · · · + dm = d).
The gradient∇i is partitioned into ∇1

i , . . . ,∇m
i in

the same way.
To determine how to partition θ, we hypothesize

that a subset of neurons of the model should encode
all the biases/preferences of the model in different
contexts. This is motivated by the Lottery Ticket
Hypothesis (Frankle and Carbin, 2019), which
posited that neural networks often contain highly
active subnetworks that can be solely trained to
solve a task. Here, we propose two related forms of
partitioning: input aggregation and output aggrega-
tion. In transformers, input aggregation partitions
attention matrices by grouping together the weights
that determine how much each element in the in-
put embedding contributes to the key/query/value
vectors. Output aggregation partitions the attention
matrices by grouping the weights that determine

to simplify experiments by using “disjoint" terms. A natural
extension beyond binary gender words should be possible
inductively, as discussed in Appendix E.

how much each element in the key/query/value
vectors is influenced by the input embedding. For
non-attention weight matrices such as those used
for dense layers, the same concepts apply but for
the output embedding rather than the attention vec-
tors. Note that we do not partition bias vectors for
either partitioning method.

As an example, consider an r × c weight matrix
W and a 1 × r input embedding vector

−→
i . The

left multiplication of
−→
i by W results in the 1×C

output embedding vector −→o =
−→
i ·W. Input ag-

gregation partitioning would partition W into r
vectors (−→v1 ,−→v2 , . . . ,−→vr ), where each of the vectors
−→vi determines how much the ith index of

−→
i con-

tributes to−→o (since each index j of−→o is computed
as −→o j =

∑r
i=1

−→
i i · −→vi j). Output aggregation par-

titioning would instead partition W into c vectors
(−→v1 ,−→v2 , . . . ,−→vc ), where each of the vectors −→vj de-
termines how much

−→
i contributes to the jth index

of −→o (since −→o j is the dot product of −→vj and
−→
i ).

Therefore, input aggregation partitioning is equiva-
lent to partitioning the right-multiplied matrix by
its rows, as illustrated in Figure 1. Similarly, output
aggregation partitioning is splitting by its columns.

In the 110M parameter version of BERT, using
input aggregation partitioning to partition θ gives
us approximately 114k weight vectors and using
output aggregation partitioning results in about 88k
weight vectors.
Computing Importance of Weight Blocks. Next,
we will calculate which vectors of the partition
{θ1, θ2, . . . , θm} seem to most encode the bias.
Since our minimal pairs differ only in the gen-
der of the subject noun working in the profes-
sion, the gradients will encode the direction of
maximal increase in probability for the associ-
ated gender term. We expect that some parts of
the gradient may encode concepts like grammar,
semantics, and syntax, and be similar for both
gradients. On the other hand, we expect a few
parts of the gradient to be drastically different,
as those are the parts of the model that the gen-
der of the pronoun is highly relevant to. With
{∇i

1}m1 and {∇i
2}m1 being the partitioned gradi-

ents for the two minimally different sentences, we
order the weight vectors θr1 , θr2 , . . . , θrm , where
the ordering {r1, r2, . . . , rm} is determined by how
different each of the corresponding gradient pieces
is. Since the magnitude of each gradient piece is
highly dependent on unrelated values, we use only
the directions of the vectors to determine the dif-
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ference between corresponding pieces in the two
gradients. Thus, θ1, θ2, . . . , θm are ordered by im-
portance, as computed by cosine similarity:

Importance(θi) =
∇i

1 · ∇i
2

∥∇i
1∥∥∇i

2∥
(1)

Weight vectors where the associated contrasting
gradient pieces have low cosine similarity are thus
determined to be most important for the targeted
bias. In contrast, the ones with high similarity
are determined to be least important to that bias,
but may be more relevant to unrelated concepts or
different types of bias.

3.3 First-order Gradient Optimization Step
Finally, we take some subset of the partition of
weight vectors and only optimize those parts of θ
to approximate reducing bias. We choose the sub-
set θr1 , θr2 , . . . , θrk as the k most important weight
vectors. To determine the actual values of the gradi-
ent used in this optimization step, we consider the
gradients of each pair of sentences in our tuning
set. In each pair, we denote one sentence to be the
“advantaged" sentence and the other to be the “dis-
advantaged" sentence. The advantaged sentence is
the one that is expected to be more preferred by a
biased model and the disadvantaged sentence to be
the one less preferred. In our experiments tuning
with Winogender, we use the included statistics
about the proportion of gender-occupation corefer-
ence pairs in news sentences where the gender is
female (Bergsma and Lin, 2006). From these pro-
portions, we choose the sentence with the pronoun
that is less often coreferent to be the disadvantaged
sentence and the other to be the advantaged sen-
tence.

We then relabel the sentence pair s1, s2 to be
sa1 , sa2 where a1 is the index of the advantaged
sentence and a2 is the index of the disadvantaged
sentence. For example, since the reported propor-
tion of the male-surgeon pair is 0.9566, a1 = 1 is
the index of the advantaged sentence and a2 = 2 is
the disadvantaged sentence.

Finally, to compose our bias gradient, we will
take the gradient parts associated with the advan-
taged sentence (i.e., ∇r1

a1 ,∇r2
a1 , . . . ,∇rk

a1) and ap-
ply a negative optimization step. In this negative
optimization step, we perform gradient descent,
moving the parameters in the direction of maximal
probability decrease of the advantaged term:

θri ← θri − α1{i ≤ k}∇ri
a1 , (2)

where α is the learning rate.
It is also reasonable to move the parameters in

the direction of maximal probability increase of
the disadvantaged term, which we discuss more in
Section 4.6. Similarly, we may decide that using
historic counts is too rigid and non-representative
of modern models. Instead of using the coreferent
pairs proportions, we can decide which word is
advantaged and which is disadvantaged based on
their logits at inference time. We discuss this more
in Section 4.7.

4 Experiments and Discussion

4.1 Datasets

We evaluate our proposed PCGU method on two
recent social bias benchmarks: StereoSet (Nadeem
et al., 2020) and CrowS Pairs (Nangia et al., 2020).
Since PCGU is intended for masked language mod-
eling within a sentence, we use only the intrasen-
tence subset of StereoSet. Each instance in Stere-
oSet is a sentence triplet: one sentence is stereotyp-
ical, the second is antistereotypical, and the final
sentence is a semantically non-sensical sentence.

Girls tend to be more soft than boys. (stereo)
Girls tend to be more determined than boys. (anti)
Girls tend to be more fish than boys. (nonsense)

Each instance in CrowS Pairs is a minimally differ-
ent pair of stereotypical and antistereotypical sen-
tences. Using these two datasets, masked language
models can be evaluated for bias by comparing the
probabilities associated with each sentence.

4.2 Evaluation Metrics

The three StereoSet metrics are the Stereotype
Score (SS), the Language Modeling Score (LMS),
and the Idealized Context Association Test
score (ICAT). These metrics are computed by com-
paring the probability assigned to the contrasting
portion of each sentence conditioned on the shared
portion of the sentence. The CrowS metric is simi-
lar to SS except that it computes the probability of
the shared portion of the sentence conditioned on
the contrasting portions of each sentence instead.

SS and CrowS both measure the proportion of ex-
amples where the stereotypical sentence is assigned
a higher probability than the antistereotypical sen-
tence. The ideal score is 0.5, indicating no general
bias toward either stereotypes or antistereotypes.

To measure the language modeling abilities of
the model, LMS is proposed as the proportion of
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Model SS→ 0.5 (∆) LMS ↑ ICAT ↑ CrowS→ 0.5 (∆)
bert-base-cased 0.569 (0.069) 0.873 0.752 0.551 (0.051)
+ PCGU (ours) 0.534 (0.034) 0.837 0.781 0.548 (0.048)
+ DPCE 0.624 (0.124) 0.785 0.590 0.458 (0.042)
+ AutoDebias 0.530 (0.030) 0.507 0.476 0.465 (0.035)
+ PCGU then DPCE 0.581 (0.081) 0.849 0.712 0.452 (0.048)
+ DPCE then PCGU 0.569 (0.069) 0.726 0.625 0.486 (0.014)

Model SS→ 0.5 (∆) LMS ↑ ICAT ↑ CrowS→ 0.5 (∆)
roberta-base 0.625 (0.125) 0.917 0.689 0.593 (0.093)
+ PCGU (ours) 0.570 (0.070) 0.839 0.722 0.584 (0.084)
+ DPCE 0.641 (0.141) 0.930 0.667 0.405 (0.095)
+ AutoDebias 0.596 (0.096) 0.685 0.554 0.467 (0.033)
+ PCGU then DPCE 0.561 (0.061) 0.860 0.755 0.311 (0.189)
+ DPCE then PCGU 0.588 (0.088) 0.853 0.703 0.516 (0.016)

Table 1: PCGU compared with DPCE (Kaneko and Bollegala, 2021) and AutoDebias (Guo et al., 2022), two recent
and similar debiasing methods. Bolded values are the best in their class. The ideal score for both SS and CrowS is
0.50, so we additionally include the delta between score and ideal in parentheses for those two columns to facilitate
grokking. The reported SS, LMS, and ICAT scores are based on our full test set (across all domains). Our validation
and test sets are created as a random 50/50 split of the intrasentence portion of the original development set of
StereoSet.

Model Name k Partition method SS→ 0.5 (∆) LMS ↑ ICAT ↑ CrowS→ 0.5 (∆)

BERT (base, uncased)

0 (pretrained) - 0.5138 (0.0138) 0.7724 0.7510 0.6048 (0.1048)
14000 Input 0.4959 (0.0041) 0.7675 0.7612 0.5968 (0.0968)
11000 Output 0.5122 (0.0122) 0.7626 0.7440 0.6021 (0.1021)

All - 0.4846 (0.0154) 0.6512 0.6311 0.6021 (0.1021)

BERT (base, cased)

0 (pretrained) - 0.5693 (0.0693) 0.8729 0.7519 0.5511 (0.0511)
3000 Input 0.5336 (0.0336) 0.8372 0.7809 0.5477 (0.0477)
9500 Output 0.5609 (0.0609) 0.8571 0.7527 0.5424 (0.0424)
All - 0.5126 (0.0126) 0.5956 0.5806 0.5444 (0.0444)

RoBERTa (base)

0 (pretrained) - 0.6246 (0.1246) 0.9170 0.6885 0.5928 (0.0928)
22000 Input 0.5698 (0.0698) 0.8389 0.7218 0.5842 (0.0842)
8000 Output 0.6130 (0.1130) 0.8953 0.6931 0.6114 (0.1114)
All - 0.5415 (0.0415) 0.6827 0.6260 0.5358 (0.0358)

ALBERT (base)

0 (pretrained) - 0.5000 (0.0000) 0.5669 0.5669 0.5676 (0.0676)
1000 Input 0.4806 (0.0194) 0.5371 0.5163 0.4483 (0.0517)
1300 Output 0.4790 (0.0210) 0.4315 0.4134 0.4894 (0.0106)
All - 0.4839 (0.0161) 0.4452 0.4308 0.6068 (0.1068)

Table 2: Models are chosen at the epoch at which they achieve an average (across the gender and profession
domains) SS closest to 0.5 on our validation set. Formatting and evaluation details are as in Table 1. k = 0 models
are the original pretrained model and k = All models are models tuned using the full gradient without partitioning
(i.e., tuning all weights).

examples where the stereotypical/antistereotypical
sentences are assigned a higher probability than the
non-sensical one. So, an ideal model achieves a
score of 1, and debiasing methods should aim to
minimally decrease this score during debiasing.

In order to measure the tradeoff between better
SS and worse LMS after debiasing, ICAT combines
the two into a score between 0 and 1 such that a
perfectly debiased and accurate model achieves a
score of 1 (also, a fully random model achieves a
score of 0.5).

Full formulations of these metrics can be found
in Appendix D.

4.3 Experiments

We test PCGU on four masked language models:
the uncased and cased versions of 110M BERT (De-
vlin et al., 2019), the 125M version of RoBERTa
(Liu et al., 2019), and the 11M version of ALBERT
(Lan et al., 2020), all pretrained from the Hugging-
Face library (Wolf et al., 2020). For each of the
models, we report the results of the best-performing

model tuned via PCGU using each of the two (in-
put and output) aggregation partitioning methods.
Input aggregation models were tuned for at most
15 epochs using a learning rate of α = 2e− 6 and
output aggregation models were tuned for at most
10 epochs using a learning rate of α = 1e− 5. On
a single NVIDIA Tesla V100 GPU (16GB), using
a batch size of 64 pairs from Winogender (so there
are 4 batches per epoch), PCGU tuning of BERT
with PyTorch takes around 4 seconds per batch us-
ing input aggregation partitioning and 50 seconds
per batch for output aggregation partitioning 2. The
main cost of PCGU, other than the partitioning
method which is implementation dependent (and
can be quite fast if not made to be a general inter-
face) is only a cosine similarity, so the cost of a
single step PCGU is on the order of a single step
of finetuning, implying scalability to modern large
language models.

2The extra runtime of output aggregation is due only to the
specific implementation we used, which indexed into tensors
using the range() function to allow for a more generic interface
rather than slicing. Slicing indices is much more efficient.
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Notably, we re-compute weight importance for
each batch of b sentence pairs by computing the
importance using the batched gradients. This is
as opposed to computing the importance for each
example pair (i.e., b = 1) or using a static selection
of weights computed based on the full dataset. In
our testing, we found little discernible difference in
using different batch sizes, provided that they were
reasonably large (b > 16). Evidently, larger batch
sizes allowed the weight importance computation
to be more robust.

We report the results of these experiments in
Table 2. Although the reported PCGU models do
not achieve the perfect SS of 0.5, we tend to see
significant improvement to the SS compared to
relatively little decrease in LMS, leading to an in-
crease in the overall ICAT score for both BERT
and RoBERTa. However, this was not the case for
ALBERT, whose pretrained version achieved a per-
fect SS, which might suggest that this method is
more effective when knowledge is more distributed
(i.e., for larger models) or that our stopping criteria
are imprecise. Perhaps unsurprisingly, the CrowS
score does not seem to be as affected by PCGU
(although it does seem to have slightly improved
in all cases). We attribute this observation to the
fact that the gradient used for PCGU more closely
resembles the probability used for the StereoSet
metrics than the probability calculation used for
the CrowS metric.

Based on our random validation/test split of
StereoSet, we find that apparently the dataset is
not uniform. Therefore, the performance for either
SS or LMS of a model on the validation set was not
a great indicator of its performance on the test set.
The average SS of each of the reported PCGU mod-
els on the validation set is within 0.016 of perfect,
and mostly within 0.001 of perfect. However, not
only do we find that many different models achieve
perfect or near-perfect SS on the test set (but not
on the validation set as well), but there exist yet
other models that achieve high SS across the entire
set but poor SS over each of the validation and test
sets (Simpson’s paradox).

As part of a qualitative analysis, we find that
most random examples from StereoSet and even
our own examples follow the trends shown in Fig-
ure 2. This suggests that PCGU debiases by aiming
for equality of genders in the sense used in Beu-
tel et al. (2017); Zhang et al. (2018), where the
odds of either gender are mostly uncorrelated with

the context. In fact, variants of the sentence in
Figure 2, such as the sentence “The professor had
to write [MASK] keynote” further showcase that
non-gendered infills can be minimally affected by
PCGU debiasing. Prior to debiasing, the LM pre-
dicts “a” and “the” with 88% probability while
predicting “his” and “her” with only 7% of the
probability mass. After applying PCGU, the prob-
ability of “a” and “the” decreases only slightly,
to 86%, while the gendered predictions “his” and
“her” only increase to 10% of the total probability
mass. Notably, PCGU seems effective at targeting
actual biases, not simply differences in gender, a
phenomenon discussed more in Appendix F.

4.4 Comparison with Similar Debiasing
Methods

We also compare models debiased using PCGU
with those debiased by DPCE (Kaneko and Bolle-
gala, 2021) and AutoDebias (Guo et al., 2022), two
recent methods that update only the weights of the
language model without changes in architecture, in
Table 1:

DPCE (Kaneko and Bollegala, 2021) is a
method that finetunes layers of the model according
to their novel objective function seeking to mini-
mize bias in the contextualized word embedding
produced at that layer. Their objective function
depends on finding sentences in the corpus that
utilize bias attribute words and creating a proto-
type from those words’ contexts. Then, DPCE at-
tempts to minimize the shared dimension between
the attribute prototype and the contextualized word
embedding (similar to the projection-based debias-
ing methods that subtract from embeddings their
projections onto the bias subspace).

AutoDebias (Guo et al., 2022) is a method that
first searches for MLM prompts whose masked
token distribution has the highest disagreement
among the demographics chosen for debiasing (for
example, the probability of the words “he” and
“she” being very different). Then, they use a Jensen-
Shannon divergence-based objective function to
finetune the model to equalize the demographic
distribution across all the generated prompts.

We find that PCGU tends to be far more ef-
fective than DPCE while AutoDebias produces a
close-to-random model. Also, PCGU can signifi-
cantly debias a model even after applying DPCE,
but the opposite is less notable. Thus, as a stan-
dalone method, PCGU seems superior to the others.
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However, since they seem to have different effects
(DPCE actually causes LMS to improve in some
cases), it may be most effective to chain multiple
methods together.

The main methodological difference that seems
to allow PCGU to perform better than DPCE is that
PCGU does a very targeted finetuning by identify-
ing the weight partitions in the model that should be
altered, whereas DPCE finetuning is guided by the
loss function only and is dependent on using high-
quality attribute prototypes. In practice, DPCE
converges much slower than PCGU does, possibly
due to this reliance on the prototypes.

An explanation for the relatively poor perfor-
mance of AutoDebias may be due to the way it
finds the prompts with the highest distributional
disagreement. This heuristic does not account for
the fact that those prompts with the largest distribu-
tional disagreement in a strong PLM are often those
whose context necessitates one version of a word
and may not have anything to do with bias (“The
[MASK] tied his shoes” should have a much higher
probability for “man” than for “woman” and “The
[MASK] person prayed at the synagogue” would
have much higher probability for “Jewish” than for
“Muslim”).

4.5 Weight Importance Ablations
As an ablation test for the weight importance step,
we also perform PCGU using all the weights (basi-
cally, taking a backward optimization step for the
advantaged sentence). We find that, although the
procedure generally is able to debias the language
model well, the language modeling functionality is
greatly crippled (similar to AutoDebias). This is in
stark contrast to the weight partitioning versions,
which incur a much smaller decrease in language
modeling ability. These results suggest that some
form of partitioning is clearly necessary; not all
weights of the model contribute equally to bias.

We also find that the choice of input vs output
aggregation partitioning does not obviously affect
the performance of the debiased models. How-
ever, across the experiments, the input partitioning
method maintained a slight edge over the output
partitioning method.

4.6 Decreasing the Advantaged Probability vs
Increasing the Disadvantaged Probability

We also investigate the difference between taking
the optimization step in PCGU to decrease the prob-
ability of the advantaged sentence compared to

Figure 2: Predictions when prompting BERT with a
sentence that would cause stereotypes, before and after
debiasing using PCGU. In this [random unseen] exam-
ple, PCGU seems to equalize the probabilities of the
gendered predictions.

increasing the probability of the disadvantaged sen-
tence. We find that the former results in faster con-
vergence, although the latter does not take much
longer to converge to similar performance. In gen-
eral, the difference in performance depended more
on the model selection criteria than on which gradi-
ent was used for the tuning. For example, selecting
the model based on the SS over the gender and
profession domains rather than based on the macro-
averaged SS (compute SS for each domain and then
average it) resulted in as much fluctuation in SS
on the test set as using the disadvantaged gradient
instead of the advantaged gradient did.

There are some interesting implications related
to the difference in goals for using each gradient.
By decreasing the probability of the advantaged
sentence, we are more directly teaching the model
to be less biased. On the other hand, by increas-
ing the probability of the disadvantaged sentence,
we are instead teaching the model to be equally
as biased toward both forms (compared to other
options). In reality, bias comes in many shapes,
and our work is motivated by the idea that we want
to unlearn the entire class of bias, not just specific
examples. Unfortunately, a pair of options is not
enough to represent the full distribution of options.
Therefore, it seems reasonable to believe that de-
creasing the probability of the advantaged sentence
should be more applicable for general forms of bias.
Thus, all our experiments report results from this
method only.
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4.7 Dynamically Determining the Advantaged
and Disadvantaged Sentence

Model Name SS (Dynamic|Static|Pretrained) LMS (Dynamic|Static|Pretrained)
BERT (base, uncased) 0.5106 | 0.4959 | 0.5138 0.7659 | 0.7675 | 0.7724
BERT (base, cased) 0.5777 | 0.5336 | 0.5693 0.8687 | 0.8372 | 0.8729

RoBERTa (base) 0.6213 | 0.5698 | 0.6246 0.9128 | 0.8389 | 0.9170
ALBERT (base) 0.5048 | 0.4806 | 0.5000 0.5613 | 0.5371 | 0.5669

Table 3: PCGU with dynamic sentence classification
(i.e., choosing which sentence is advantaged and which
is disadvantaged based on the PLM’s own prediction
logits) vs static sentence classification (as reported in Ta-
ble 2) and the original pretrained model. Bolded values
denote the most effective version. Dynamic determina-
tion seems to be very similar to not changing original
pretrained model, as opposed to the static sentence clas-
sification, which actually debiases.

We also consider the differences between using
a static determination of which sentence is advan-
taged and a dynamic determination, as alluded to
in Section 3.3. A pretrained model’s state is highly
complex so the model may need to improve greatly
for one region of the bias space and less so for an-
other region. Therefore, it seems likely that one
space may become debiased before another space
has been debiased. By using a static determina-
tion, we resign ourselves to the likelihood that an
already debiased space may become biased in the
opposite direction while we debias the other space.
In other words, it seems likely that the model may
overshoot and fail to achieve an ideal overall per-
formance when using the static determination.

This is, in experimentation, not the case, and
we report the results of PCGU using a dynamic
determination in Table 3. At each training step, we
dynamically choose the advantaged and disadvan-
taged sentences based on the logits of the masked
token. Since this now allows us to simply aim for
equality in the sentences, we then perform the op-
timization step using the difference in gradients
(such that the advantaged sentence probability is
decreased and the disadvantaged sentence proba-
bility is increased). In all cases, the model’s perfor-
mance both for SS and LMS remained similar to
the original pretrained model. Thus, we can con-
clude that this dynamic determination is not usable
for debiasing with PCGU.

4.8 Cross-Domain Effects of PCGU

The scores for our experiments suggest that PCGU
is effective at mitigating the amount of bias in a
model without greatly affecting the transformer’s
ability to perform language modeling. Interestingly,

Model Name Race Religion
BERT (base, uncased) 0.3799 - 0.4773 0.3636 - 0.5455
BERT (base, cased) 0.4372 - 0.5368 0.3750 - 0.7500

RoBERTa (base) 0.4146 - 0.6516 0.3500 - 0.7500
ALBERT (base) 0.3571 - 0.6071 0.1429 - 0.6667

Table 4: SS ranges for out-of-domain biases after PCGU.
Observe that the perfect SS of 0.5 is contained in most of
these ranges, suggesting that the weight vectors selected
for unlearning by PCGU are, in some way, related to
biases in general, not just the gender-profession biases
encoded in the training data.

despite the fact that our tuning set for PCGU only
contained information related to gender and profes-
sion, we see that this procedure is able to change
the amount of bias in other domains as well (to
varying degrees), as shown in Table 4.

This suggests that perhaps some of the parame-
ters/neurons governing different domains of bias
are potentially overlapping, causing some cross-
domain convergence during training. However, it is
just as possible that the difference in SS may be due
only to noise or factors unrelated to bias. An exten-
sion of this experiment may be able to determine
if different domains of bias can be concurrently
or sequentially debiased, possibly via coordinate
descent. It also seems reasonable, using the anal-
ogous data for other domains of bias mentioned
in Section 3.1, to determine which weights are im-
portant for separate domains of bias and which are
shared.

5 Conclusion

In this paper, we introduced PCGU, a method to
systematically search through a pretrained masked
language model to find the origins of its bias and
mitigate them. The positive results in our paper sug-
gest that, with the proper data, post-hoc removal
of problematic social biases can be efficient and
targeted via PCGU. Our findings also support the
notion that different types of bias arise from differ-
ent areas in pretrained transformers.

We believe that by focusing on the language
model holistically, rather than as a collection of
individual pieces, we can more effectively remove
representational harms from pretrained language
models. It is our hope that future studies are able
to leverage PCGU to fully debias language models
and increase adoption of fair pretrained models.
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6 Limitations

We acknowledge that the StereoSet and CrowS
datasets and metrics are not ideal evaluation mea-
sures for debiasing work (see Blodgett et al. (2021)
for more details about their pitfalls). We advise
practitioners to conduct careful analysis for their
specific use case rather than interpreting the scores
from our experiments as clear measures of bias
mitigation or removal.

Furthermore, we realize that in discussion of
harms, we should also ensure that allocative harms
do not arise from dependency on a PCGU-debiased
model. In this paper, we do not report experiments
on models finetuned for other downstream tasks, as
finetuning is generally more prone to spurious cor-
relations and accidentally encoding bias, so evalu-
ating such models obfuscates the procedure’s effect
on the pretrained model. Instead, we focused only
on the masked language modeling task such that
intrinsic and extrinsic evaluations both use the pre-
trained model directly and only. In the modern age
of large language models, this is arguably more ap-
plicable, but this setting doesn’t take into account
the effects of prompts on the prediction distribu-
tion. An interesting extension of this study would
be to debias using some form of PCGU in the pure
generation setting and evaluating with high quality
generation-based resources such as HolisticBias
(Smith et al., 2022). However, the base form of
PCGU is not directly applicable due to the diffi-
culty in attaining and using minimal pairs/tuples in
generations.

Another related limitation is that our experi-
ments were only conducted in English. However,
many languages, such as Spanish or other Romance
languages, have a much richer concept of grammat-
ical/lexical gender sometimes affecting multiple
words per sentence.

Unfortunately, a fundamental problem with in-
terpretability arises if we wish to evaluate the lan-
guage model’s bias implicitly. For example, the
prediction in Figure 2 suggests that the debiased
model is less biased than a model predicting the
full probability mass for the female term. Discrete
metrics fail to account for this behavior, so better
evaluation metrics would also give us a better sense
of the efficacy of our proposed method.

We further note that gender, which has histori-
cally been treated as a binary construct, is likely
to be a relatively easy domain to work with. Other
more complicated social biases like racism and

classism are similarly harmful, and an ideal debias-
ing procedure should work for all of them. Similar
questions may arise about if we can ever compre-
hensively cover all domains without a better way
to generalize across domains. It is also to be seen
if PCGU can be directly used for other domains, as
our experiments only touched on the intersection
of gender and profession biases while observing
that this has effects on other domains. Further work
would be required to understand why, and in what
contexts, PCGU can affect unseen domains; are
the cross-domain results in the main paper arti-
facts of intersectionality (between seen and unseen
domains) or is this truly generalizations across a
broader notion of bias?

Due to the complexity of social bias, it is not ob-
vious if a properly modeled dataset for such other
domains of bias can be easily constructed for us-
age with PCGU. A natural thought would be to
attempt to generate training data for PCGU. We
attempted this but found that the generations were
not reliable in terms of providing signal for what
constituted bias. By using a templated dataset like
WinoGender, we can ensure that every instance in
the training set encodes bias by an assumption of
gender based on only the profession.

Obviously, partitioning at the most granular
level where each single parameter is its own part
would make our directional comparison meaning-
less. However, we did not extensively study how
important the specific partitioning method was. An
interesting class of experiments would be using
some sort of random partitioning, where each in-
dividual parameter is assigned to its group of pa-
rameters not according to any architectural reason
but according to some sort of randomness. Our
implementation of this made the gradient selec-
tion extremely expensive because it required too
much indexing into tensors as opposed to a full
replacement of specific dimensions. A better imple-
mentation or experiment would be needed to draw
actionable conclusions about different partitioning
methods. However, our baseline experiments for
this matched with the intuition that sampling each
weight as being a bias or non-bias weight using
a Bernoulli distribution yields a similar effect as
regular training with dropout, similar to the k=All
experiments in Table 2.
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7 Other Ethical Considerations

This study employed a binary classification of gen-
der in our experimentation and description of the
methodology. It is our firm stance that such beliefs
have no place in the community, especially consid-
ering that language evolves with its users. However,
we believe that this narrow view of gender is neces-
sary as a step in the broader direction of full equity.
We hope that when high quality datasets displaying
non-binary genders are released in a form usable
by PCGU, researchers may revisit this paper and
study an inductive extension of PCGU.

We also recognize the fact that any method used
for debiasing may possibly be reversed to train
extremely bigoted models, possibly for trolling or
targeted harassment. However, we believe that any
such practice for PCGU would not be more harmful
than existing training methods. As observed in our
experiments, even when looking to increase the
probability of logits only (as opposed to explicitly
decreasing the advantaged sentence), the language
modeling score still suffers. Therefore, there seems
to be no reason to believe that PCGU could create a
more biased model than simply finetuning on many
bigoted examples.

Due to the problems with StereoSet and CrowS
alluded to in Section 6, we recognize that experi-
mental results based on those metrics are not con-
clusive evidence that a model is biased or unbiased
(or good at modeling). We urge any reader to make
their own judgment about these models through
their own qualitative analyses.
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A Hyperparameter Search

For the models reported in Table 2, the only hyper-
parameter search performed was for the value of
k. In general, fewer attempts were made for output
aggregation methods, as those took much longer
to perform. Also, output aggregation and input
aggregation resulted in different maximum values
of k. The range of k experimented on was based
on being near to 10% of available vectors. All k
values were chosen uniformly over the provided
range (both bounds inclusive) based on the step
size.

Summary statistics are not included as each k is
essentially a different value.

1. bert (both bert-base-uncased and bert-base-
cased). For input aggregation, k from 2000
to 22000 with a step size of 1000. For output
aggregation, k from 5000 to 11000 with a step
size of 1500.

2. roberta-base. For input aggregation, k from
2000 to 26000 with a step size of 1000. For
output aggregation, k from 5000 to 11000
with a step size of 1500.

3. albert-base-v2. For input aggregation, k from
1000 to 8000 with a step size of 250. For
output aggregation, k from 500 to 1500 with
a step size of 200.

B Dataset Download Links

CrowS Pairs: https://github.com/nyu-mll/crows-
pairs
StereoSet: https://stereoset.mit.edu/

C Dataset Statistics

The full CrowS dataset of 1508 examples is used
for evaluation.

Instances from StereoSet where any of the
masked words tokenized to more than one to-
ken were discarded, since the masked language
models we use do not support joint mask predic-
tion/infilling. In the remaining set, there were 765
instances in the gender domain, 2430 in the profes-
sion domain, 2886 in the race domain, and 237 in
the religion domain.

D Evaluation Metrics

Given a sentence si = [w1
i , w

2
i , . . . , w

n
i ] where

wj
i = [MASK], we can compute the probability

distribution of the tokens in the masked index by
taking

M(·|left = [w1
i , . . . , w

j−1
i ],

right = [wj+1
i , . . . , wn

i ], θ). (3)

So, we can compute the probability that the model
prefers a specific word in the context of sen-
tence si, where si is understood to have a sin-
gle [MASK] token at position j, by the notation
M(si) = M(wj

i |left = [w1
i , . . . , w

j−1
i ], right =

[wj+1
i , . . . , wn

i ], θ).
Sentence st is stereotypical, sa is antistereotyp-

ical, and the final sentence sn is the non-sensical
sentence. As a reminder, for StereoSet we have all
three sentences and for CrowS we have only the
sensical two sentences.
Stereoset. There are three evaluation met-
rics proposed in the StereoSet dataset: the
Stereotype Score (SS), the Language Modeling
Score (LMS), and the Idealized Context Associ-
ation Test score (ICAT).

The SS of a model M is the proportion of the
sentence pairs in which the model tends to prefer
the stereotypical sentence over the antistereotypical
sentence. For an evaluation set E ,

ss(M) = E(st,sa,sn)∈E1[M(st) > M(sa)] (4)

An ideal model without bias is claimed to have
an SS score of 0.5 meaning that it does not prefer
either a stereotype or an antistereotype in general.

The LMS score measures the basic language
modeling capability of a model and is intended to
mimic a regression test. It is calculated as how
often the model M prefers an acceptable sentence
over a meaningless one.

lms(M) =
1

2
E(st,sa,sn)∈E1[M(st) > M(sn)]

+
1

2
E(st,sa,sn)∈E1[M(sa) > M(sn)],

(5)
where we consider both stereotypical and antis-
tereotypical sentences to be informative. A perfect
language model should have a score of 1 and a de-
biased language model should have a score similar
to the original language model.

ICAT combines SS and LMS as

icat(M) = lms(M)∗min{ss(M), 1− ss(M)}
0.5

.

(6)
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A perfect model achieves an ICAT of 1, a fully
biased model achieves an ICAT of 0, and a random
model achieves an ICAT of 0.5.

CrowS Pairs. The CrowS score is also based
on the masked language modeling probabilities but
computed to condition on the prior probabilities
of words. Given a pair of stereotypical and anti-
stereotypical sentences (st, sa), we first split the
tokens of each of them into constrastive tokens
Ct, Ca (soft vs determined in the example from
Section 4.1) and overlapping tokens O. We then
compute the probability of each sentence via a sum-
mation of masked language modeling log probabil-
ities of all overlapping tokens conditioned on the
non-overlapping tokens:

Q(M, C) =
∑

j∈O
logP (j|C,O\{j}) (7)

Finally, the CrowS metric measures the proportion
of CrowS pairs where the model assigned a higher
probability to the stereotypical sentence compared
to the antistereotypical one:

crows(M) = E(st,sa)∈E1
[
Q(M, Ct) > Q(M, Ca)

]

(8)

E Non-binary Bias Domains

To handle the multi-class setting (e.g., religion
bias), we can adjust the weight block importance
calculation to be based on variance rather than only
direction (i.e., run PCA, then choose the weight
vectors where the first few principal components
explain the most variance in the gradients) and ad-
just the gradient optimization step to be based on a
weighted average of the projection of the gradients.
A weighted average of the gradients encodes the
same philosophy as the proposed binary form of
PCGU from the main paper; consider that the cur-
rent gradient update of decreasing the advantaged
sentence would be identical (other than some scal-
ing) to a weighted average in the case where the
gradients point in completely opposite directions
(when they are slightly off opposite, it becomes ap-
proximate). Also, with a weighted vector average,
we can still utilize the philosophy of decreasing the
advantaged forms (as suggested in Section 4.6).

F Facts vs Bias

The boundary between fact and bias can often be
blurry. Although we know some sentences may
contain unalienable truths, an LM without world

knowledge may not. However, it should at least
recognize that these sentences represent facts. In
this sense, both the sentence “Men run faster at the
Olympics” and the sentence “Women run faster at
the Olympics” could be reasonable (even if one is
false).

By using WinoGender, we guarantee that all ex-
amples for PCGU contain bias, because they neces-
sarily assume a gender. When probing our MLMs
with

1. The runner tied [MASK] shoes.

2. The fast runner tied [MASK] shoes.

3. Men run [MASK] than women do.

4. Women run [MASK] than men do.

we find that PCGU debiases the distribution of {his,
her} for the first two sentences (both of which start
out with “his” having the highest probability of
all predicted words) but does not touch the distri-
bution of the top words for the last two sentences
which are shaped like facts (the distributions for
both sentences before PCGU have “faster” with
around 90% of the probability mass, followed by
“better,” “more,” and “longer.” After PCGU, the
order of the words remains the same, and the prob-
abilities remain constant as well, other than slight
variations on the order of <1%). So, it seems that
even without explicitly differentiating “facts” from
“bias,” the choice of training data allows PCGU to
unlearn ideas that are clearly biased and leave those
closer to fact untouched. This may also suggest
that such facts and biases are encoded in separate
parts of the PLM.

One nice feature of PCGU is that the decision of
which sentence is advantaged/disadvantaged is de-
coupled from the rest of the method. If one wanted
to use training data which may or may not contain
fact, it seems reasonable that they could incorpo-
rate some fact-checking/NLI model in the scoring
function when determining which sentence is ad-
vantaged/disadvantaged. Of course, this runs into
the problem that a biased scorer may incorrectly
perceive an opinion to be factual, so that model it-
self should be debiased, possibly via a self-training
loop with PCGU.
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