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Abstract

Recently, Contrastive Visual-Language Pre-
training (CLIP) has demonstrated remarkable
capability in various Visual Language Under-
standing (VLU) tasks. Yet, most CLIP-based
methods require tasks-specific designs and suf-
ficient training data. In this paper, we intro-
duce a simple yet efficient paradigm for low-
resource VLU named XtremeCLIP, which in-
volves very few trainable parameters to im-
prove the generalization ability of the trained
models. In our XtremeCLIP framework, we
reformulate a series of VLU tasks as a uni-
fied open-book affinity-matching problem. Fur-
thermore, to handle the insufficient supervised
signals in small datasets, we adopt contrastive
learning to utilize the implicit sorting informa-
tion of ground-truth labels to provide more su-
pervised cues. Extensive experiments over mul-
tiple datasets on visual entailment, visual ques-
tion answering, and image classification show
that XtremeCLIP consistently outperforms ex-
isting baselines in low-resource settings. 1

1 Introduction

Pre-trained Visual-Language models such as X-
VLM (Zeng et al., 2021) and CLIP (Radford et al.,
2021) have been proposed to unify visual and tex-
tual representations in the same embedding space
and shown great potential for Visual Language Un-
derstanding (VLU). Conventional fine-tuning ap-
proaches (Clark et al., 2020; Lee et al., 2020; Wang
et al., 2023) heavily depend on the time-consuming
and labor-intensive process of data annotation,
which are bothersome in low-resource scenarios.
In the literature, Ben Zaken et al. (2022); Song
et al. (2022) propose partial-parameter fine-tuning
to preserve the pre-trained knowledge of these mod-
els. Yao et al. (2021); Song et al. (2022); Tsim-

∗Corresponding author
1The source code is publicly available in the EasyNLP

framework (Wang et al., 2022). URL: https://github.
com/alibaba/EasyNLP.

poukelli et al. (2021) reformulate visual ground-
ing and visual question answering as a “fill-in-
blank” problem by hand-crafted prompts. Gao
et al. (2021); Zhang et al. (2022) utilize lightweight
adapters (Houlsby et al., 2019) to retain the knowl-
edge of CLIP. Besides, Zhou et al. (2022b,a); Zhu
et al. (2022) address image classification tasks by
utilizing textual representations describing image
categories.

Despite the success, we suggest there are still
some drawbacks in existing works. i) The discrete
prompt paradigm requires labor-intensive prompt-
engineering, while the soft template paradigm re-
sults in an unstable training process. ii) Adapters
or partial-parameter fine-tuning methods may un-
derperform due to their relatively large number of
tunable parameters, requiring additional training
data to achieve satisfactory results. iii) The afore-
mentioned methods are task-specific in design, im-
plying that their effectiveness may be derived from
task-specific architectures. Hence, it is vital for us
to design a more unified parameter-efficient tuning
approach in order to solve various VLU tasks.

In this paper, we present XtremeCLIP, an ex-
tremely parameter-efficient tuning method for solv-
ing various VLU tasks based on CLIP (Radford
et al., 2021). XtremeCLIP reformulates a series of
VLU tasks uniformly into an open-book affinity-
matching problem. Here, we adopt a knowledge-
base prototype matrix to record the salient char-
acteristics for each class by visual-textual fusion
features, then perform affinity matching between
image-text pairs and prototypes of each class.
We further utilize the implicit sorting information
of ground-truth labels by contrastive learning to
provide more supervised cues from low-resource
training sets. During model training, all param-
eters of textual and visual encoders in CLIP are
fixed. Hence, XtremeCLIP is extremely parameter-
efficient. We conduct extensive experiments on a vi-
sual entailment (VE) benchmark (i.e., SNLI-VE), a
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Figure 1: Model architecture and training procedure of XtremeCLIP.

visual question answering (VQA) benchmark (i.e.,
VQA v2), and three widely used image classifica-
tion (IC) benchmarks (i.e., EuroSAT, DTD, and
FGVC). Results show XtremeCLIP consistently
outperforms baselines in low-resource scenarios.

2 XtremeCLIP: The Proposed Method

The model architecture and training procedure of
XtremeCLIP are in Figure 1. First, a knowledge-
base prototype matrix is constructed (Snell et al.,
2017) by combining visual and textual features,
designed to serve as a repository of the key char-
acteristics for each class. Then, open-book affinity
matching is performed between the image-text in-
stance and the prototypes for each class.

2.1 Prototype Matrix Construction

Given a set of N image-text training instances:
D = {(imgi, txti), li}Ni=1, where li denotes the
ground-truth label, txti denotes the corresponding
textual description of the image imgi. Image-text
pairs are encoded using visual V and textual T
encoders of CLIP:

v1 = V(imgi), v2 = T (txti)), v1, v2 ∈ Rd (1)

A fusion function F is employed to obtain uniform
image-text representations that capture the interac-
tions between visual and textual information:

F(v1, v2) = [v1, v2, v1+v2, v1−v2, v1×v2] (2)

where F(v1, v2) ∈ R5d. These fusion features are
used to construct the knowledge-base prototype

matrix denoted as WP by averaging them per their
ground-truth labels:

Mc =

∑N
i=1 I(li = c) · F(V(imgi), T (txti))∑N

i=1 I(li = c)
(3)

WP = [M1, · · · ,MC ] , (WP ∈ RC×5d) (4)

where C denotes the number of classes, Mc denotes
the prototype of the c-th class and c ∈ 1 · · ·C, I(·)
denotes the indicator function, and [·] denotes the
concatenation operator.

2.2 Open-book Matching
Prototype Matching for VE and VQA. In
VE or VQA, affinity matching is performed be-
tween the fusion feature of a given image-text
pair and the prototypes for each class: Pi =
F(V(imgi), T (txti)) ·W⊤

P .
Prototype Matching for IC. In traditional IC tasks,
only images are provided without corresponding
textual descriptions. We obtain textual descriptions
(prompts) for all classes, followin Radford et al.
(2021). Given an image imgi and the textual de-
scriptions of all image categories {tc|c = 1 · · ·C},
the predicted probability (denoted as Pi,c) of imgi
w.r.t. the c-th image category is as follows: Pi,c =
F(V(imgi), T (tc)) ·M⊤

c . Thus, the entire proba-
bilistic distribution Pi is: Pi = [Pi,c|c = 1 · · ·C].

2.3 Training Paradigm
XtremeCLIP has only one set of tunable parame-
ters, namely the Prototype Matrix denoted by Wp.
Its fusion function, visual, and textual encoders
are solely utilized for constructing the prototype
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matrix, with all parameters frozen during the train-
ing phase. In XtremeCLIP, the model is trained
using the Cross-Entropy (CE) loss given Pi. The
sample-wise CE loss is defined as follows:

LCE = −
∑

c∈{1···C}
li,c · logPi,c (5)

where li,c denotes the ground-truth label w.r.t. the
c-th class. However, the model can hardly achieve
satisfactory performance with only supervised sig-
nals from CE in low-resource tasks. Given that
instances’ affinity with ground-truth classes should
be ranked higher than other classes, this implicit
sorting information can be utilized to guide the
model to recognize instances’ ground-truth classes
via contrastive learning (Zhong et al., 2020). We
define the affinity of the ground-truth category (i.e.,
the prototype matching probability, denoted as Pi,l)
as positive samples and other affinities in Pi as neg-
ative samples. Following Liu et al. (2022); Liu and
Liu (2021), the sample-wise Contrastive Learning
(CL) loss is computed as:

LCL =

C∑

c=1

max(0, Pi,l − Pi,c). (6)

The total loss function for XtremeCLIP, namely L,
is defined as: L = LCE + LCL.

3 Experiments

3.1 Experimental Settings
We briefly describe the experimental settings and
leave more details in Appendix.
Datasets. SNLI-VE (Xie et al., 2018) is utilized
for visual entailment, consisting of image-text pairs
whereby a premise is defined by an image. VQA
v2 (Goyal et al., 2017) is utilized for visual ques-
tion answering, containing questions about images.
Here, we only consider the yes/no samples. Ques-
tions with open answers require decoder models
and are not the focus of this paper For IC, Eu-
roSAT (Helber et al., 2019) contains satellite im-
ages consisting out of 10 categories. DTD (Cimpoi
et al., 2014) contains describable textures images
with 47 classes. FGVC (Maji et al., 2013) contains
images of 102 aircraft model variants.
Baselines. In our work, we compare XtremeCLIP
with zero-shot CLIP (Radford et al., 2021); fine-
tuning paradigms including standard fine-tuning,
mixout (Lee et al., 2020), pre-trained weight de-
cay (weight decay) (Lee et al., 2020) and Layer-
wise Learning Rate Decay (LLRD) (Clark et al.,

2020); partial-parameter fine-tuning paradigms in-
cluding BitFit (Ben Zaken et al., 2022) and Bi-
Nor (Song et al., 2022); and adapter-based meth-
ods including CLIP-Adapter (Gao et al., 2021) and
Tip-Adapter (Zhang et al., 2022).
Backbone. For fair comparison, all baselines and
our approach adopt the ViT-B/16 (ViT-Base with
the patch size 16 × 16) version of CLIP. Other
versions of CLIP are also experimented with.

3.2 Experimental Results

VE&VQA results in low-resource settings. Ta-
ble 1 presents the results of XtremeCLIP and base-
lines, in low-resource VE and VQA. The fine-
tuning paradigms perform worse than partial fine-
tuning paradigms in all settings, which demon-
strates conventional fine-tuning paradigms are data-
hungry and not suitable for low-resource VLU
tasks. XtremeCLIP consistently outperforms par-
tial fine-tuning and adapter-based methods, show-
ing that reformulating VLU tasks as prototype affin-
ity matching can efficiently utilize visual-textual
information with much fewer trainable parameters.
Few-shot IC. Table 2 presents the performance of
XtremeCLIP and baselines, in few-shot IC. Fine-
tuning paradigms are still not suitable for few-
shot image classification. Unlike BiNor and Bit-
Fit, CLIP-Adapter and Tip-Adapter specifically uti-
lize adapters to learn from low-resource datasets
meanwhile preserving the knowledge of CLIP, thus
performing the best among baselines. Although
XtremeCLIP has fewer trainable parameters than
baselines, it still performs the best thanks to the
supervised cues provided by contrastive learning
and our task modeling approach.
Ablation study. We replace the prototype matrix
of XtremeCLIP with a randomly initialized ma-
trix i.e., XtremeCLIP w/o. proto). We also de-
tach the contrastive loss from XtremeCLIP (i.e.,
XtremeCLIP w/o. cl), or replace the fusion fea-
ture with the concatenation of visual and textual
features (i.e., XtremeCLIP w/o. fusion). Table 3
presents the results of XtremeCLIP and its abla-
tions. Detaching contrastive loss drops the per-
formance, as contrastive learning provides more
supervised cues. Reformulating VLU tasks as pro-
totype affinity matching is somehow an open-book
retrieval problem, which can augment model per-
formance (Chen et al., 2022). Replacing the fu-
sion feature drastically drops performance for VLU,
which demonstrates the importance of interaction
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Method # Params. SNLI-VE VQA v2 Avg
2k 5k 10k 2k 5k 10k

Zero-shot learning 0 33.74 52.03 42.89
Full fine-tuning 149M 47.31 48.12 51.10 52.79 53.29 54.10 51.12
LLRD (Clark et al., 2020) 149M 50.18 55.35 57.23 52.06 52.90 53.88 53.60
mixout (Lee et al., 2020) 149M 50.19 53.97 55.16 53.17 53.86 53.83 53.36
weight decay (Lee et al., 2020) 149M 50.68 54.07 55.09 53.18 53.92 53.81 53.46
BitFit (Ben Zaken et al., 2022) 176-178K 54.88 58.02 59.56 52.96 53.84 54.72 55.66
BiNor (Song et al., 2022) 208-210K 54.91 58.03 59.54 52.93 53.83 54.75 55.67
CLIP-Adapter (Gao et al., 2021) 131K-262K 54.77 57.83 59.21 53.21 53.45 54.21 55.45
Tip-Adapter (Zhang et al., 2022) 5-10M 54.65 58.11 59.67 52.94 53.63 54.70 55.62
XtremeCLIP 5-7K 55.61 59.53 62.06 53.51 56.44 59.21 57.73

Table 1: Accuracy (%) on Visual Entailment and Visual Question Answering tasks with 2000, 5000, 10000 training
samples. Here, #Params. denotes the number of tunable parameters. Best results are in bold.

Method # Params. EuroSat (10) DTD (47) FGVC (102) Avg
8 shot 16 shot 8 shot 16 shot 8 shot 16 shot

Zero-shot learning 0 48.43 44.27 24.8 39.17
Full fine-tuning 149M 62.99 67.75 62.06 64.78 27.72 28.14 52.24
LLRD (Clark et al., 2020) 149M 70.91 75.58 64.30 69.39 30.18 31.36 56.95
mixout (Lee et al., 2020) 149M 70.85 72.23 64.07 68.97 28.98 30.24 55.89
weight decay (Lee et al., 2020) 149M 70.93 72.17 64.01 69.09 29.04 30.03 55.88
BitFit (Ben Zaken et al., 2022) 196∼427K 74.15 83.59 64.36 66.43 38.52 41.61 61.44
BiNor (Song et al., 2022) 228∼459K 78.63 86.59 65.07 70.04 38.43 41.73 63.42
CLIP-Adapter (Gao et al., 2021) 131∼262K 81.85 88.37 65.07 71.10 40.17 44.88 65.24
Tip-Adapter (Zhang et al., 2022) 84∼979K 82.02 87.49 67.32 71.81 39.51 45.12 65.55
XtremeCLIP 25∼256K 82.57 89.19 67.61 72.81 42.66 48.30 67.19

Table 2: Accuracy (%) on Image Classification tasks with 8-shot and 16-shot images of EuroSat, DTD and FGVC.
Here, (·) stands for the number of image categories. Best results are in bold.

Method VE (10k) VQA (10k) FGVC (16)
Full 62.06 59.21 48.30
w/o. cl 60.94 (-1.12) 54.90 (-4.31) 48.21 (-0.09)
w/o. proto 61.98 (-0.08) 55.45 (-3.76) 48.15 (-0.15)
w/o. fusion 58.25 (-3.81) 54.62 (-4.59) 48.09 (-0.21)

Table 3: Accuracy (%) of XtremeCLIP and its ablations.

Backbone Method VE VQA FGVC

ViT-B/16 Full FT 51.10 54.12 28.14
XtremeCLIP 62.06 59.21 48.30

ViT-B/32 Full FT 52.88 57.13 21.54
XtremeCLIP 61.09 58.71 40.29

ViT-L/14 Full FT 54.59 56.05 28.86
XtremeCLIP 61.79 59.12 58.93

Table 4: Accuracy (%) of XtremeCLIP and full fine-
tuning (FT) utilizing various CLIP backbones.

between visual and textual information.
Model-scale study. We test various CLIP versions
with results in Table 4. The settings are the same
as in ablation study. It shows that XtremeCLIP
can be effectively adapted to different CLIPs and
consistently has good performance.
Data-scale study. Figure 2 presents the influence
of the number of training instances on XtremeCLIP.
As the number of training data increases, the ac-
curacy of XtremeCLIP on VE and FGVC signifi-

Figure 2: Accuracy (%) of XtremeCLIP and full fine-
tuning with various training samples on VE and FGVC.

cantly increases while full fine-tuning only slightly
increases, which demonstrates XtremeCLIP has
higher data-using efficiency.

4 Conclusion

We propose XtremeCLIP, a simple and efficient
paradigm that reformulates VLU tasks as a pro-
totype affinity matching problem. We adopt con-
trastive learning to leverage implicit sorting infor-
mation from ground-truth labels, providing more
supervised cues to handle insufficient supervised
signals in small datasets. Experimental results
demonstrate that XtremeCLIP consistently outper-
forms all baselines in low-resource scenarios.
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Limitations

In this paper, the proposed XtremeCLIP frame-
work is mainly focused on CLIP-based determin-
istic VLU tasks. In future work, we will extend
XtremeCLIP to other Pre-trained Vision-Language
models and apply XtremeCLIP to generative tasks
such as image captioning, visual grounding or vi-
sual relation extraction.
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A Case Study

Figure 3: Probability distributions before and after fine-
tuning for the few-shot IC task.

Figure 3 presents the probability distributions
of several images before and after fine-tuning of
our approach. The constructed knowledge-base
prototype matrix indeed captures the salient char-
acteristics of categories. Based on the knowledge,
images can be correctly classified even in zero-shot
learning. After fine-tuning, the performance of
XtremeCLIP is further boosted.

Dataset Prompt template
EuroSAT a centered satellite photo of {}.
DTD {} texture.
FGVC a photo of a {}, a type of aircraft.

Table 5: The hard prompt templates for image classifi-
cation datasets. {} denotes the position of the category
names to be filled in.

Task Dataset # Class # Test

IC
EuroSAT (Helber et al., 2019) 10 8100
DTD (Cimpoi et al., 2014) 47 1692
FGVC (Maji et al., 2013) 102 3333

VE DNLI-VE (Xie et al., 2018) 3 17901
VQA VQA V2 (Goyal et al., 2017) 2 80541

Table 6: Statistics of experimental datasets. #Class: the
number of task categories. #Test: the number of test
instances.

B Experimental Details

B.1 Training Corpora

We collect the pre-processed IC training cor-
pora (i.e. FGVC (Maji et al., 2013), EuroSAT (Hel-
ber et al., 2019) and DTD (Cimpoi et al., 2014))
from the open-sourced project of (Zhang et al.,
2022) on Github 2. The hand-crafted prompt tem-
plates that describe the category names for Eu-
roSAT, DTD, and FGVC are listed in Table 5. Dur-
ing model training, we randomly select 8 and 16
images of each category for few-shot IC.

For visual entailment and visual question-
answering tasks, we download the pre-processed
SNLI-VE (Xie et al., 2018) and VQA v2 (Goyal
et al., 2017) from the open-sourced project X-
VLM (Zeng et al., 2021) on Github 3 and randomly
select 2000, 5000, and 10000 samples from each
dataset for low-resource VLU tasks.

The statistics are listed in Table 6.

B.2 Experimental Details of Our Approach

We employ ViT-B/16 from OpenAI CLIP 4 as the
default underlying model. We train XtremeCLIP by
AdamW algorithm with β1 = 0.9, β2 = 0.999, ϵ =
1e − 4. The training is processed on an NVIDIA
Tesla A100 GPU. We run XtremeCLIP 20 epochs
for VE and VQA with a batch size of 16 and it takes
around 20 minutes; and 100 epochs for IC with a
batch size of 16 and it takes around 60 minutes.

2https://github.com/gaopengcuhk/Tip-
Adapter/DATASET.md

3https://github.com/zengyan-97/x-vlm
4https://github.com/openai/CLIP
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Fusion Function VE (10K) VQA (10K) FGVC (16)
XtremeCLIP 62.06 59.21 48.30
Quadratic 58.98 53.64 45.27
Exponential 57.45 52.41 42.52

Table 7: Accuracy (%) of XtremeCLIP utilizing various
fusion fuctions. Quadratic for quadratic combination,
Exponential for elementwise exponential operation.

B.3 Experimental Details of Baselines

For full fine-tuning paradigms (i.e. Mixout (Lee
et al., 2020), pre-trained weight decay (weight de-
cay) (Lee et al., 2020), layerwise Learning rate
decay (LLRD) (Clark et al., 2020)) and partial pa-
rameter fine-tuning paradigms (i.e. BiNor (Song
et al., 2022), BitFit (Ben Zaken et al., 2022), Linear
Probe (Radford et al., 2021)), we set the learning
rate for CLIP parameters as 5e− 7 and the learn-
ing rate for classification head as 2e− 3 after the
grid search. We train full fine-tuning baselines and
partial fine-tuning baselines by AdamW algorithm
with β1 = 0.9, β2 = 0.999, ϵ = 1e − 4. We run
the aforementioned baselines 20 epochs for VE and
VQA with a batch size of 16, and 100 epochs for
IC with a batch size of 16.

For CLIP-Adapter (Gao et al., 2021) 5 and Tip-
Adapter (Zhang et al., 2022) 6, we directly take
their open-sourced codes on GitHub. Though Tip-
Adapter is proposed for few-shot IC only, by re-
placing the image features with the visual-textual
fusion features of the input image-text pairs when
constructing the instance retrieval matrix, it can be
directly utilized for other VLU tasks as well.

To adapt CLIP-Adapter to VE and VQA, we
respectively apply visual and textual adapter to the
visual V and textual encoder T of CLIP to learn
adaptive visual and textual features, then weight
sum the adaptive visual and textual features with
the original visual and textual feature from CLIP,
following the original paper. Thereafter, we get the
visual-textual fusion representations by the fusion
function F . Finally, we perform image-text pair
classification with the classification head as in Gao
et al. (2021).

B.4 Fusion Function Ablation

Table 7 shows the results of XtremeCLIP with vari-
ous fusion functions, including traditional higher
order and element-wise exponential operations.
The results indicate that the selected fusion func-

5https://github.com/gaopengcuhk/CLIP-Adapter
6https://github.com/gaopengcuhk/Tip-Adapter

Model EuroSAT DTD FGVC
XtremeCLIP 89.19 72.81 48.21
CoOp (Zhou et al., 2022b) 84.87 62.57 37.48
Linear Probe (Gao et al., 2021) 82.76 63.97 36.39

Table 8: Accuracy (%) of XtremeCLIP,CoOp and Linear
Probe on image classification tasks with 16-shot images
of EuroSat, DTD and FGVC.

tion, namely F in Eq. 2, is both simple and highly
effective, outperforming the others.

B.5 Additional Comparasion
Table 8 presents the image classification results
of XtremeCLIP and the baseline methods, namely
CoOp (Zhou et al., 2022b), and Linear Probe (Gao
et al., 2021), which are solely utilized for image
classification. The results demonstrate that re-
formulating image classification as an open-book
matching paradigm indeed helps XtremeCLIP con-
sistently outperform CoOp and Linear Probe.
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