
Findings of the Association for Computational Linguistics: ACL 2023, pages 623–658
July 9-14, 2023 ©2023 Association for Computational Linguistics

Recursion of Thought: A Divide-and-Conquer Approach
to Multi-Context Reasoning with Language Models

Soochan Lee
Seoul National University

soochan.lee@vision.snu.ac.kr

Gunhee Kim
Seoul National University

SNU-LG AI Research Center
gunhee@snu.ac.kr

Abstract

Generating intermediate steps, or Chain of
Thought (CoT), is an effective way to signifi-
cantly improve language models’ (LM) multi-
step reasoning capability. However, the CoT
lengths can grow rapidly with the problem
complexity, easily exceeding the maximum
context size. Instead of increasing the con-
text limit, which has already been heavily in-
vestigated, we explore an orthogonal direc-
tion: making LMs divide a problem into
multiple contexts. We propose a new infer-
ence framework, called Recursion of Thought
(RoT), which introduces several special to-
kens that the models can output to trigger
context-related operations. Extensive exper-
iments with multiple architectures including
GPT-3 show that RoT dramatically improves
LMs’ inference capability to solve problems,
whose solution consists of hundreds of thou-
sands of tokens.

1 Introduction

Recently, LMs have become a prominent direction
to solve reasoning. Given a question sequence, the
models are tasked to predict the following answer
sequence. One recent line of research for reason-
ing with LMs is chain of thought (CoT) generation
(Nye et al., 2021; Wei et al., 2022; Kojima et al.,
2022). In CoT generation, complex reasoning prob-
lems are solved by generating intermediate reason-
ing steps, or chain of thought, before producing the
final answer. This allows the problem’s complex-
ity to be spread across multiple token generations,
making each generation more straightforward given
the previous tokens.

Although CoT dramatically increases reasoning
accuracy, there is a critical issue that limits its util-
ity: the effective context size of sequence models
cannot grow unbounded. Context refers to the set
of input tokens that a model is conditioned on when
generating output. Practically, all sequence mod-
els have a limit on the maximum context length

due to various reasons. For instance, Transformers
(Vaswani et al., 2017) suffer from a quadratic com-
putational cost on the context length, and RNNs
(Hochreiter and Schmidhuber, 1997) struggle with
long-term dependency modeling. Therefore, even
the state-of-the-art LMs limit the maximum context
length to a few thousand tokens. However, com-
plex real-world problems may take even millions
of tokens of reasoning steps to reach the answer.

While there has been extensive research on
Transformers with longer contexts (Tay et al.,
2020b), we explore an orthogonal direction: divide
and conquer. Our new model-agnostic inference
framework Recursion of Thought (RoT) lets an LM
recursively create multiple contexts by producing
special tokens. Therefore, even if a problem’s solu-
tion exceeds the maximum context size, the model
can divide it into multiple short contexts. We show
the potential of RoT with our new synthetic bench-
mark consisting of eight arithmetic and algorith-
mic tasks. One can easily adjust the difficulty of
the tasks to produce problems with extremely long
(100K+ tokens) reasoning steps. Without any task-
specific component, such as a calculator, the mod-
els with RoT can easily learn to solve extremely
complex problems whose solutions consist of hun-
dreds of thousands of tokens. To the best of our
knowledge, no previous work comes close to han-
dling this scale of reasoning procedures. Since RoT
is an early exploration in this direction, it needs sev-
eral improvements to be applied to more practical
scenarios. Nonetheless, the impressive experimen-
tal results suggest that the multi-context paradigm
of RoT might play an important role in future LMs.
In the supplementary file, we provide our PyTorch
(Paszke et al., 2019) implementation that can fully
reproduce the experiments.

2 Related Work

Scratchpad (Nye et al., 2021) is one of the earli-
est approaches demonstrating that fine-tuning lan-

623

guage models to produce CoT can largely improve
reasoning accuracy. In the paper, the authors also
mention the confined context size as a major hurdle
to scaling their method. More recently, it has been
found that sufficiently large pre-trained language
models can be induced to produce CoT, by sim-
ply tuning the prompt (Wei et al., 2022; Kojima
et al., 2022). Several concurrent works extend CoT
prompting to decompose complex problems into
smaller problems (Dua et al., 2022; Zhou et al.,
2022; Khot et al., 2022). Although these works
also share the principle of divide and conquer like
RoT, they mostly focus on improving the reason-
ing accuracy of relatively small problems whose
solutions usually can fit in a single context. On the
other hand, we focus on solving problems that the
solutions are orders of magnitude longer than the
context size. More detailed description of related
work can be found in Appendix A.

3 Recursion of Thought (RoT)

3.1 Inference

We start with how an RoT-trained LM performs
at test time. RoT is a model-agnostic framework,
whose only requirement is that the model can in-
fer p(xi+1∣X1∶i), the probability of the next token
xi+1 given a sequence X1∶i = [x1; ...;xi]. For
recursive context control, we introduce the follow-
ing special tokens: GO , STOP , and THINK . GO
and STOP respectively mark the start and end of
a problem sequence. They can be nested inside
another GO -STOP pair to indicate a subproblem.
THINK initiates a recursion procedure. RoT teaches
a model how to use these tokens so that it can per-
form divide-and-conquer problem-solving. We for-
mulate each inference context of a QA problem,
denoted X , as the following concatenation:

X = [Q;Q
sub,1

;A
sub,1

; . . . ;Q
sub,N

;A
sub,N

;A]
(1)

where Q and A are the main question and answer
sequence, and Qsub,∗ and Asub,∗ are those of the
top-level subproblems. Although a subproblem can
have smaller, lower-level subproblems recursively,
only the top-level subproblems remain in an RoT
context. During inference, a model is given Q
and tasked to generate the rest. Questions (Q and
Q

sub,∗) start with a GO token, and answers (A and
A

sub,∗) end with a STOP token. In the base cases,
contexts do not have (Qsub,∗

, A
sub,∗) pairs.

Figure 1 presents an example of solving 408 +
351 for better understanding. The pseudocode and
more detailed illustrations can be found in Ap-
pendix B and E. RoT starts by initializing the con-
text X with the original question Q (i.e., GO 4 0
8 + 3 5 1 = in Figure 1). Then, similar to CoT,
the model solves multiple subproblems (generating
Q

sub,∗ and Asub,∗) before producing the final an-
swer. However, there is a key difference: instead of
producing a sub-answer directly, the model outputs
the THINK token. This special token triggers a re-
cursive process that separates the sub-question in a
new context. If the new context is a base case (i.e.,
X

2, X4, and X5), the answer is produced directly.
Otherwise, the model recursively solves more sub-
problems. If enough subproblems are solved, the
model generates the final answer ending with a
STOP . Once an answer is returned to the previ-
ous context, it replaces the THINK token, and the
generation continues.

For tail recursion, where the last subquestion’s
answer becomes the final answer, we additionally
introduce the TAIL token. If TAIL is used in the
place of a GO token in the last subquestion Qsub,N ,
its answer Asub,N is treated as the final answer A.

3.2 Training

Currently, we train RoT in a supervised manner,
using ground truth (GT) intermediate steps that in-
clude when to output the special tokens. The GTs
are constructed following the standard procedures
developed for humans. For example, the proce-
dures for arithmetic problems are borrowed from
elementary school math. More details can be found
in Appendix H. We leave training RoT with less
supervision as a future work.

Each training example is constructed as a pair
of a ground truth context sequence X and the cor-
responding target sequence Y . An example and
the pseudocode for creating a target sequence are
presented in Figure 3 and Algorithm 2 in Appendix
D. Overall, Y is a copy of X except for the parts
corresponding to Q and Asub,∗. Since the question
Q is always given in a context, Q is replaced by
special PAD tokens, which are excluded from the
loss function. Each subproblem’s answer Asub,n

is replaced by a THINK token followed by several
PAD s that fill in the rest to make sure ∣X∣ = ∣Y ∣.
This way, the model is trained to output THINK in-
stead of the first token of Asub,n. Since the whole
A

sub,n will be returned from the recursive process

624

𝑄

4 0 8 + 3 5GO 1 =

𝑄sub,1

GO 8 + 1 =

𝐴sub,1

THINK THINK

𝐴sub,2

GO 4 0 + 3 5 =

𝑄sub,2

7 5 STOP9

𝐴

9 STOP 7 5 STOP

𝑋1

GO 8 + 1 =

𝑄 𝐴

𝑋2 GO 4 0 + 3 5 = THINKGO 0 + 5 =

𝐴sub,1𝑄sub,1𝑄

5 STOP

THINKGO 4 + 3 =

𝐴sub,2𝑄sub,2 𝐴

7 5 STOP𝑋3

GO 0 + 5 =

𝑄 𝐴

5 STOP𝑋4 GO 4 + 3 =

𝑄 𝐴

𝑋5 7 STOP

7 STOP

9 STOP

Figure 1: An example of the Recursion of Thought inference solving 408+351. Each table represents an inference
context Xk in order of creation. For each context, the model is given Q and tasked to generate the rest. The model
outputs the THINK token when it needs to generateAsub,∗, the answer of a subproblem. The THINK token triggers
a recursive process and is later replaced by the answer returned from the process.

and replace the THINK during inference, we do not
need a training signal for the rest of Asub,n.

Given a pair (X,Y), the training objective is
defined as follows:

L = −∑
i

I[yi+1 ≠ PAD] log p(yi+1∣X1∶i) (2)

where I is the indicator function that excludes
PAD s from training. Its form is almost iden-
tical to the standard LM objective: LLM =
−∑i log p(xi+1∣X1∶i), which is to predict the next
token given previous tokens. Therefore, any se-
quence model is trained in the standard way, i.e.,
end-to-end via stochastic gradient descent.

4 Experiments

4.1 Baselines
We compare RoT with two baselines. The first one
is to output an answer directly from a question,
which we call Without Thought (WT). The other
one is to generate all the intermediate steps before
the answer without recursion (Nye et al., 2021),
which we refer to as Chain of Thought (CoT; not
to be confused with the CoT prompting (Wei et al.,
2022)). We construct the ground truths for CoTs
by unraveling the same recursive process which we
design for RoT, into a single context sequence (see
Appendix F for examples). Therefore, the number
of tokens to generate while solving a problem is
the same for both CoT and RoT (if we do not count
the THINK tokens). However, the sizes of the in-
dividual contexts of CoT are far longer than those
of RoT due to the recursively nested subproblems,
limiting the range of solvable problems. Refer to
Appendix M for a more detailed analysis of the
context sizes. For a fair comparison, we train these

baselines and do not use any prompting technique.
When evaluating, we consider a problem to be cor-
rectly solved only if all the intermediate steps and
the answer are correct.

4.2 The Reasoning Problems

To evaluate the reasoning capabilities, we test
four basic arithmetic tasks and four algorithmic
tasks: addition, subtraction, multiplication, divi-
sion, longest common subsequence, longest palin-
dromic subsequence, 0-1 knapsack, and matrix
chain multiplication. The details can be found in
Appendix G. We choose these tasks because we
can easily increase the problem difficulty while
being able to get ground truth solutions. There-
fore, we can test problems whose solution contains
hundreds of thousands of tokens. All problems are
formulated in pure sequence modeling, without any
external programs (e.g., calculator) involved.

4.3 Experiments with GPT-3

Using the OpenAI API, we fine-tune GPT-3 for
each reasoning task in §4.2 for 10K steps with a
batch size of 256. The results are presented in Fig-
ure 2a, and the technical details are described in
Appendix I. Each point in the graphs represents
one experiment at a certain problem difficulty. We
report the accuracy on a test set of 1K unique prob-
lems randomly sampled as explained in Appendix
G. To the best of our knowledge, the problems at
this scale (e.g., 48-digit addition/subtraction and
16-digit multiplication/division) have never been
solved by any LM without the help of external pro-
grams. For reference, Minerva (Lewkowycz et al.,
2022) achieves around 80% accuracy on 10-digit
addition and 20% on 18-digit addition.

625

24 32 48
Max Digits

0.50
0.75
1.00

A
cc

ur
ac

y

Addition

Without Thought Chain of Thought Recursion of Thought

24 32 48
Max Digits

0.50
0.75
1.00

A
cc

ur
ac

y

Subtraction

4 8 16
Max Digits

0.0

0.5

1.0

A
cc

ur
ac

y

Multiplication

4 8 16
Max Digits

0.0

0.5

1.0

A
cc

ur
ac

y

Division

3 16 24
Sequence Length

0.50
0.75
1.00

A
cc

ur
ac

y

LCS

7 24 40
Sequence Length

0.50
0.75
1.00

A
cc

ur
ac

y

LPS

4 6
of Items

0.50
0.75
1.00

A
cc

ur
ac

y

0-1 Knapsack

2 3 4
of Matrices

0.0

0.5

1.0

A
cc

ur
ac

y

MCM

24 32 48
Max Digits

0.50
0.75
1.00

A
cc

ur
ac

y Addition

3 16 24
Sequence Length

0.50
0.75
1.00

A
cc

ur
ac

y LCS

24 32 48
Max Digits

0.50
0.75
1.00

A
cc

ur
ac

y Subtraction

7 24 40
Sequence Length

0.50
0.75
1.00

A
cc

ur
ac

y LPS

4 8 16
Max Digits

0.0
0.5
1.0

A
cc

ur
ac

y Multiplication

4 6
of Items

0.50
0.75
1.00

A
cc

ur
ac

y 0-1 Knapsack

4 8 16
Max Digits

0.0
0.5
1.0

A
cc

ur
ac

y Division

2 3 4
of Matrices

0.0
0.5
1.0

A
cc

ur
ac

y MCM

(a) GPT-3

8 16 24 32 40 48 56 64
Max Digits

0.0
0.5
1.0

A
cc

ur
ac

y Addition

4 8 12 16 20 24 28 32
Sequence Length

0.0
0.5
1.0

A
cc

ur
ac

y LCS

8 16 24 32 40 48 56 64
Max Digits

0.0
0.5
1.0

A
cc

ur
ac

y Subtraction

8 16 24 32 40 48 56
Sequence Length

0.0
0.5
1.0

A
cc

ur
ac

y LPS

2 4 8 12 16 20 24 28 32
Max Digits

0.0
0.5
1.0

A
cc

ur
ac

y Multiplication

2 4 6 8 10 12
of Items

0.0
0.5
1.0

A
cc

ur
ac

y 0-1 Knapsack

2 4 8 12 16 20 24 28 32
Max Digits

0.0
0.5
1.0

A
cc

ur
ac

y Division

2 4 6 8 10 12
of Matrices

0.0
0.5
1.0

A
cc

ur
ac

y MCM

(b) Tiny Transformer

2 4 6 8 10 12 14 16
Max Digits

0.0
0.5
1.0

A
cc

ur
ac

y Addition

2 4 6 8 10 12 14 16
Max Digits

0.0
0.5
1.0

A
cc

ur
ac

y Subtraction

2 3 4 5 6 7 8
Max Digits

0.0
0.5
1.0

A
cc

ur
ac

y Multiplication

1 2 3 4 5 6 7 8
Max Digits

0.0
0.5
1.0

A
cc

ur
ac

y Division

(c) Tiny LSTM

Figure 2: Comparison of the thought types. In each graph, the x-axis is the problem difficulty, while the y-axis
is the reasoning accuracy. Each point represents an independent experiment. The green vertical lines indicate the
maximum problem difficulty that CoT can handle without exceeding the maximum context size.

Results. Even WT fine-tuning cannot make GPT-
3 deal with such a level of complexity, while CoT
is not applicable due to the context limit of 2048.
The green dotted lines mark the maximum diffi-
culty that can be handled by CoT under the context
limit. On the other hand, RoT enables the GPT-3
to achieve near-perfect scores in every experiment.
As presented in Appendix M, solving each problem
requires up to tens of thousands of tokens. Without
any architectural change, RoT makes GPT-3 handle
these extremely complex problems.

4.4 Experiments with Tiny Language Models
Recent research on reasoning has been mostly fo-
cused on extremely large pre-trained LMs. In this
section, we show an interesting result that RoT can
make even tiny models, without any pre-training,
perform convoluted reasoning procedures. We
test the two basic sequence model architectures:
a Transformer (Vaswani et al., 2017) with 536K
parameters and an LSTM (Hochreiter and Schmid-
huber, 1997) with 272K parameters. These mod-
els are more than a million times smaller than the
recent 540B-parameter PaLM (Chowdhery et al.,
2022). The context limit is set to 2048 for the
Transformer and 512 for the LSTM.

By virtue of their small sizes, we conduct far
more extensive experiments than GPT-3, which are
presented in Figure 2b and Figure 2c. For each
experiment, we train a randomly initialized model
and evaluate it on a test set of 30K unique problems.
We repeat each experiment eight times and report

the average and standard deviation of the accura-
cies. With the tiny Transformer, we experiment to
the extent that even humans would find daunting.
For example, we test addition/subtraction up to 64
digits and multiplication/division up to 32 digits.
Note that a 32-digit number cannot even fit into the
64-bit integer datatype.

Throughout the experiments, we observe con-
sistent patterns: (i) WT’s accuracy drops most
quickly as the problem difficulty increases, (ii) CoT
achieves near-perfect accuracy, but it can only be
applied to simple problems due to the context limit,
(iii) RoT achieves near-perfect accuracy and can be
scaled up to extremely complex problems. Despite
the small sizes, RoT makes the Transformers mas-
ter all types of extremely complex problems. We
do not test more difficult problems mainly because
the evaluation becomes too costly, not because RoT
is incapable of learning them.

5 Conclusion

We explored the novel idea of making LMs produce
special tokens to create multiple contexts. Follow-
ing the principle of divide and conquer, LMs with
RoT can solve extremely complex problems that
have never been handled by any LM. We believe
the core idea of utilizing multiple contexts has a
great potential and can play an essential role in
future language models.

626

Limitations

Although RoT remarkably improves LMs’ reason-
ing capability, we currently rely on supervised train-
ing to teach RoT. To apply RoT to a wider range
of tasks, it would be crucial to reduce the expen-
sive supervision. Parallel to our work, Khot et al.
(2022) use prompting techniques to induce LMs
to decompose problems. However, prompting has
other drawbacks. First, lengthy prompts should
be added for each inference, causing additional
computational overhead. And more critically, it is
hard to guarantee high accuracy. To achieve rea-
sonable accuracy in the tasks in our experiments,
each subproblem should be solved at extremely
high accuracy (e.g., > 99.9%) since each problem
may contain hundreds or thousands of subprob-
lems. We have tested several prompting techniques
with GPT-3, but could not get satisfactory accu-
racy. Therefore, we conclude that solely relying on
prompting cannot be a solution to this problem. As
one possible approach, we may combine RoT with
the RL-based methodologies that are developed
for reducing supervision of Neural Programmer-
Interpreters (Li et al., 2017; Fox et al., 2018; Pierrot
et al., 2019).

Another limitation of this work is that the exper-
iments are performed on somewhat synthetic tasks.
Since our goal is to enable LMs to solve reasoning
problems whose intermediate steps are orders of
magnitude longer than the context limit, we need
a dataset with such complex problems. However,
no currently available dataset meets this require-
ment. For example, the Long-Range Arena bench-
mark (Tay et al., 2020a) has at most 16K-token se-
quences and focuses on problems with long inputs
and short outputs. On the other hand, we tackle
problems that require generating 100K+ tokens to
solve. Gathering natural language data at this scale
is extremely challenging and costly. Therefore, we
currently resort to arithmetic and algorithmic prob-
lems since it is easy to scale them up and generate
ground-truth solutions. In the future, we hope to
see new datasets and benchmarks that cover natural
language reasoning at this scale.

Interestingly, RoT cannot facilitate length gen-
eralization, e.g., training on 8-digit multiplication
with RoT cannot make a model generalize to 16-
digit multiplication. We believe this problem is
rooted in a more fundamental limitation of the
Transformer architecture (Hahn, 2020), orthogonal
to RoT. Fortunately, since RoT is a model-agnostic

framework, we would be able to apply RoT to more
advanced architectures to come in the future, which
might be capable of length generalization.

Ethics Statement

Since the problem types in our experiments are
pure arithmetic or algorithmic tasks, we do not
find any ethical concerns directly related to our
work. If RoT is applied to more general problems,
the training data should meet ethical standards to
ensure the non-toxic behavior of the model.

Acknowledgements

We thank Jaekyeom Kim, Hyunwoo Kim, and
Dongjoo Kim for their thoughtful discussions. This
work is partly supported by LG AI Research, the In-
stitute of Information & Communications Technol-
ogy Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) (No.2019-0-01082,
SW StarLab; No.2022-0-00156, Fundamental re-
search on continual meta-learning for quality en-
hancement of casual videos and their 3D metaverse
transformation), and the National Research Foun-
dation of Korea (NRF) grant funded by the Korea
government (MSIT) (No.2023R1A2C2005573).

References
Jonathon Cai, Richard Shin, and Dawn Song. 2017.

Making neural programming architectures general-
ize via recursion. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek B
Rao, Parker Barnes, Yi Tay, Noam M. Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben-
ton C. Hutchinson, Reiner Pope, James Bradbury, Ja-
cob Austin, Michael Isard, Guy Gur-Ari, Pengcheng
Yin, Toju Duke, Anselm Levskaya, Sanjay Ghe-
mawat, Sunipa Dev, Henryk Michalewski, Xavier
García, Vedant Misra, Kevin Robinson, Liam Fe-
dus, Denny Zhou, Daphne Ippolito, David Luan,
Hyeontaek Lim, Barret Zoph, Alexander Spiridonov,
Ryan Sepassi, David Dohan, Shivani Agrawal, Mark
Omernick, Andrew M. Dai, Thanumalayan Sankara-
narayana Pillai, Marie Pellat, Aitor Lewkowycz, Er-
ica Oliveira Moreira, Rewon Child, Oleksandr Polo-
zov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele
Catasta, Jason Wei, Kathleen S. Meier-Hellstern,

627

https://openreview.net/forum?id=BkbY4psgg
https://openreview.net/forum?id=BkbY4psgg

Douglas Eck, Jeff Dean, Slav Petrov, and Noah
Fiedel. 2022. PaLM: Scaling language modeling
with pathways. ArXiv, abs/2204.02311.

Dheeru Dua, Shivanshu Gupta, Sameer Singh, and
Matt Gardner. 2022. Successive prompting
for decomposing complex questions. ArXiv,
abs/2212.04092.

Roy Fox, Richard Shin, Sanjay Krishnan, Ken
Goldberg, Dawn Song, and Ion Stoica. 2018.
Parametrized hierarchical procedures for neural pro-
gramming. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Michael Hahn. 2020. Theoretical limitations of self-
attention in neural sequence models. Transactions
of the Association for Computational Linguistics,
8:156–171.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9:1735–
1780.

Tushar Khot, H. Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2022. Decomposed prompting: A mod-
ular approach for solving complex tasks. ArXiv,
abs/2210.02406.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large
language models are zero-shot reasoners. ArXiv,
abs/2205.11916.

Aitor Lewkowycz, Anders Johan Andreassen, David
Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone,
Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari,
and Vedant Misra. 2022. Solving quantitative
reasoning problems with language models. ArXiv,
abs/2206.14858.

Chengtao Li, Daniel Tarlow, Alexander L. Gaunt, Marc
Brockschmidt, and Nate Kushman. 2017. Neural
program lattices. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2021. Show your work: Scratchpads for interme-
diate computation with language models. ArXiv,
abs/2112.00114.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Thomas Pierrot, Guillaume Ligner, Scott E. Reed,
Olivier Sigaud, Nicolas Perrin, Alexandre Laterre,
David Kas, Karim Beguir, and Nando de Freitas.
2019. Learning compositional neural programs with
recursive tree search and planning. In Advances in
Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 14646–14656.

Scott E. Reed and Nando de Freitas. 2016. Neural
programmer-interpreters. In 4th International Con-
ference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang
Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu
Yang, Sebastian Ruder, and Donald Metzler. 2020a.
Long range arena: A benchmark for efficient trans-
formers. ArXiv, abs/2011.04006.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020b. Efficient transformers: A survey.
ACM Computing Surveys, 55:1 – 28.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. ArXiv, abs/2201.11903.

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Huai hsin
Chi. 2022. Least-to-most prompting enables com-
plex reasoning in large language models. ArXiv,
abs/2205.10625.

628

https://openreview.net/forum?id=rJl63fZRb
https://openreview.net/forum?id=rJl63fZRb
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00306
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=HJjiFK5gx
https://openreview.net/forum?id=HJjiFK5gx
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.neurips.cc/paper/2019/hash/95b431e51fc53692913da5263c214162-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/95b431e51fc53692913da5263c214162-Abstract.html
http://arxiv.org/abs/1511.06279
http://arxiv.org/abs/1511.06279
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

A Extended Related Work

Chain of Thought. Scratchpad (Nye et al., 2021) fine-tunes LMs to generate CoT before the final
answer. It demonstrates its effectiveness in 8-digit addition, polynomial evaluation, and Python program
execution. Instead of fine-tuning, it is found that we can elicit large pre-trained LMs to produce CoT
with appropriate prompting. For example, CoT prompting (Wei et al., 2022) adds several QA exemplars
with CoT before the main question, encouraging the model to generate final answers in a similar manner.
Compared to the few-shot CoT prompting of Wei et al. (2022), Kojima et al. (2022)’s zero-shot CoT
prompting is even simpler; after a question, they start the answer with “Let’s think step by step,” and
then let the model finish the rest. Minerva (Lewkowycz et al., 2022) utilizes these prompting techniques
with a specially curated scientific pre-training dataset to achieve remarkable results on various reasoning
benchmarks.

Prompting Language Models to Divide and Conquer Reasoning Problems. Based on CoT prompt-
ing (Wei et al., 2022), several concurrent works demonstrate that decomposing problems into smaller
subproblems can effectively improve reasoning accuracy. Successive prompting (Dua et al., 2022) induces
a model to alternate between generating a question and answering the question until the final answer is
produced. Similarly, least-to-most prompting (Zhou et al., 2022) makes a model start from the easiest
subproblem and progressively solve more complex ones on top of the previous results. Decomposed
prompting (Khot et al., 2022) is a modular approach that the subproblems are solved by different modules
depending on the problem type. It also supports recursive decomposition. These works are all closely
related to our work. Our work is unique in that we deal with far more complex problems that consist of
thousands of subproblems. In this case, the individual subproblems should be solved with almost perfect
accuracy, or the overall accuracy drops significantly. We empirically find that such a level of accuracy is
hard to achieve by simply prompting a pre-trained LM.

Neural Programmer-Interpreter (NPI). Unlike language models, NPI (Reed and de Freitas, 2016)
interacts with its environment through a series of program execution. It consists of an LSTM core, an
encoder for each domain, and a memory of program embeddings. At every time step, the LSTM core takes
a program embedding, arguments, and an observation of its environment to produce the next program
embedding and corresponding arguments. Cai et al. (2017) combine NPI with recursion and show that
recursion plays a critical role in generalization. Since NPI requires full execution traces for training, there
are multiple works to relax this requirement using reinforcement learning (Li et al., 2017; Fox et al., 2018;
Pierrot et al., 2019).

629

B RoT Inference Algorithm

Algorithm 1 Recursion of Thought Inference

Require: A sequence model M trained for Recursion of Thought, a question sequence Q
1: function ROT(M, Q)
2: X ← Q ▷ Initialize context with Q
3: ians ← ∣X∣ + 1 ▷ Start of answer
4: t← false ▷ Tail recursion
5: while True do
6: x← M(X) ▷ Generate next token
7: X ← [X;x]
8: if x = STOP then
9: return Xians∶∣X∣

10: else if x = GO then
11: igo ← ∣X∣ ▷ Mark last GO
12: else if x = TAIL then
13: igo ← ∣X∣
14: t← true ▷ Mark tail recursion
15: else if x = THINK then
16: Q

sub ← Xigo∶∣X∣−1
17: A

sub ← ROT(M, Q
sub)

18: if t then
19: return Asub

20: end if
21: X ← [X1∶∣X∣−1;Asub]
22: ▷ Replace THINK with Asub

23: ians ← ∣X∣ + 1
24: end if
25: end while
26: end function

C Training Batch Distribution

We use the same problem distribution for both training and evaluation since out-of-distribution generaliza-
tion is not within the scope of this paper. That is, when teaching 6-digit multiplication to the model, both
training and test sets are all examples of 6-digit multiplication. The problem distributions are elaborated
in Appendix G. Another important detail regarding the training of RoT is that each training example in a
batch is a context, not a whole problem. Since RoT generates multiple contexts per problem, often a large
portion of contexts can be a duplicate (mostly the base cases). Therefore, to build a training batch for RoT,
we first sample a top-level problem and find the set of unique RoT contexts from the problem. Out of the
unique contexts, we randomly sample one context as a training example. We find this simple technique
works well, and we do not need a more sophisticated method, such as the adaptive curriculum learning in
Reed and de Freitas (2016).

630

D Target Sequence

Algorithm 2 Creating the target sequence

Require: Context X = [Q;Q
sub,1

;A
sub,1

; . . . ;Q
sub,N

;A
sub,N

;A]
1: Y ← PAD ...PADÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ∣Q∣
2: for n in 1...N do
3: Y ← [Y ;Q

sub,n]
4: Y ← [Y ; THINK PAD ...PADÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ∣Asub,n∣−1

]
5: end for
6: Y ← [Y ;A]
7: return Y

𝑄

4 0 8 + 3 5GO 1 =

𝑄sub,1

GO 8 + 1 =

𝐴sub,1

9 STOP𝑋1

GO 8 + 1 = THINK𝑌1 PAD

7 5 STOP

𝐴sub,2

GO 4 0 + 3 5 =

𝑄sub,2

THINKGO 4 0 + 3 5 =

7 5 STOP9

𝐴

7 5 STOP9PAD PADPAD PAD···

Figure 3: The target sequence Y 1 for X1 in Figure 1.

E A Step-by-Step Illustration of RoT Inference

In this section, we provide a step-by-step illustration of the example in Figure 1. Here we assume an ideal
model fully trained for RoT.

Step 1

The context is initialized with the question Q.

Q

X
1 GO 4 0 8 + 3 5 1 =

Step 2

The model generates the first subquestion 8 + 1.

Q Q
sub,1

X
1 GO 4 0 8 + 3 5 1 = GO 8 + 1 =

Step 3

Instead of immediately producing the answer, the model outputs the THINK token.

Q Q
sub,1

A
sub,1

X
1 GO 4 0 8 + 3 5 1 = GO 8 + 1 = THINK

631

Step 4

The THINK token triggers the creation of a new context. The new context is initialized with the
subproblem starting from the last GO of X1, i.e., 8 + 1.

Q Q
sub,1

A
sub,1

X
1 GO 4 0 8 + 3 5 1 = GO 8 + 1 = THINK

Q

X
2 GO 8 + 1 =

Step 5

Since the subproblem is a base case, the model outputs the answer 9 immediately.

Q Q
sub,1

A
sub,1

X
1 GO 4 0 8 + 3 5 1 = GO 8 + 1 = THINK

Q A

X
2 GO 8 + 1 = 9 STOP

Step 6

The answer is returned and replaces the THINK token.

Q Q
sub,1

A
sub,1

X
1 GO 4 0 8 + 3 5 1 = GO 8 + 1 = 9 STOP

Step 7

The model generates the next subproblem, which is to add the remaining digits. Then, it produces
THINK to find its answer.

Q Q
sub,1

A
sub,1

Q
sub,2

A
sub,2

X
1 GO 4 0 8 + 3 5 1 = GO 8 + 1 = 9 STOP GO 4 0 + 3 5 = THINK

632

Step 8

The THINK token creates a new context X3 for solving 40 + 35.

Q Q
sub,1

A
sub,1

Q
sub,2

A
sub,2

X
1 GO 4 0 8 + 3 5 1 = GO 8 + 1 = 9 STOP GO 4 0 + 3 5 = THINK

Q

X
3 GO 4 0 + 3 5 =

Step 9

Since 40 + 35 is not a base case, the model recursively produces more subproblems. In this case,
the first subproblem is to add the last digits, i.e., 0 and 5. Then it outputs the THINK token to solve
the subproblem.

Q Q
sub,1

A
sub,1

Q
sub,2

A
sub,2

X
1 GO 4 0 8 + 3 5 1 = GO 8 + 1 = 9 STOP GO 4 0 + 3 5 = THINK

Q Q
sub,1

A
sub,1

X
3 GO 4 0 + 3 5 = GO 0 + 5 = THINK

Step 10

The new context X4 is created to solve 0 + 5.

Q Q
sub,1

A
sub,1

Q
sub,2

A
sub,2

X
1 GO 4 0 8 + 3 5 1 = GO 8 + 1 = 9 STOP GO 4 0 + 3 5 = THINK

Q Q
sub,1

A
sub,1

X
3 GO 4 0 + 3 5 = GO 0 + 5 = THINK

Q A

X
4 GO 0 + 5 = 5 STOP

633

Step 11

The answer is returned to X3 and replaces the THINK token.

Q Q
sub,1

A
sub,1

Q
sub,2

A
sub,2

X
1 GO 4 0 8 + 3 5 1 = GO 8 + 1 = 9 STOP GO 4 0 + 3 5 = THINK

Q Q
sub,1

A
sub,1

X
3 GO 4 0 + 3 5 = GO 0 + 5 = 5 STOP

Step 12

The model generates the next subproblem.

Q Q
sub,1

A
sub,1

Q
sub,2

A
sub,2

X
1 GO 4 0 8 + 3 5 1 = GO 8 + 1 = 9 STOP GO 4 0 + 3 5 = THINK

Q Q
sub,1

A
sub,1

Q
sub,2

A
sub,2

X
3 GO 4 0 + 3 5 = GO 0 + 5 = 5 STOP GO 4 + 3 = THINK

Step 13

X
5 is created to solve the subproblem 4 + 3. Since this is a base case, the model produces the

answer directly.

Q Q
sub,1

A
sub,1

Q
sub,2

A
sub,2

X
1 GO 4 0 8 + 3 5 1 = GO 8 + 1 = 9 STOP GO 4 0 + 3 5 = THINK

Q Q
sub,1

A
sub,1

Q
sub,2

A
sub,2

X
3 GO 4 0 + 3 5 = GO 0 + 5 = 5 STOP GO 4 + 3 = THINK

Q A

X
5 GO 4 + 3 = 7 STOP

634

Step 14

The answer from X
5 replaces the THINK token in X3.

Q Q
sub,1

A
sub,1

Q
sub,2

A
sub,2

X
1 GO 4 0 8 + 3 5 1 = GO 8 + 1 = 9 STOP GO 4 0 + 3 5 = THINK

Q Q
sub,1

A
sub,1

Q
sub,2

A
sub,2

X
3 GO 4 0 + 3 5 = GO 0 + 5 = 5 STOP GO 4 + 3 = 7 STOP

Step 15

Since all subproblems are solved in X3, the answer 75 is generated and returned to X1.

Q Q
sub,1

A
sub,1

Q
sub,2

A
sub,2

X
1 GO 4 0 8 + 3 5 1 = GO 8 + 1 = 9 STOP GO 4 0 + 3 5 = THINK

Q Q
sub,1

A
sub,1

Q
sub,2

A
sub,2

A

X
3 GO 4 0 + 3 5 = GO 0 + 5 = 5 STOP GO 4 + 3 = 7 STOP 7 5 STOP

Step 16

The answer of X3 replaces the THINK token in X1.

Q Q
sub,1

A
sub,1

Q
sub,2

A
sub,2

X
1 GO 4 0 8 + 3 5 1 = GO 8 + 1 = 9 STOP GO 4 0 + 3 5 = 7 5 STOP

Step 17

Since the subproblems in X1 are all solved, the model produces the final answer.

Q Q
sub,1

A
sub,1

Q
sub,2

A
sub,2

X
1 GO 4 0 8 + 3 5 1 = GO 8 + 1 = 9 STOP GO 4 0 + 3 5 = 7 5 STOP

A

7 5 9 STOP

F Examples of CoT Training Data

If we solve the example of 408+351 in Figure 1 with RoT, the following five contexts are produced.

• X1: GO 4 0 8 + 3 5 1 = GO 8 + 1 = 9 STOP GO 4 0 + 3 5 = 7 5 STOP 7 5 9 STOP

• X2: GO 8 + 1 = 9 STOP

• X3: GO 4 0 + 3 5 = GO 0 + 5 = 5 STOP GO 4 + 3 = 7 STOP 7 5 STOP

635

• X4: GO 0 + 5 = 5 STOP

• X5: GO 4 + 3 = 7 STOP

The CoT context of the same problem is:

• XCoT: GO 4 0 8 + 3 5 1 = GO 8 + 1 = 9 STOP GO 4 0 + 3 5 = GO 0 + 5 STOP GO 4 +
3 STOP 7 5 STOP 7 5 9 STOP

In a slightly more complicated example of 34 × 5, the RoT contexts are as follows:

• X1: GO 3 4 * 5 = GO 4 * 5 = 2 0 STOP GO 3 * 5 = 1 5 STOP TAIL 1 5 0 + 2 0 = THINK

• X2: GO 4 * 5 = 2 0 STOP

• X3: GO 3 * 5 = 1 5 STOP

• X4: GO 1 5 0 + 2 0 = GO 0 + 0 = 0 STOP GO 1 5 + 2 = 1 7 STOP 1 7 0 STOP

• X5: GO 0 + 0 = 0 STOP

• X6: GO 1 5 + 2 = GO 5 + 2 = 7 STOP 1 7 STOP

• X7: GO 5 + 2 = 7 STOP

The corresponding CoT context is:

• XCoT: GO 3 4 * 5 = GO 4 * 5 = 2 0 STOP GO 3 * 5 = 1 5 STOP TAIL 1 5 0 + 2 0 = GO
0 + 0 = 0 STOP GO 1 5 + 2 = GO 5 + 2 = 7 STOP 1 7 STOP 1 7 0 STOP

Notice that the CoT context consists of all the corresponding RoT contexts as its subsequences. The
number of tokens to generate is identical to that of RoT if we do not count the THINK tokens. Even in
these simple examples, however, the context size of CoT is far longer than that of RoT. For much more
complex problems, such as 8-digit multiplication or 0-1 Knapsack, the CoT context size can be orders of
magnitude larger than RoT. See Appendix M for more details on the distribution of context sizes.

G Problem Specifications

G.1 The Arithmetic Problems
For arithmetic tasks, we test addition, subtraction, multiplication, and division on non-negative integers.
For subtraction, we add a constraint that the first operand is not less than the second one, to enforce
non-negative answers. For division, we let the output include both a quotient and a remainder, separated
by a special token R , e.g., GO 7 ÷ 3 = 2 R 1 STOP .

As briefly mentioned in §4.2, naively sampling the operands from a uniform distribution makes the
operands extremely biased towards large numbers. For example, the probability of sampling a 2-digit
number from the 6-digit space is less than 0.01%. Thus, we define a variation of the log-uniform
distribution (often called the reciprocal distribution) to sample the operands. As a result, we obtain
roughly the same proportion of operands for each number of digits.

The probability density of a log-uniform distribution is proportional to the reciprocal of the value. By
definition, zero is not in the support of a log-uniform distribution, and samples are overly concentrated to
the first few values in the sampling range. Therefore, we slightly extend the log-uniform distribution by
introducing an offset parameter δ. To sample an integer in range [α, β) with offset δ, we first uniformly
sample a real number r in range [log(α + δ), log(β + δ)]. Then, r is transformed to ⌊exp(r) − δ⌋.
We denote the extended log-uniform distribution Ulog(α, β, δ). As δ gets larger, the samples are more
dispersed to larger numbers. In the experiments, we set δ = 3.

Additionally, we introduce several other sampling details for division problems. Assume that we
independently sample two numbers a and b for the dividend and the divisor. In about half of the cases, the

636

Addition Subtraction Multiplication Division

1330 + 121163 376776 − 35241 9466 × 176175 620261 ÷ 155034
114780 + 4356 10638 − 100 179 × 516 111730 ÷ 1176
638 + 2 109033 − 52649 5509 × 133 28268 ÷ 1
35 + 77 85137 − 3098 6783 × 2 588137 ÷ 25571
114261 + 354 22355 − 2824 6 × 80285 180330 ÷ 739
3 + 13792 7 − 1 37275 × 19258 879975 ÷ 97772
10151 + 7 652781 − 78853 168484 × 154 111461 ÷ 905026
22 + 1399 64914 − 3114 3331 × 40 42338 ÷ 14003
363356 + 450475 13041 − 1422 349 × 158 108 ÷ 384103
73 + 11 28293 − 4540 17988 × 262130 60002 ÷ 7479
179895 + 4128 11553 − 3576 8140 × 1670 131467 ÷ 131290
3 + 10 656291 − 2795 51 × 5 890679 ÷ 62
1 + 141972 93 − 42 16497 × 158 228 ÷ 131108
57612 + 18403 55972 − 1782 74 × 10 892 ÷ 124
9 + 1621 84587 − 51 216 × 13414 15 ÷ 964156
3370 + 381 273269 − 5867 621 × 2 369044 ÷ 28364
678 + 8854 274405 − 14 2 × 5951 457 ÷ 46
422 + 10348 51926 − 9 189486 × 13080 14687 ÷ 730
118 + 582 4272 − 229 552792 × 763 200361 ÷ 1049
1343 + 408534 223267 − 377 77 × 3 19715 ÷ 965179
24 + 9251 14857 − 1994 179090 × 469029 98 ÷ 7
315 + 652424 914771 − 836 1037 × 258 406 ÷ 9
355 + 4434 3035 − 2963 8 × 769974 47345 ÷ 122
22 + 834928 30 − 12 47765 × 7254 391613 ÷ 1631
3028 + 357 149 − 4 5608 × 18164 892642 ÷ 3898
777 + 1355 89057 − 6 21437 × 12 241554 ÷ 1901
154874 + 81059 296410 − 9 15007 × 15 116475 ÷ 12908
64936 + 216852 45 − 3 539860 × 427 488317 ÷ 197443
3 + 340939 78906 − 3 3583 × 9754 7519 ÷ 325
3 + 984775 56560 − 29960 13 × 66 3560 ÷ 847611
50581 + 1183 98 − 6 266394 × 185 9711 ÷ 1385
415 + 943 16551 − 920 3988 × 12 44540 ÷ 103
110 + 49 25606 − 194 5514 × 57 19721 ÷ 58
15 + 17058 45 − 37 5 × 1712 59544 ÷ 24
36278 + 100 129443 − 70196 17 × 430178 333057 ÷ 333057
6 + 23516 221 − 54 227 × 127 25719 ÷ 5142
1462 + 848 11010 − 818 20888 × 54 7544 ÷ 46
1002 + 2773 47759 − 67 96 × 232801 45 ÷ 410
135 + 178346 10 − 8 175 × 1050 195659 ÷ 2047
22672 + 162038 1439 − 153 146 × 166 412572 ÷ 16

Table 1: 40 randomly selected samples of each type of 6-digit arithmetic problems.

dividend awould be less than the divisor b, so the quotients will be zero for those cases. To ensure a diverse
range of quotients, we sample the divisor b from Ulog(1, 10N , 3), the quotient c from Ulog(0, 10N/b, 3),
and the remainder r from Ulog(0, b, 3). The dividend is calculated from these values: a = b × c + r. This
way, we can sample division problems with a diverse range of quotients and remainders.

Table 1 presents 40 problem samples for each 6-digit problem type. Several properties of our sampling
scheme can be observed in the table. First, each number ranges over diverse numbers of digits. Second,
the division problems are mostly non-trivial, i.e., the quotients are not concentrated at zero.

G.2 The Algorithmic Problems
G.2.1 Longest Common Subsequence (LCS)
The question of an LCS problem is two number sequences joined by the LCS token, and the answer is the
corresponding LCS and its length separated by ; . Here is an example of a length-4 LCS problem:

• Q: GO 1 2 3 4 LCS 2 4 6 8 =

• A: 2 4 ; 2 STOP

For a length-N LCS problem, we sample two sequences of length N . Each character of the sequences is
randomly sampled from 0-9 with equal probability.

637

G.2.2 Longest Palindromic Subsequence (LPS)

The question of a length-N LPS problem starts with the LPS , followed by a sequence of length N . Similar
to LCS, the answer contains the corresponding LPS and its length separated by ; . The following is an
example of a length-8 LPS problem:

• Q: GO LPS 4 1 2 5 3 2 6 1 =

• A: 1 2 3 2 1 ; 5 STOP

The sequence of an LPS problem is sampled in the same way as done for the LCS problem.

G.2.3 0-1 Knapsack

Each item in a 0-1 Knapsack problem is represented by its value and weight. For instance, 1 2 & 3 4
represents an item with a value of 12 and a weight of 34. The question part of a 0-1 Knapsack problem is
a sequence consisting of the KNAPSACK token, a list of items separated by , , the token @ , and the capacity
of the knapsack. The answer part starts with a list of items to include, then $, and finally the total value.
The following is an example of a 3-item knapsack problem.

• Q: GO KNAPSACK 5 & 1 2 , 2 5 & 1 5 , 1 9 & 1 8 @ 4 0 =

• A: 2 5 & 1 5 , 1 9 & 1 8 $ 4 4 STOP

In this example, given a knapsack of capacity 40, the last two are selected with a total value of 44.
For a fixed number of items, we uniformly sample each item’s value and weight from the integers of

range [1, 99].

G.2.4 Matrix Chain Multiplication (MCM)

The cost of multiplying many matrices is very sensitive to the order of multiplication. Matrix chain
multiplication is the task of finding the best order with the minimum cost. Here, the cost is defined to be
the total number of element multiplications. In the example of three matrices A, B, and C, whose shapes
are 4 × 2, 2 × 8, and 8 × 3 respectively, the cost of computing (AB)C is 4 × 2 × 8 + 4 × 8 × 3 = 160,
while another order A(BC) costs only 2 × 8 × 3 + 4 × 2 × 3 = 72. In the question of an MCM problem,
the sizes of the matrices are enumerated, and the answer contains the order and the total cost separated by
; . The example above is represented as the following sequences.

• Q: GO MCM 4 × 2 , 2 × 8 , 8 × 3 =

• A: 4 × 2 , (2 × 8 , 8 × 3) ; 7 2 STOP

Given a fixed number of matrices, we sample the sizes of matrices from the range [1, 99].

G.2.5 Sorting

Although not included in the main text, we test the problem of sorting multi-digit numbers. The results
are presented in Appendix N. The problem difficulty is defined by the maximum number of terms. For a
sorting problem of at most N terms, we first uniformly sample the number of terms from [2, N]. Then
we sample each term from Ulog(0, 1000, 5). The following is an example of the sorting problem.

• Q: GO SORT 1 3 9 , 1 6 0 , 4 3 4 , 7 9 6 , 4 1 =

• A: 4 1 , 1 3 9 , 1 6 0 , 4 3 4 , 7 9 6 STOP

638

H Details of the Recursive Reasoning Procedures

In this section, we elaborate on the procedures to recursively solve the arithmetic problems. Specifically,
we present the algorithms to produce the subproblems of a problem. Therefore, for a set of randomly
sampled questions, we can generate ground truth contexts using these algorithms. For better understanding,
we present the key parts of our Python code, the thought methods. For each problem, we create a child
class the Problem class and implement thought static method. The method takes a set of arguments for a
problem and returns the list of direct subproblems. Each subproblem is represented by a problem class,
problem arguments, and recursion type (whether it is a tail recursion or not). We use named tuple T to
group this information:

1 from collections import namedtuple
2 T = namedtuple('Thought', ['prob_cls', 'args', 'type'], defaults=[''])

For instance, T(Mul, (3, 4)) represents a regular subproblem of 3 × 4, and T(Add, (12, 340),
’tail’) represents a subproblem of 12 + 340 which should be performed as a tail recursion. Once
the thought method returns a list of Ts, we can recursively find more subproblems for each subproblem.

H.1 Addition

The core idea of our recursive procedure for addition is to first add the last digits and then add the rest. If
the sum of the last digits is greater than or equal to 10, we insert another subproblem for adding the carry
right after adding the last digits.

1 class Add(Problem):
2 @staticmethod
3 def thought(args) -> list[T]:
4 left, right = args
5
6 # Base cases
7 if left < 10 and right < 10:
8 return []
9

10 l_last, r_last = left % 10, right % 10
11 thoughts = [T(Add, (l_last, r_last))]
12
13 l_rest, r_rest = left // 10, right // 10
14 if l_last + r_last >= 10:
15 thoughts.append(T(Add, (l_rest, 1)))
16 l_rest += 1
17
18 if l_rest > 0 and r_rest > 0:
19 thoughts.append(T(Add, (l_rest, r_rest)))
20
21 return thoughts

Figure 1 in the main draft is an example with no carry, and the following is another example of 27+65
with a carry.

• X1: GO 3 1 7 + 6 5 = GO 7 + 5 = 1 2 STOP GO 3 1 + 1 = 3 2 STOP GO 3 2 + 6 = 3 8
STOP 3 8 2 STOP

• X2: GO 7 + 5 = 1 2 STOP

• X3: GO 3 1 + 1 = GO 1 + 1 = 2 STOP 3 2 STOP

• X4: GO 1 + 1 = 2 STOP

• X5: GO 3 2 + 6 = GO 2 + 6 = 8 STOP 3 8 STOP

• X6: GO 2 + 6 = 8 STOP

639

H.2 Subtraction
Similar to addition, we first subtract the last digits and solve the rest recursively. When subtracting the
last digits x and y, we always borrow 10 for x to prevent a negative result. The borrowing of 10 is easy
for a sequence model: just put 1 before x. Therefore, the base cases of subtraction are when a ≤ 19 and
b ≤ 9. If the subtraction result of the last digits is smaller than 10, i.e., the borrow is actually needed, we
subtract 1 from the rest of the first operand m.

1 class Sub(Problem):
2 @staticmethod
3 def thought(args) -> list[T]:
4 left, right = args
5
6 # Base cases
7 if left <= 19 and right <= 9:
8 return []
9

10 l_last = left % 10 + 10
11 r_last = right % 10
12 thoughts = [T(Sub, (l_last, r_last))]
13 l_rest, r_rest = left // 10, right // 10
14 if l_last - r_last < 10:
15 thoughts.append(T(Sub, (l_rest, 1)))
16 l_rest -= 1
17 if r_rest > 0:
18 thoughts.append(T(Sub, (l_rest, r_rest)))
19
20 return thoughts

Here is an example of 432-216:

• X1: GO 4 3 2 - 2 1 6 = GO 1 2 - 6 = 6 STOP GO 4 3 - 1 = 4 2 STOP GO 4 2 - 2 1 =
2 1 STOP 2 1 6 STOP

• X2: GO 1 2 - 6 = 6 STOP

• X3: GO 4 3 - 1 = GO 1 3 - 1 = 1 2 STOP 4 2 STOP

• X4: GO 1 3 - 1 = 1 2 STOP

• X5: GO 4 2 - 2 1 = GO 1 2 - 1 = 1 1 STOP GO 4 - 2 = 2 STOP 2 1 STOP

• X6: GO 1 2 - 1 = 1 1 STOP

• X7: GO 4 - 2 = 2 STOP

Notice that the final answer and the questions of each subproblem can be easily constructed from the
previous sequence.

H.3 Multiplication
The base cases of multiplication are (i) when either operand is 0 or 1, or (ii) when both operands are less
than 10. If one of the operands is 0, then the answer is zero; when one of them is 1, then the answer is just
a copy of the other operand. For the cases where both operands are less than 10, we just let the model
memorize them, which is similar to an elementary school math curriculum.

There are two types of non-base cases. For the simpler case, where the second operand is less than
10, we first split the first operand into the last digit and the rest. We then multiply each of them with the
second operand and combine the results. Otherwise, we split the second operand into the last digit and the
rest. The first operand is multiplied to each of them, and the results are summed.

1 class Mul(Problem):
2 @staticmethod
3 def thought(args) -> list[T]:
4 left, right = args

640

5
6 # Base cases
7 if left <= 1 or right <= 1:
8 return []
9 if left <= 9 and right <= 9:

10 return []
11
12 thoughts = []
13 if right < 10:
14 thoughts.append(T(Mul, (left % 10, right)))
15 thoughts.append(T(Mul, (left // 10, right)))
16
17 a1 = (left % 10) * right
18 a2 = (left // 10) * right
19 thoughts.append(T(Add, (a2 * 10, a1), 'tail'))
20 else:
21 a1 = left * (right % 10)
22 thoughts.append(T(Mul, (left, right % 10)))
23
24 a2 = left * (right // 10)
25 thoughts.append(T(Mul, (left, right // 10)))
26
27 thoughts.append(T(Add, (a2 * 10, a1), 'tail'))
28 return thoughts

Here are some example contexts of multiplication:

• X1: GO 4 3 * 2 1 = GO 4 3 * 1 = 4 3 STOP GO 4 3 * 2 = 8 6 STOP TAIL 8 6 0 + 4 3
= THINK

• X2: GO 4 3 * 1 = 4 3 STOP

• X3: GO 4 3 * 2 = GO 3 * 2 = 6 STOP GO 4 * 2 = 8 STOP TAIL 8 0 + 6 = THINK

• X4: GO 3 * 2 = 6 STOP

• X5: GO 4 * 2 = 8 STOP

• X6: GO 8 0 + 6 = GO 0 + 6 = 6 STOP 8 6 STOP

• X7: GO 0 + 6 = 6 STOP

• X8: GO 8 6 0 + 4 3 = GO 0 + 3 = 3 STOP GO 8 6 + 4 = 9 0 STOP 9 0 3 STOP

• X9: GO 0 + 3 = 3 STOP

• X10: GO 8 6 + 4 = GO 6 + 4 = 1 0 STOP GO 8 + 1 = 9 STOP 9 0 STOP

• X11: GO 6 + 4 = 1 0 STOP

• X12: GO 8 + 1 = 9 STOP

Notice that we use tail recursion in X1 and X3.

H.4 Comparison
Comparison is used as a subroutine during division. The procedure for comparison consists of three steps:

1. Compare the numbers of digits.

2. If the numbers of digits are the same, compare the most significant digits.

3. If the most significant digits are identical, compare the remaining digits recursively.

We find that the sequence models can perform the first step without an explicit subproblem. Therefore, we
only add intermediate steps for the second and third steps.

641

1 class Compare(Problem):
2 @staticmethod
3 def thought(args) -> list[T]:
4 left, right = args
5
6 # Base cases
7 if left < 10 and right < 10:
8 return []
9

10 thoughts = []
11 digit_l, digit_r = len(str(left)), len(str(right))
12 if digit_l == digit_r:
13 # Compare the first digits
14 l_first, r_first = int(str(left)[0]), int(str(right)[0])
15 thoughts.append(T(Compare, (l_first, r_first)))
16 if l_first == r_first:
17 # Compare the rest
18 l_rest = int(str(left)[1:])
19 r_rest = int(str(right)[1:])
20 thoughts.append(T(Compare, (l_rest, r_rest)))
21
22 return thoughts

The following is an example of comparing 153 and 159.

• X1: GO 1 5 3 VS 1 5 9 = GO 1 VS 1 = EQ STOP GO 5 3 VS 5 9 = LT STOP LT STOP

• X2: GO 1 VS 1 = EQ STOP

• X3: GO 5 3 VS 5 9 = GO 5 VS 5 = EQ STOP GO 3 VS 9 = LT STOP LT STOP

• X4: GO 5 VS 5 = EQ STOP

• X5: GO 3 VS 9 = LT STOP

H.5 Division
Solving division is the most challenging among the four basic arithmetic operations since the procedure
is basically trial and error, searching for the correct quotient. Nonetheless, the following process is a
recursive version of the elementary school division.

The base case is when the dividend is less than or equal to the divisor. If the dividend is smaller than
the divisor, the quotient is 0, and the remainder is the dividend. If the dividend is equal to the divisor, then
the quotient is 1, and the remainder is 0. Both cases can be handled relatively easily by neural sequence
models. To determine whether it is one of these cases, we always perform the comparison as the first
subproblem.

If it is not a base case, we check whether the dividend is smaller than 10 times the divisor. If the
dividend is smaller, we subtract the divisor from the dividend and recursively divide the result with the
divisor. The final answer is attained by simply adding 1 to the quotient of the smaller division.

To explain the other case, where the dividend is greater than 10 times the divisor, let us call the dividend
a and the divisor b. First, we split the a into the last digit x and the remaining digits m. Then, we divide m
with the divisor b, i.e., we are solving the one-digit-smaller subproblem first. Since we define the division
operation to return both a quotient and a remainder, the quotient q1 = m/b and the remainder r1 = m
mod b from the subproblem are added to the context. Next, we concatenate the remainder and x, which
is numerically computing r × 10 + x, and divide it again with b. Let the quotient and the remainder of
this operation q2 and r2. Then, the quotient of the final answer is q1 × 10 + q2, while the remainder is
simply r2.

1 class Div(Problem):
2 @staticmethod
3 def thought(args) -> list[T]:
4 left, right = args

642

5 thoughts = [T(Compare, (left, right))]
6
7 # Base cases
8 if left <= right:
9 return thoughts

10
11 thoughts.append(T(Compare, (left, right * 10)))
12 if left <= right * 10:
13 diff = left - right
14 thoughts.append(T(Sub, (left, right)))
15 thoughts.append(T(Div, (diff, right)))
16 else:
17 thoughts.append(T(Div, (left // 10, right)))
18 left_remainder = (left // 10) % right * 10 + left % 10
19 thoughts.append(T(Div, (left_remainder, right)))
20 return thoughts

The following is an example of 76 ÷ 29.

• X1: GO 7 6 ÷ 2 9 = GO 7 6 VS 2 9 = GT STOP GO 7 6 VS 2 9 0 = LT STOP GO 7 6 - 2
9 = 4 7 STOP GO 4 7 ÷ 2 9 = 1 R 1 8 STOP 2 R 1 8 STOP

• X2: GO 7 6 VS 2 9 = GO 7 VS 2 = GT STOP GT STOP

• X3: GO 7 VS 2 = GT STOP

• X4: GO 7 6 VS 2 9 0 = LT STOP

• X5: GO 7 6 - 2 9 = GO 1 6 - 9 = 7 STOP GO 7 - 1 = 6 STOP GO 6 - 2 = 4 STOP 4 7
STOP

• ...

• X9: GO 4 7 ÷ 2 9 = GO 4 7 VS 2 9 = GT STOP GO 4 7 VS 2 9 0 = LT STOP GO 4 7 - 2
9 = 1 8 STOP GO 1 8 ÷ 2 9 = 0 R 1 8 STOP 1 R 1 8 STOP

• X10: GO 4 7 VS 2 9 = GO 4 VS 2 = GT STOP GT STOP

• X11: GO 4 VS 2 = GT STOP

• X12: GO 4 7 VS 2 9 0 = LT STOP

• X13: GO 4 7 - 2 9 = GO 1 7 - 9 = 8 STOP GO 4 - 1 = 3 STOP GO 3 - 2 = 1 STOP 1 8
STOP

• ...

• X17: GO 1 8 ÷ 2 9 = GO 1 8 VS 2 9 = LT STOP 0 R 1 8 STOP

• X18: GO 1 8 VS 2 9 = GO 1 VS 2 = LT STOP LT STOP

• ...

H.6 Longest Common Subsequence (LCS)

Given sequences A and B, the algorithm starts by comparing the last characters of the two sequences. If
the last two characters are the same, we find LCS of the subsequences without the last characters, i.e.,
LCS of A∶−1 and B∶−1. Otherwise, we compute the LCSs of the cases where the last character of either
side is removed and return the better one. In the following code, LCS._answer is the subroutine that finds
the LCS of two sequences. Equal returns TRUE if the two arguments are the same, or FALSE otherwise.

643

1 class LCS(Problem):
2 @staticmethod
3 def thought(args) -> list[T]:
4 l, r = args
5 if len(l) == 0 or len(r) == 0:
6 return []
7
8 thoughts = [T(Equal, (l[-1], r[-1]))]
9 if l[-1] == r[-1]:

10 thoughts.append(T(LCS, (l[:-1], r[:-1])))
11 return thoughts
12
13 lcs1_args = (l[:-1], r)
14 lcs2_args = (l, r[:-1])
15 lcs1 = LCS._answer(lcs1_args)
16 lcs2 = LCS._answer(lcs2_args)
17 thoughts.extend([
18 T(LCS, lcs1_args),
19 T(LCS, lcs2_args),
20 T(Compare, (len(lcs1), len(lcs2)))
21])
22 return thoughts

The following is an example of finding the LCS of 123 and 234.

• X1: GO 1 2 3 LCS 2 3 4 = GO EQUAL 3 , 4 = FALSE STOP GO 1 2 LCS 2 3 4 = 2 ; 1
STOP GO 1 2 3 LCS 2 3 = 2 3 ; 2 STOP GO 1 VS 2 = LT STOP 2 3 ; 2 STOP

• X2: GO EQUAL 3 , 4 = FALSE STOP

• X3: GO 1 2 LCS 2 3 4 = GO EQUAL 2 , 4 = FALSE STOP GO 1 LCS 2 3 4 = ; 0 STOP GO
1 2 LCS 2 3 = 2 ; 1 STOP GO 0 VS 1 = LT STOP 2 ; 1 STOP

• ...

• X21: GO 1 2 3 LCS 2 3 = GO EQUAL 3 , 3 = TRUE STOP GO 1 2 LCS 2 = 2 ; 1 STOP 2 3
; 2 STOP

• ...

• X23: GO 1 VS 2 = LT STOP

H.7 Longest Palindromic Subsequence (LPS)
The overall algorithm for LPS is similar to LCS. The base cases are when the sequence length is less than
3. If it is not a base case, we first check if the characters at both ends of the sequence are the same. If
they are the same, we find the LPS of the subsequence excluding them. Otherwise, we compare the cases
where one of the end characters is excluded.

1 class LPS(Problem):
2 @staticmethod
3 def thought(args) -> list[T]:
4 # Base cases
5 if len(args) == 1:
6 return []
7 elif len(args) == 2:
8 return [T(Equal, args)]
9

10 thoughts = [T(Equal, (args[0], args[1]))]
11 if args[0] == args[-1]:
12 sub_lps = LPS._answer(args[1:-1])
13 thoughts.extend([
14 T(LPS, args[1:-1]),
15 T(Add, (len(sub_lps), 2))
16])

644

17 else:
18 lps1_args = args[:-1]
19 lps2_args = args[1:]
20 lps1 = LPS._answer(lps1_args)
21 lps2 = LPS._answer(lps2_args)
22 thoughts.extend([
23 T(LPS, lps1_args),
24 T(LPS, lps2_args),
25 T(Compare, (len(lps1), len(lps2)))
26])
27 return thoughts

The following is an example of LPS.

• X1: GO LPS 1 2 3 2 = GO EQUAL 1 , 2 = FALSE STOP GO LPS 1 2 3 = 1 ; 1 STOP GO
LPS 2 3 2 = 2 3 2 ; 3 STOP GO 1 VS 3 = LT STOP 2 3 2 ; 3 STOP

• X2: GO EQUAL 1 , 2 = FALSE STOP

• X3: GO LPS 1 2 3 = GO EQUAL 1 , 3 = FALSE STOP GO LPS 1 2 = 1 ; 1 STOP GO LPS 2
3 = 2 ; 1 STOP GO 1 VS 1 = EQ STOP 1 ; 1 STOP

• ...

• X10: GO LPS 2 3 2 = GO EQUAL 2 , 2 = TRUE STOP GO LPS 3 = 3 ; 1 STOP GO 1 + 2 =
3 STOP 2 3 2 ; 3 STOP

• ...

• X14: GO 1 VS 3 = LT STOP

H.8 0-1 Knapsack
The base cases are when there is only one item. In this case, we simply compare the item’s weight and
the knapsack’s capacity, to determine whether the item should be included. If it is a non-base case, we
compare two possibilities: (i) include the first item, or (ii) exclude the first item. We recursively compute
the subproblems and find the case with the best value.

1 class LPS(Problem):
2 @staticmethod
3 def thought(args) -> list[T]:
4 items, capacity = args
5 value, weight = items[0]
6
7 # Base case
8 if len(items) == 1:
9 return [T(Compare, (weight, capacity))]

10
11 # When excluding the current item
12 items_max, value_max = Knapsack._answer((items[1:], capacity))
13 thoughts = [
14 T(Knapsack, (items[1:], capacity)),
15 T(Compare, (weight, capacity)),
16]
17
18 # When including the current item
19 if weight <= capacity:
20 items_sub, value_sub = Knapsack._answer(
21 (items[1:], capacity - weight))
22 value_incl = value_sub + value
23 thoughts.extend([
24 T(Sub, (capacity, weight)),
25 T(Knapsack, (items[1:], capacity - weight)),
26 T(Add, (value_sub, value)),
27 T(Compare, (value_incl, value_max)),
28])
29

645

30 return thoughts

The following is an example of a 0-1 knapsack problem with three items and a knapsack capacity of 10.

• X1: GO KNAPSACK 3 & 9 , 4 & 2 , 9 & 5 @ 1 0 = GO KNAPSACK 4 & 2 , 9 & 5 @ 1 0 =
4 & 2 , 9 & 5 $ 1 3 STOP GO 9 VS 1 0 = LT STOP GO 1 0 - 9 = 1 STOP GO KNAPSACK 4
& 2 , 9 & 5 @ 1 = $ 0 STOP GO 0 + 3 = 3 STOP GO 3 VS 1 3 = LT STOP 4 & 2 , 9 & 5
$ 1 3 STOP

• X2: GO KNAPSACK 4 & 2 , 9 & 5 @ 1 0 = GO KNAPSACK 9 & 5 @ 1 0 = 9 & 5 $ 9 STOP
GO 2 VS 1 0 = LT STOP GO 1 0 - 2 = 8 STOP GO KNAPSACK 9 & 5 @ 8 = 9 & 5 $ 9 STOP
GO 9 + 4 = 1 3 STOP GO 1 3 VS 9 = GT STOP 4 & 2 , 9 & 5 $ 1 3 STOP

• ...

• X11: GO 9 VS 1 0 = LT STOP

• X12: GO 1 0 - 9 = 1 STOP

• X13: GO KNAPSACK 4 & 2 , 9 & 5 @ 1 = GO KNAPSACK 9 & 5 @ 1 = $ 0 STOP GO 2 VS 1
= GT STOP $ 0 STOP

• ...

• X17: GO 0 + 3 = 3 STOP

• X18: GO 3 VS 1 3 = LT STOP

H.9 Ternary Addition and Multiplication

Ternary addition and multiplication arise as subproblems while solving MCM, which will be explained in
the next section. They are simple extensions of addition and multiplication to three integers.

1 class TernaryAdd(Problem):
2 @staticmethod
3 def thought(args) -> list[T]:
4 a1, a2, a3 = args
5 return [
6 T(Add, (a1, a2)),
7 T(Add, (a1 + a2, a3), 'tail')
8]
9

10
11 class TernaryMul(Problem):
12 @staticmethod
13 def thought(args) -> list[T]:
14 a1, a2, a3 = args
15 return [
16 T(Mul, (a1, a2)),
17 T(Mul, (a1 * a2, a3), 'tail')
18]

H.10 Matrix Chain Multiplication (MCM)

GivenN matrices, theN −1 subproblems are defined for each possible binary split. For the multiplication
of four matrices ABCD, there are three possible binary splits: A(BCD), (AB)(CD), and (ABC)D.
For each binary split, the total cost is the sum of (i) the minimum cost of computing the first group, (ii)
the minimum cost of computing the second group, and (iii) the cost of multiplying the two matrices
resulting from each group. Once we get the total costs of each binary split, we return the best split with
the minimum cost. The following code implements this procedure.

646

1 class MCM(Problem):
2 @staticmethod
3 def thought(args) -> list[T]:
4 mats, min_order, min_cost = args
5
6 # Base cases
7 if len(mats) == 1:
8 return []
9

10 if min_order is None:
11 # Top-level problem
12 l_mats, r_mats = mats[:1], mats[1:]
13 else:
14 # Middle of recursion
15 l_mats, r_mats = mats
16
17 l_args = (l_mats, None, None)
18 r_args = (r_mats, None, None)
19 l_order, l_cost = MCM._answer(l_args)
20 r_order, r_cost = MCM._answer(r_args)
21 agg_cost = l_mats[0][0] * r_mats[0][0] * r_mats[-1][1]
22 thoughts = [
23 T(MCM, l_args),
24 T(MCM, r_args),
25 T(TernaryMul, (l_mats[0][0], r_mats[0][0], r_mats[-1][1])),
26 T(TernaryAdd, (l_cost, r_cost, agg_cost)),
27]
28
29 cost = l_cost + r_cost + agg_cost
30 if min_cost is not None:
31 thoughts.append(T(Compare, (cost, min_cost)))
32 if min_cost is None or cost < min_cost:
33 min_cost = cost
34 min_order = l_order, r_order
35
36 if len(r_mats) > 1:
37 new_l_mats = l_mats + (r_mats[0],)
38 new_r_mats = r_mats[1:]
39 thoughts.append(
40 T(MCM, ((new_l_mats, new_r_mats), min_order, min_cost), 'tail'))
41
42 return thoughts

The following is an example of a three-matrix MCM.

• X1: GO MCM 3 × 9 , 9 × 4 , 4 × 5 = GO MCM 3 × 9 = 3 × 9 ; 0 STOP GO MCM 9 × 4 ,
4 × 5 = 9 × 4 , 4 × 5 ; 1 8 0 STOP GO 3 * 9 * 5 = 1 3 5 STOP GO 0 + 1 8 0 + 1 3
5 = 3 1 5 STOP TAIL MCM 3 × 9 , 9 × 4 | 4 × 5 ACC 3 × 9 , (9 × 4 , 4 × 5) ; 3
1 5 = THINK

• ...

• X32: GO MCM 3 × 9 , 9 × 4 | 4 × 5 ACC 3 × 9 , (9 × 4 , 4 × 5) ; 3 1 5 = GO MCM
3 × 9 , 9 × 4 = 3 × 9 , 9 × 4 ; 1 0 8 STOP GO MCM 4 × 5 = 4 × 5 ; 0 STOP GO 3 *
4 * 5 = 6 0 STOP GO 1 0 8 + 0 + 6 0 = 1 6 8 STOP GO 1 6 8 VS 3 1 5 = LT STOP (3
× 9 , 9 × 4) , 4 × 5 ; 1 6 8 STOP

• ...

H.11 Sorting
Among several sorting algorithms, we choose merge sort for our experiments with CoT and RoT. Note that
WT is not relevant to the sorting algorithm since it produces the answer directly. The merge sort algorithm
is simple: (i) split the given sequence into two equally sized subsequences, (ii) sort each subsequence, and
(iii) merge the two sorted sequences. Since the final merge operation is quite complicated, we define the
merge as a problem type.

647

1 class Merge(Problem):
2 @staticmethod
3 def thought(args) -> list[T]:
4 l, r = args
5 if len(l) == 0 or len(r) == 0:
6 return []
7
8 thoughts = [T(Compare, (l[0], r[0]))]
9 if l[0] < r[0] and len(l) > 1:

10 thoughts.append(T(Merge, (l[1:], r)))
11 elif l[0] >= r[0] and len(r) > 1:
12 thoughts.append(T(Merge, (l, r[1:])))
13 return thoughts
14
15
16 class MergeSort(Problem):
17 @staticmethod
18 def thought(args) -> list[T]:
19 if len(args) < 2:
20 return []
21
22 l_len = (len(args) + 1) // 2
23 l = args[:l_len]
24 r = args[l_len:]
25 return [
26 T(MergeSort, l),
27 T(MergeSort, r),
28 T(Merge, (tuple(sorted(l)), tuple(sorted(r))), 'tail')
29]

I Fine-Tuning GPT-3 for Recursion of Thought

Using the OpenAI API, we fine-tune GPT-3 for Recursion of Thought. The goal is to learn 16-digit
addition, 16-digit subtraction, 8-digit multiplication, and 8-digit division simultaneously. GPT-3’s fine-
tuning API takes a dataset where each example is a prompt-completion pair in plain text. It is converted to
tokens by a special tokenizer for GPT, which we cannot control. This API is not directly compatible with
RoT due to several reasons.

• There is no special tokens such as GO , THINK , and STOP .

• The input and target sequences have to be the same. However, they are different in RoT due to the
THINK token. Once THINK is produced, the RoT framework triggers the recursion process to find
the subproblem’s answer and replace the THINK token with it. Therefore, the THINK token appears
in the target sequences, but never in the input sequences.

Moreover, the way that GPT-3 tokenizes numbers hinders the learning of arithmetic reasoning rules.
GPT-3 tokenizes a multi-digit number into a set of two-digit or three-digit numbers. For example, the
text 1234567 is converted to the sequence of tokens 123 45 67 . Under this tokenization scheme, the
relationship between the numbers becomes obscured. As an example, the tokens 7 , 17 , 27 , ..., 997 all
have 7 as their last digit. Since there is no direct way for a model to know that they share the same digit, it
is crucial to use each digit as a token. We believe that OpenAI needs to correct this tokenization of GPT-3
for numbers.

Luckily, we can mimic the RoT procedures with the API by using several tricks. First, we replace the
special tokens with plain lower-case words, e.g., GO → go and STOP → stop, which are included in the
vocabulary of GPT-3. Second, we add a space before each token to make sure that the GPT tokenizer
separates each token. We also add space before each digit to prevent the tokenizer from grouping a
number into 2-to-3-digit tokens. Finally, to simulate the behavior of the THINK and STOP tokens, we
derive multiple examples from each context, one for each THINK or STOP output.

As an example, context X3 in Figure 1 is converted to the following JSON lines for GPT-3 as follows:

648

X
3 GO 4 0 + 3 5 = GO 0 + 5 = 5 STOP GO 4 + 3 = 7 STOP 7 5 STOP

Y
3 PAD ×7 GO 0 + 5 = THINK PAD GO 4 + 3 = THINK PAD 7 5 STOP

⇓

1 {"prompt": " go 4 0 + 3 5 =", "completion": " go 0 + 5 = think"}
2 {"prompt": " go 4 0 + 3 5 = go 0 + 5 = 5 stop", "completion": " go 4 + 3 = think"}
3 {"prompt": " go 4 0 + 3 5 = go 0 + 5 = 5 stop go 4 + 3 = 7 stop", "completion": " 7 5 stop"}

In the case of Without Thought (WT), each problem is simply converted into a single example:

X GO 4 0 + 3 5 = 7 5 STOP

Y PAD ×7 7 5 STOP

⇓

1 {"prompt": " go 4 0 + 3 5 =", "completion": " 7 5 stop"}

In both cases of RoT and WT, we fine-tune GPT-3 for 10K steps with a batch size of 256. Among
the several variants of GPT-3, we use Ada which is offered at the lowest cost. Note that RoT produces
multiple contexts for each problem, and each RoT context is converted to multiple training examples. For
this reason, the GPT-3 fine-tuned for RoT encounters much fewer problems during training, although the
numbers of training steps are the same.

J Training Details of the Tiny Models

In all experiments, we use a batch size of 256 and Adam optimizer (Kingma and Ba, 2015) with a learning
rate of 0.001, i.e., the default learning rate in PyTorch. We train the Transformers for 500K steps and
decay the learning rate by half every 50K steps. Since the LSTMs converge slower than the Transformers,
we train them for 800K steps and decay the learning rate by half every 100K steps. At every 20K steps,
we evaluate the model on a test set of 30K problems, and if a model reaches a perfect accuracy of 1.0, we
do not train the model further. The models can be trained on a single GPU with 12GB memory.

K Efficient Evaluation of RoT

At the problem scales that RoT is tested, solving a single problem can require hundreds of thousands of
tokens. Therefore, we have to develop an efficient evaluation algorithm. Since the models are deterministic,
we do not need to evaluate the same context multiple times. Therefore, given a test set, we first find all
unique contexts that should appear while solving the test set. Note that there would be a lot of duplicate
contexts, especially for the base cases. These unique contexts can be evaluated in parallel. We evaluate
each context in a similar manner to the training. For each context, we construct the target sequence, as
we described in §3.2, and check if the model outputs the target sequence correctly, given the GT context.
In the case of GPT-3, we convert the contexts and target sequences as described in Appendix I to feed
into the API. Once every context is individually evaluated, the next step is to aggregate the results. In this
aggregation stage, a (sub)problem is marked correct only if its subproblems are all marked correct. This
way, we efficiently evaluate RoT with minimal cost.

L Failure Case Analysis of GPT-3 with RoT

In this section, we provide some failure cases of RoT in the GPT-3 experiments for further insights.
Although the model achieves an accuracy of over 99% in almost every case, there are several problems
where it makes mistakes. Nonetheless, only a few characters are wrong in each context.

The most common type of error is repeating the same character a wrong number of times. The following
is the examples of this error type.

649

Prompt go 1 6 4 3 4 vs 1 0 1 1 6 = go 1 vs 1 = eq stop

Completion go 6 4 3 4 vs 1 1 6 = think

Model Output go 6 4 3 4 vs 1 1 1 6 = think

Prompt go 4 8 0 9 4 4 9 5 1 8 2 5 5 9 1 * 4 4 3 0 2 5 3 6 0 1 7
= go 4 8 0 9 4 4 9 5 1 8 2 5 5 9 1 * 7 = 3 3 6 6 6 1 4 6
6 2 7 7 9 1 3 7 stop go 4 8 0 9 4 4 9 5 1 8 2 5 5 9 1 * 4
4 3 0 2 5 3 6 0 1 = 2 1 3 0 7 0 8 1 0 4 7 0 8 0 9 6 0 5 1
7 0 3 1 9 1 stop

Completion tail 2 1 3 0 7 0 8 1 0 4 7 0 8 0 9 6 0 5 1 7 0 3 1 9 1 0
+ 3 3 6 6 6 1 4 6 6 2 7 7 9 1 3 7 = think

Model Output tail 2 1 3 0 7 0 8 1 0 4 7 0 8 0 9 6 0 5 1 7 0 3 1 9 1 0
+ 3 3 6 6 6 6 1 4 6 6 2 7 7 9 1 3 7 = think

Prompt go 1 0 5 4 6 2 0 * 1 5 = go 1 0 5 4 6 2 0 * 5 = 5 2 7 3 1
0 0 stop go 1 0 5 4 6 2 0 * 1 = 1 0 5 4 6 2 0 stop

Completion tail 1 0 5 4 6 2 0 0 + 5 2 7 3 1 0 0 = think

Model Output tail 1 0 5 4 6 2 0 0 0 + 5 2 7 3 1 0 0 = think

Another common case is incorrectly counting the number of digits while comparing two numbers.
When comparing numbers following our recursive procedure, the model has to immediately return the
answer if the numbers of digits are different. In the following example, the first number has seven digits,
and the second one has six digits.

Prompt go 1 0 6 9 0 3 4 vs 8 9 1 5 0 6 =

Completion gt stop

Model Output go 1 vs 8

Although the model should directly output the answer, i.e., gt stop, it decides that the numbers of digits
are the same and moves on to the next step, which is to compare the most significant digits. This error is
caused by the specific recursive procedure of our choice. Since we assume that the model would easily
figure out the difference in the number of digits, we did not add explicit steps to count the digits. Although
the model detects the difference in most cases, it turns out to be a relatively challenging operation. A
possible solution is to teach the model to explicitly count the number of digits and compare them.

M Context Length Distribution

In Figure 4, we present the distributions of context lengths for each problem type. We compare the context
lengths of RoT and CoT. For each configuration, we randomly sample 10K contexts from the training
distribution and plot the histogram of their lengths. The graphs show that the context sizes of CoT are
many orders of magnitude larger than RoT. In theory, the total number of tokens to generate for each
problem is identical in both RoT and CoT (if we do not count the THINK tokens). However, RoT’s context
sizes are much smaller since it utilizes multiple contexts.

Another advantage of RoT is the utilization of dynamic programming. Since we can easily cache the
duplicate computations of RoT as explained in Appendix K, we can drastically reduce the amount of
token generation if there is a redundant structure in the problem. The amount of tokens to generate for
each problem is plotted in Figure 5. The benefit is especially prominent in algorithmic problems. For
example, finding the LCS of two 32-digit sequences results in more than 10

18 tokens if we naively use
CoT or RoT. If we use dynamic programming with RoT, we can efficiently solve the same problem with
much less cost.

650

0 100 200

Add / 32-digit / RoT

2000 2500 3000

Add / 32-digit / CoT

0 200 400

Add / 64-digit / RoT

8000 10000

Add / 64-digit / CoT

0 100 200

Sub / 32-digit / RoT

2500 3000

Sub / 32-digit / CoT

0 200 400

Sub / 64-digit / RoT

9000 10000

Sub / 64-digit / CoT

0 100 200

Mul / 16-digit / RoT

0 20000 40000

Mul / 16-digit / CoT

0 200 400

Mul / 32-digit / RoT

0 100000 200000

Mul / 32-digit / CoT

0 100 200

Div / 16-digit / RoT

0 10000 20000

Div / 16-digit / CoT

0 200 400

Div / 32-digit / RoT

0 50000 100000

Div / 32-digit / CoT

0 100

LCS / length 16 / RoT

0 1
1e10

LCS / length 16 / CoT

0 100 200

LCS / length 32 / RoT

0 5
1e18

LCS / length 32 / CoT

50 100

LPS / length 16 / RoT

0 500000

LPS / length 16 / CoT

0 100

LPS / length 32 / RoT

0 2
1e10

LPS / length 32 / CoT

0 100 200

Knapsack / 6 items / RoT

0 2500 5000

Knapsack / 6 items / CoT

0 200 400

Knapsack / 12 items / RoT

0 200000 400000

Knapsack / 12 items / CoT

0 200

MCM / 6 matrices / RoT

50000 100000

MCM / 6 matrices / CoT

0 250 500

MCM / 12 matrices / RoT

2.5 5.0 7.5
1e7

MCM / 12 matrices / CoT

Figure 4: The distributions of context lengths.

651

2000 2500 3000

Add / 32-digit / RoT

2000 2500 3000

Add / 32-digit / CoT

8000 9000 10000

Add / 64-digit / RoT

8000 10000

Add / 64-digit / CoT

2500 3000

Sub / 32-digit / RoT

2000 2500 3000

Sub / 32-digit / CoT

8000 10000

Sub / 64-digit / RoT

8000 10000

Sub / 64-digit / CoT

0 20000

Mul / 16-digit / RoT

0 20000

Mul / 16-digit / CoT

0 100000

Mul / 32-digit / RoT

0 100000 200000

Mul / 32-digit / CoT

0 10000 20000

Div / 16-digit / RoT

0 10000 20000

Div / 16-digit / CoT

0 50000 100000

Div / 32-digit / RoT

0 50000 100000

Div / 32-digit / CoT

10000 15000

LCS / length 16 / RoT

0 1
1e10

LCS / length 16 / CoT

60000 80000

LCS / length 32 / RoT

0 5
1e18

LCS / length 32 / CoT

2000 4000

LPS / length 16 / RoT

0 500000

LPS / length 16 / CoT

10000 20000

LPS / length 32 / RoT

0 2
1e10

LPS / length 32 / CoT

0 2000 4000

Knapsack / 6 items / RoT

0 2500 5000

Knapsack / 6 items / CoT

0 100000

Knapsack / 12 items / RoT

0 200000 400000

Knapsack / 12 items / CoT

10000 20000

MCM / 6 matrices / RoT

50000 100000

MCM / 6 matrices / CoT

100000 200000

MCM / 12 matrices / RoT

2.5 5.0 7.5
1e7

MCM / 12 matrices / CoT

Figure 5: The distribution of the total number of tokens to produce in order to solve each problem. RoT can utilize
dynamic programming to reduce redundant computations.

652

8 16 24 32 40 48 56 64
of Items

0.0

0.5

1.0

A
cc

ur
ac

y

Sorting

Without Thought
Chain of Thought
Recursion of Thought

Figure 6: Sorting experiment with the tiny Transformer.

Problem Difficulty WT CoT RoT

Addition 32-digit 0.991 − 0.998
48-digit 0.853 − 0.995

Subtraction 32-digit 0.991 − 0.998
48-digit 0.886 − 0.998

Multiplication 8-digit 0.337 − 0.999
16-digit 0.098 − 0.994

Division 8-digit 0.363 − 1.000
16-digit 0.123 − 0.989

LCS length 16 0.980 − 0.995
length 24 0.832 − 0.998

LPS length 24 0.995 − 1.000
length 40 0.800 − 0.974

0-1 Knapsack 4 items 0.945 − 0.999
6 items 0.634 − 1.000

MCM 3 matrices 0.481 − 0.997
4 matrices 0.110 − 0.992

Table 2: The exact values of the GPT-3 experiments in Figure 2a.

N Transformers Are Powerful Sorting Machines

In fact, the first algorithmic task that we tested is sorting since it has been widely used as a benchmark for
algorithmic reasoning (Reed and de Freitas, 2016; Cai et al., 2017; Pierrot et al., 2019). However, we
find that Transformers are incredibly good at sorting, even in the WT setting. Figure 6 shows the sorting
experiment. For CoT and RoT, we train the merge sort algorithm. Interestingly, WT easily achieves a
perfect score in sorting 64 three-digit numbers. Also, the training converges much faster than RoT. The
Transformer architecture, more specifically the attention mechanism, seems to be perfectly suited for the
sorting operation.

O The Exact Values of Figure 2

Table 2-5 show the exact values of the graphs in Figure 2. Except for the GPT-3 experiments in Table 2,
we report the average and the standard deviation of eight runs. Each GPT-3 experiment is done only once.

653

Problem Difficulty WT CoT RoT

Addition

8-digit 0.863 ± 0.265 1.000 ± 0.000 1.000 ± 0.000
16-digit 0.370 ± 0.475 1.000 ± 0.000 1.000 ± 0.000
24-digit 0.336 ± 0.430 1.000 ± 0.000 1.000 ± 0.000
32-digit 0.455 ± 0.458 − 1.000 ± 0.000
40-digit 0.119 ± 0.316 − 1.000 ± 0.000
48-digit 0.082 ± 0.216 − 1.000 ± 0.000
56-digit 0.105 ± 0.277 − 1.000 ± 0.000
64-digit 0.000 ± 0.000 − 1.000 ± 0.001

Subtraction

8-digit 0.982 ± 0.006 1.000 ± 0.000 1.000 ± 0.000
16-digit 0.705 ± 0.411 1.000 ± 0.000 1.000 ± 0.000
24-digit 0.238 ± 0.412 1.000 ± 0.000 1.000 ± 0.000
32-digit 0.221 ± 0.385 − 1.000 ± 0.000
40-digit 0.426 ± 0.433 − 1.000 ± 0.000
48-digit 0.114 ± 0.303 − 1.000 ± 0.000
56-digit 0.116 ± 0.307 − 1.000 ± 0.000
64-digit 0.161 ± 0.282 − 1.000 ± 0.000

Multiplication

2-digit 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
4-digit 0.817 ± 0.023 1.000 ± 0.000 1.000 ± 0.000
8-digit 0.340 ± 0.032 − 1.000 ± 0.000
12-digit 0.169 ± 0.015 − 1.000 ± 0.000
16-digit 0.104 ± 0.016 − 1.000 ± 0.000
20-digit 0.048 ± 0.020 − 1.000 ± 0.000
24-digit 0.033 ± 0.017 − 0.999 ± 0.001
28-digit 0.014 ± 0.006 − 0.999 ± 0.001
32-digit 0.012 ± 0.001 − 0.999 ± 0.000

Division

2-digit 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
4-digit 0.978 ± 0.008 1.000 ± 0.000 1.000 ± 0.000
8-digit 0.354 ± 0.029 − 1.000 ± 0.000
12-digit 0.186 ± 0.009 − 1.000 ± 0.000
16-digit 0.128 ± 0.011 − 1.000 ± 0.000
20-digit 0.087 ± 0.012 − 1.000 ± 0.000
24-digit 0.075 ± 0.005 − 1.000 ± 0.000
28-digit 0.059 ± 0.007 − 0.999 ± 0.000
32-digit 0.048 ± 0.008 − 0.999 ± 0.000

Table 3: The exact values of the Transformer experiments in Figure 2b (arithmetic problems).

654

Problem Difficulty WT CoT RoT

LCS

length 3 1.000 ± 0.000 1.000 ± 0.000 −
length 4 0.997 ± 0.008 − 1.000 ± 0.000
length 8 0.999 ± 0.002 − 1.000 ± 0.000
length 12 0.965 ± 0.025 − 1.000 ± 0.000
length 16 0.880 ± 0.035 − 1.000 ± 0.000
length 20 0.759 ± 0.043 − 1.000 ± 0.000
length 24 0.622 ± 0.038 − 1.000 ± 0.000
length 28 0.484 ± 0.043 − 0.999 ± 0.000
length 32 0.375 ± 0.030 − 0.999 ± 0.000

LPS

length 4 1.000 ± 0.000 1.000 ± 0.000 −
length 7 1.000 ± 0.000 1.000 ± 0.000 −
length 8 1.000 ± 0.000 − 1.000 ± 0.000
length 16 0.999 ± 0.001 − 1.000 ± 0.000
length 24 0.950 ± 0.019 − 1.000 ± 0.000
length 32 0.788 ± 0.019 − 1.000 ± 0.000
length 40 0.608 ± 0.023 − 1.000 ± 0.000
length 48 0.477 ± 0.030 − 0.999 ± 0.001
length 56 0.365 ± 0.029 − 0.998 ± 0.000

0-1 Knapsack

2 items 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
4 items 0.966 ± 0.006 1.000 ± 0.000 1.000 ± 0.000
6 items 0.849 ± 0.007 − 1.000 ± 0.000
8 items 0.640 ± 0.242 − 1.000 ± 0.000
10 items 0.481 ± 0.279 − 1.000 ± 0.000
12 items 0.435 ± 0.252 − 0.988 ± 0.029

MCM

2 matrices 0.973 ± 0.009 1.000 ± 0.000 1.000 ± 0.000
4 matrices 0.177 ± 0.069 − 1.000 ± 0.000
6 matrices 0.088 ± 0.029 − 1.000 ± 0.000
8 matrices 0.033 ± 0.025 − 1.000 ± 0.000
10 matrices 0.051 ± 0.032 − 0.998 ± 0.001
12 matrices 0.026 ± 0.011 − 0.996 ± 0.002

Table 4: The exact values of the Transformer experiments in Figure 2b (algorithmic problems).

655

Problem Difficulty WT CoT RoT

Addition

2-digit 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
4-digit 0.642 ± 0.305 1.000 ± 0.001 1.000 ± 0.000
6-digit 0.005 ± 0.008 0.997 ± 0.005 0.999 ± 0.000
8-digit 0.000 ± 0.000 0.905 ± 0.155 0.999 ± 0.001
10-digit 0.000 ± 0.000 0.795 ± 0.341 0.986 ± 0.024
12-digit 0.000 ± 0.000 − 0.871 ± 0.275
14-digit 0.000 ± 0.000 − 0.358 ± 0.430
16-digit 0.000 ± 0.000 − 0.120 ± 0.202

Subtraction

2-digit 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
4-digit 0.776 ± 0.179 1.000 ± 0.000 1.000 ± 0.000
6-digit 0.006 ± 0.001 1.000 ± 0.000 1.000 ± 0.000
8-digit 0.000 ± 0.000 0.896 ± 0.252 0.994 ± 0.016
10-digit 0.000 ± 0.000 0.443 ± 0.377 0.908 ± 0.236
12-digit 0.000 ± 0.000 − 0.507 ± 0.398
14-digit 0.000 ± 0.000 − 0.295 ± 0.406
16-digit 0.000 ± 0.000 − 0.101 ± 0.137

Multiplication

2-digit 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
3-digit 0.855 ± 0.044 − 1.000 ± 0.000
4-digit 0.636 ± 0.061 − 1.000 ± 0.000
5-digit 0.338 ± 0.063 − 1.000 ± 0.000
6-digit 0.270 ± 0.030 − 0.987 ± 0.008
7-digit 0.162 ± 0.025 − 0.896 ± 0.105
8-digit 0.138 ± 0.025 − 0.670 ± 0.208

Division

1-digit 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
2-digit 1.000 ± 0.000 − 1.000 ± 0.000
3-digit 1.000 ± 0.001 − 1.000 ± 0.000
4-digit 0.891 ± 0.072 − 1.000 ± 0.000
5-digit 0.516 ± 0.077 − 0.998 ± 0.004
6-digit 0.308 ± 0.069 − 0.996 ± 0.007
7-digit 0.192 ± 0.028 − 0.958 ± 0.036
8-digit 0.115 ± 0.015 − 0.914 ± 0.090

Table 5: The exact values of the LSTM experiments in Figure 2c.

656

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Limitations

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract & Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
We include the source code used in our experiments.

�7 B1. Did you cite the creators of artifacts you used?
We did not use any external artifcats.

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
We did not use any external artifcats.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
We provide documentation in README.md inside the source code.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Appendix C, G, H

C �3 Did you run computational experiments?
Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4, Appendix I, J

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

657

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix J

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4, Appendix O

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

658

