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Abstract

Negation in language may affect many NLP ap-
plications, e.g., information extraction and sen-
timent analysis. The key sub-task of negation
detection is negation scope resolution which
aims to extract the portion of a sentence that
is being negated by a negation cue (e.g., key-
word “not” and “never”) in the sentence. Due to
the long spans, existing methods tend to make
wrong predictions around the scope boundaries.
In this paper, we propose a simple yet effec-
tive model named R-BSL which engages the
Boundary Shift Loss to refine the predicted
boundary.1 On multiple benchmark datasets,
we show that the extremely simple R-BSL
achieves best results.

1 Introduction

Negation is a complex linguistic phenomenon.
Even though there does not exist a widely agreed
task definition for negation detection, two sub-tasks
are commonly performed: (i) negation cue detec-
tion, and (ii) negation scope resolution. Negation
cue is a keyword (e.g., not, never) in a sentence that
acts as an indicator of semantic negation, and its
detection is relatively easy. Negation scope refers
to the portion(s) in a sentence being semantically
affected (i.e., negated) by the cue. There could
be multiple cues in one sentence and each corre-
sponds to its own scope. Table 1 lists three cues in
the same sentence and their scopes.

Different datasets may adopt different annota-
tion guideline of scopes, e.g., whether or not a cue
itself is a part of its scope. The example sentence
in Table 1 well demonstrates the unique character-
istics of this task compared to other span extraction
tasks like Named Entity Recognition (NER). They
are: (i) a negation scope is defined by (or associated
to) a given cue, (ii) the negation spans are usually
longer than a named entity, and (iii) a good number

1Our code is available at https://github.com/
LuciusLan/BSL_Negation

of negation spans are discontinuous, depending on
the adopted annotation guideline.

In recent years, pretrained language models
(PLMs) like BERT (Devlin et al., 2019) have been
explored to improve negation detection (Khandel-
wal and Sawant, 2020; Khandelwal and Britto,
2020). Specially designed pre-training material
that focuses on negation has also been explored
and achieves state-of-the-art performance (Truong
et al., 2022). Nevertheless, we believe that negation
detection shall be considered as a pre-processing
step for downstream subtasks and its model shall
not be over-complicated.

In this paper, we enhance a simple baseline by
Khandelwal and Sawant (2020) with an effective
Boundary Shift Loss (BSL), to refine the predicted
negation scope boundaries. BSL is derived based
on the positions of span boundaries. For each to-
ken, boundary shift tells the direction of the nearest
span boundary: left or right. With the simple BERT
+ Feed-forward architecture, our R-BSL model out-
perform baselines on all well-known datasets.

2 Related Work

Negation detection was firstly studied in biomedi-
cal and health texts, represented by NegEx (Chap-
man et al., 2001) developed for EHRs. NegEx is
built on top of regular expressions; its negation
scopes are mainly named entities. The definition of
negation scope becomes largely different and more
generic in later datasets. The BioScope corpus
(Vincze et al., 2008) annotates negation scope in
biological full papers and scientific abstracts. The
“Sherlock” corpus (Morante and Blanco, 2012), an-
notates Conan Doyle’s novels Sherlock Holmes se-
ries. SFU Review Negation corpus (Konstantinova
et al., 2012) annotates negations and speculations
in the SFU Review corpus (Taboada et al., 2006)
for sentiment analysis.

Like many other NLP tasks, BERT leads to sig-
nificant improvement on scope resolution (Khan-
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Cue Negation scope marked in discontinuous “span” s

in- Mr. Sherlock Holmes, who was usually very late in the mornings, save upon “those” not [cue] in- [/cue] “frequent
occasions when he was up all night”, was seated at the breakfast table.

not Mr. Sherlock Holmes, who was usually very late in the mornings, save upon “those” [cue] not [/cue] “infrequent
occasions when he was up all night”, was seated at the breakfast table.

save Mr. Sherlock Holmes, “who was” usually “very late in the mornings”, [cue] save [/cue] “upon those not infrequent
occasions when he was up all night”, was seated at the breakfast table.

Table 1: An example sentence with three different negation cues, and their corresponding scopes. The cues are
marked with special tokens [cue] cue [/cue], and scopes “span” s are in italic with double quotation marks.

delwal and Sawant, 2020). Results are further im-
proved in later research (Khandelwal and Britto,
2020) with more advanced PLMs like RoBERTa
(Liu et al., 2019) and XLNet (Yang et al., 2019),
together with multi-task training. Recently, Truong
et al. (2022) utilize additional pre-training with
negation cue masking, achieving better perfor-
mance on BioScope and SFU, but poorer results
on Sherlock. Nevertheless, the higher performance
comes with the price of extra training resources
and time.

3 Problem Definition

As a common practice, we assume that negation
cue has been successfully detected. Our key focus
is negation scope resolution for a given cue. For
presentation simplicity, we assume there is only
one cue in a given sentence. The cases of multiple
cues can be easily achieved by sentence duplica-
tion, each time with a different known cue being
wrapped with special indicator tokens. The model
would be trained to predict negation scope of each
cue separately. Table 1 gives a typical example of
how sentence with three negation cues and three
corresponding scopes is being pre-processed by
duplication and the special indicator tokens [cue]
[/cue].

Given an input sequence S = ⟨t1, t2, ..., tn⟩,
with a known cue, the task is to predict the cue’s
negation score in token spans. We adopt the OSC
tagging scheme: Y = ⟨y1, y2, ..., yn⟩ where yi is
O if ti is non-scope, S if ti is part of the scope, and
C if ti is the given cue. We use a dedicated label
“C” for cue, to satisfy the annotation guidelines in
different datasets, i.e., not all annotations consider
cue as a part of the scope.

4 The R-BSL Model

The central idea of Boundary Shift Loss is inspired
by techniques used for semantic segmentation.

(a) Image (b) Distance map

1 0 0

0 0 0

0 0 0

0.1 0.2 0.3

0.2 0.2 0.3

0.3 0.3 0.4

(c) local distance → direction map

Figure 1: (a) A sample image and (b) its normalized
boundary distance map. (c) is the local distance map and
local direction map. The image and its segmentation
annotation are from the COCO dataset (Lin et al., 2014)

Background. Locating accurate segmentation
boundary is particularly important for medical im-
ages such as MRI, as the boundary for body organ
is crucial. In a 2D image, we can represent the de-
viation of the predicted boundary with ground truth
boundary in the form of a distance map, as shown
in Figure 1. Each pixel in the example image is
mapped with a normalized distance to its nearest
ground truth boundary pixel, forming the boundary
distance map.

For a typical pixel, the distance map could be
reduced to a local distance map of 3× 3, contain-
ing distance of the pixel itself and that of its eight
neighbours. The cell with the smallest distance
(e.g., the top left cell in the example) represents
the direction to the nearest boundary. To indicate
this direction, local distance map can be further
reduced to an one-hot local direction map, where
the “1” cell representing the direction of the nearest
boundary. Accordingly, the predicted boundary can
be further refined toward this direction for more
accurate boundary prediction (Wang et al., 2022).
Span extraction tasks in NLP share the same aim to
find accurate region boundaries, but in a 1D space,
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Figure 2: Example sentence labelling. Row 2 is the
OSC scope tags. Rows 3 and 4 are “Boundary Start”
(Bs) and “Boundary End” (Be) labels for scope spans.
Rows 5 and 6 are Boundary Shift Map (BSM) labels,
where L indicates left shift and R right shift.

i.e., along token sequence to shift left or right.

4.1 Boundary Shift Map

To enable boundary shift loss, we convert the scope
labels to scope span boundary labels. BS =
⟨bs1, bs2, ..., bsn⟩ and BE = ⟨be1, be2, ..., ben⟩
are the two label sequences that represent the start
and end of boundaries, respectively. bsi is Bs if ti
is the start of a scope span, and O otherwise; bei is
Be if ti is the end of a scope span, and O otherwise.
If a span consists of only one token, the token itself
is labeled both Bs and Be. Due to discontinuous
spans, there could be multiple bs and be labels for
one given cue, as shown in Figure 2.

Next, we create the “Boundary Shift Map”
(BSM) for tokens that are not on the boundaries, by
labeling their shifting directions: L for left, and R
for right. The 5th and 6th rows in Figure 2 provide
a visual illustration, for start and end boundaries
respectively. A token is labeled with L / R if the
nearest boundary resides on the left / right of the
token. For the special case that a token has the
same distance to both boundaries on the left and
right, we label the token with R.

4.2 R-BSL Model Detail

Figure 3 illustrates the model architecture. We
use BERT to encode the sentence and then use
three feed-forward (FF) layers in parallel, to predict
scope label and the BSM labels. The losses for the
three label classifiers Lscope, Lstart, Lend are the
widely used Cross Entropy loss. Lscope is formally
defined in Eq. 1 and the other two losses are defined
similarly. The three losses are then combined to

Scope Classifier

BERT Encoder

Input Sentence

Boundary Start Classifier Boundary End Classifier

Output Scope Label

Output Boundary Shift Label (Start) Output Boundary Shift Label (End)

S S O C S OO

I      am       robot       ,         not human        .

Bs L R Bs L LR R Be L R Be LR

Figure 3: The model architecture.

form the final loss in Eq. 2, and we set α = 0.2

Lscope = −
N∑

i=1

y(i) log(ŷ(i)) (1)

Loss = αLscope +
1− α

2
(Lstart + Lend) (2)

Warm Up. In training, there is a “warm up”
phase to train the model solely with scope loss
Lscope for the first 5 epochs (where the validation
loss is reasonably stable). Then boundary shift
losses kick in to for scope refinement.

5 Experiments

5.1 Experiment Results
We conduct experiments on all three benchmark
datasets: Sherlock, BioScope, and SFU. Among
them, BioScope and SFU datasets do not come
with official train-validation-test split. Following
the previous studies, we use random split on 70-
15-15 ratios; however the randomness in split may
slightly affect model performance. Hence, we also
report the result of our re-implemented baseline
model Khandelwal and Sawant (2020), which is a
BERT + Feed-forward with OSC scope tags.

Table 2 reports the results of F1 over scope to-
kens, defined by Morante and Blanco (2012). For
each scope, token-wise F1 is computed between
ground truth and predicted scope tokens. For all
our implemented models, the reported results are
average scores of 5 out of 7 runs, excluding the
highest and lowest scores. All the runs are set
with randomly generated seeds. Since Truong et al.
(2022) use RoBERTa instead of BERT, we also re-
port R-BSL (RoBERTa-base) for fair comparison.

R-BSL achieves best performance on all three
datasets, particularly on Sherlock which comes
with official train/test split. Note that on Sher-
lock dataset, our re-implemented baseline does
not reach the scores reported in Khandelwal and
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Dataset Sherlock BioScope-Abstract SFU

Method Pr Re F1 Pr Re F1 Pr Re F1

Khandelwal and Sawant, 2020 - - 92.36 - - 95.68 - - 90.95
Khandelwal and Britto, 2020 - - - - - 96.68 - - 92.39
Kurtz et al., 2020 * - - 89.71 - - - - - -
Truong et al., 2022 ** - Baseline † - - 91.51 - - 94.23 - - 90.44
Truong et al., 2022 ** - CueNB - - 91.24 - - 95.81 - - 91.03

Baseline (Re-Implementation) 94.79 89.50 92.06 95.90 97.30 96.59 91.22 91.20 91.21
R-BSL (BERT-base-cased) 95.12 90.57 92.77 96.33 97.37 96.85 91.55 91.27 91.43
R-BSL (RoBERTa-base) 94.54 91.24 92.85 96.29 98.54 97.40 90.80 91.51 91.14

Table 2: Results are based on scope token level metrics. *Kurtz et al. (2020) does not use PLMs. **Truong et al.
(2022) use RoBERTa-base instead of BERT-base. †The Baseline results are with the code released by Khandelwal
and Sawant (2020). For BioScope-Abstract and SFU, there is no official train/test split. The difference in random
split (with the same ratio) leads to the difference between our re-implemented baseline and previous studies.

Sawant (2020).2 Truong et al. (2022) also reports
lower results (mean of 5 runs) using the code re-
leased by Khandelwal and Sawant (2020). Nev-
ertheless, both our R-BSL variants outperform all
baselines on Sherlock, and on BioScope dataset.
On SFU, our models’ improvement is marginal.
The main reason is the distributional bias, for the
negation scopes largely align with punctuation or
special tokens (see Appendix C).

For comprehensive evaluation, Table 3 shows the
scope level F1 scores by exact match. That is, when
the predicted scope exactly matches the ground
truth, it is considered as True Positive. There exists
True Negative and False Positive cases due to "void
negation" as discussed in Appendix C. When the
ground-truth has no negation scope, if the model
predicts any scope, that would be a False Positive.
The scope exact match F1 is similar to “Scope CM”
metric defined in Morante and Blanco (2012). How-
ever, as we do not focus on cue detection but using
cues as input, the results is not directly comparable
with Scope CM results in earlier studies.

Compared to token-level measure, the improve-
ments of our model over baseline is now by a
much larger margin, particularly the variant with
RoBERTa. In other words, the boundary refine-
ment by BSL enables the model to resolve more
accurate negation scopes in terms of exact scope
span match, which is a stricter measure.

5.2 Ablation Study

We conduct two ablation studies on Sherlock
dataset, and the results are reported in Table 4.

2The original paper does not provide complete experimen-
tal setup like how many runs were performed, or whether the
reported results being mean or maximum of several runs.

Method Sherlock BioScope-A SFU

Baseline (Re-Implemented) 84.19 94.11 88.06
R-BSL (BERT-base-cased) 85.35 94.94 88.50
R-BSL (RoBERTa-base) 87.10 96.16 89.91

Table 3: Scope exact match F1 scores on three datasets

Model Pr Re F1

Baseline (Re-Implemented) 94.79 89.50 92.06
R-BSL (BERT-base-cased) 95.12 90.57 92.77

Replace BSL with Boundary Labels 95.34 89.27 92.10
Boundary classifier only 94.06 75.47 83.74
Without “warm up” 95.45 89.22 92.22

Table 4: Ablation studies on the Sherlock dataset

Boundary Label vs Boundary Shift Map. We
first replace Boundary Shift Map with the start/end
boundary labels (i.e., Bs, Be, O tagging) as the
prediction target for the boundary classifiers. Tiny
improvement is observed over baseline, which indi-
cates the usefulness of boundary labels. However,
if not using scope classifier (or OSC tags) and us-
ing the boundary classifier with BSL loss, there is
a significant drop in F1. This result suggests that
the scope span detection remains the key focus of
the model and boundary classifier shall focus on
boundary refinement.

“Warm Up” of Scope Classifier. We “warm up”
the training with the first 5 epochs for scope clas-
sifier only. The boundary classifier with BSL loss
then comes into the picture. To study its impact,
we train all the three classifiers from the begin-
ning. Shown in Table 4, the removal of warm up
leads to negative impact on results. This ablation
study suggests that the BSL can further improve
the results when the span boundaries have been de-
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tected by the base model, i.e.,, the scope classifier,
at reasonably good accuracy.

6 Conclusion

We propose a simple sequence labelling training
strategy to enhance boundary prediction for nega-
tion scope resolution. Through experiments, we
demonstrate the effectiveness of boundary shift loss
on complex span extraction tasks on three bench-
mark datasets. In particular, our simple model
achieves the state-of-the-art results on the Sher-
lock dataset which is considered more challenging
for this task. Our model is simple and can be used
as a pre-processing for downstream tasks where
negation is an important consideration.

Limitations

As shown in the ablation studies, using the Bound-
ary Shift Loss without the base model for scope
prediction leads to a huge negative impact on the
performance. That is, BSL strongly relies on the
assumption that the proposed candidate spans are,
to some extent, being an accurate estimation of the
target spans. The experiment of using BSL solely
could be seen as an extreme case, that no candidate
spans are proposed at all. For our task, BSL could
benefit from the strong base model. For the case
of noisy datasets or on a more challenging task,
where a base model could not generalize to a rea-
sonably good coarse span proposal, the benefit of
BSL might be limited.
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A Implementation Details

We use BERT-base-cased and RoBERTa-base as
the pretrained LMs. The model parameters are
optimized with Adam (Kingma and Ba, 2015).
The BERT was trained with initial learning rate
of 5e − 6, and the classifier layers were trained
with initial learning rate of 5e − 5. This is dif-
ferent from Khandelwal and Sawant (2020) where
they set both BERT and classifier layers learning
rate to 5e − 5. The learning rate was scheduled
with “Reduce Learning Rate on Plateau”, which
cuts the learning rate by half after 3 consecutive
epochs without evaluation results being improved,
and having cool-down of 2 epochs. We adopt early
stopping threshold of 12, which means the training
will be stopped when the evaluation results stop
to improve for 12 consecutive epochs. The mod-
els were implemented with PyTorch (Paszke et al.,
2019) and Huggingface Transformers (Wolf et al.,
2020).

Experiments were performed mainly on a single
Nvidia RTX 3080 GPU. One training run took 40
minutes to 1 GPU hour, varied with the dataset size
and early-stopping position. Inference time is 7 sec-
onds on Sherlock test-set, 4 seconds on Bioscope-
Abstract test-set, 16 seconds on SFU test-set, and
requires approximately 3 GB of GPU memory.

Following Khandelwal and Sawant (2020), we
use special augmentation tokens to indicate the ap-
pearance of negation cues. However, our indicator
tokens are slightly different from Khandelwal and
Sawant (2020) where they only add one special
token in front. We have special tokens on both
ends of a [cue] cue [/cue]. Another small differ-
ence is the treating of affixal cues. The Sherlock
dataset defines affixal cues like ‘in-” being cue and
“-frequent” being inside the scope for word “infre-
quent”. In our implementation, we simply treat the
whole word as a cue and use post-processing to
handle the affixal cue by regular expressions. This
is also for the sake of unifying the model behaviour
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Figure 4: Token level metrics on Sherlock dataset with
different α.

across datasets, as the SFU and BioScope datasets
do not have such special annotation for affixal cues.

All three datasets contain not only sentences
with negations, but contain sentences without nega-
tions, for training model on predicting negation
cues. As our focus is on negation scope resolution
with the assumption that cue has been detected,
we only use the portion of sentences containing
negations for training and testing.

B Impact of α in Training Loss

We perform hyper-parameter search on the value
of α in the loss function (Equation 2). As shown in
Figure 4, it appears that the Precision improves
as α increase; the Recall improves with α ini-
tially at lower range, but decreases as α further
increase. The “trade-off” between Precision and
Recall is best balanced at α = 0.2, where we ob-
serve the highest F1. Note that α = 0.3333 denotes
the case that no weighting terms are applied, i.e.,
Loss = Lscope +Lstart +Lend. It is equivalent to
α = 0.3333 though no α was actually applied in
implementation, for the sake of stability of float-
ing point calculations. Overall, the impact of α on
token level F1 score was not significant, since the
boundary shift losses serve as auxiliary loss, and
the final prediction is still based on scope classifier.

C Discussion on Distributional Bias

Comparing the token-level F1 (Table 2) and the
span-level exact match F1 (Table 3), both F1’s are
similar on BioScope and SFU dataset, but not on
the Sherlock dataset. As Fancellu et al. (2017)
had suggested, the annotation rules of BioScope

Number of scopes and spans Sherlock BioScope-A SFU

Total number of negation scopes 1,421 1,719 3,528
Number of discontinuous scopes 134 15 0
Total number of scope spans 1,571 1,735 3,068

Scope spans that exactly wrapped by
punctuation and special tokens

744 (47.4%) 1,373 (79.1%) 2,577 (84.0%)

Table 5: Statistics on scope boundaries and punctuation
and special tokens

and SFU had seemingly over-simplified the prob-
lem. They also provided statistics on percentages
of negation scopes that can be exactly represented
by the closest punctuation tokens to the cue as
scope boundaries. The percentage for BioScope
Abstracts and SFU are 64% and 80%, respectively,
while the value for Sherlock is only 40%.

However, for BERT-based models, researchers
often rely on using special tokens (e.g., [cue] cue
[/cue] for a cue) as indicators for region of interest.
The special tokens themselves can be considered
as another form of punctuation tokens. Here we
provide another set of statistics on scope spans that
can be exactly represented by punctuation tokens
and cue special tokens, in Table 5. Note that in
Sherlock and SFU, the negation cue tokens are not
considered as part of scope in their annotation. This
would cause considerably number of additional
discontinuous negation scopes, hence we adjust
the annotation when performing this statistics to
also consider cue tokens as part of scope. Also
for SFU, the number of scopes (3528) is much
higher than the number of scope spans (3068), as
there are a good number of “void” scope. These
are the cases that the negation in the sentence is
the cue itself, such as “Of course not!”. If the
annotation rule does not consider negation cues as
part of negation scope, there will be no negation
scope in such sentences, and hence we call them
“void negation”. Such cases are not considered as
negation in annotation guideline of BioScope.

Reported in Table 5, the percentage of scope
spans that are exactly wrapped by punctuation (con-
sidering special tokens also as punctuation) for Bio-
Scope dataset is 79.1%, and for SFU 84.0%. Such
phenomenon could be due to both the annotation
scheme, and the writing style. Such high percent-
age of “easy cases” could make the model biased to
relying more on punctuation information, and yet
deliver relatively high scores. In the mean time, the
percentage for Sherlock is 47.4%, and the increase
of percentage due to cue special token is far less
than that of BioScope.
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The high percentage values also explain that the
exact match F1’s of BioScope and SFU are quite
close to their token-level F1 scores. The Sherlock
dataset, hence is considered as a more challenging
dataset for this problem.

While one would intuitively think of re-sampling
the datasets to adjust the portion of easy and hard
cases, Fancellu et al. (2017) show that the benefit of
under-sampling is marginal on their LSTM-based
models. We presume similar behaviour for our
BERT-based model.
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