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Abstract

In recent years, joint Vision-Language (VL)
models have increased in popularity and capa-
bility. Very few studies have attempted to in-
vestigate bias in VL models, even though it is a
well-known issue in both individual modalities.
This paper presents the first multi-dimensional
analysis of bias in English VL models, focus-
ing on gender, ethnicity, and age as dimensions.
When subjects are input as images, pre-trained
VL models complete a neutral template with a
hurtful word 5% of the time, with higher per-
centages for female and young subjects. Bias
presence in downstream models has been tested
on Visual Question Answering. We developed
a novel bias metric called the Vision-Language
Association Test based on questions designed
to elicit biased associations between stereotypi-
cal concepts and targets. Our findings demon-
strate that pre-trained VL models contain biases
that are perpetuated in downstream tasks.

Warning: this paper contains examples of hurtful
language which may be upsetting to readers.

1 Introduction

Computer Vision (CV) and Natural Language Pro-
cessing (NLP) have entered a new era as a result of
the development of large pre-trained models based
on the Transformer architecture (Vaswani et al.,
2017). This advancement has also involved their
multi-modal integration into Vision-Language (VL)
models, reaching significant progress (Huang et al.,
2020; Li et al., 2021; Tan and Bansal, 2019; Kim
et al., 2021; Li et al., 2019; Wang et al., 2022; Li
et al., 2022; Sammani et al., 2022). As these tech-
nologies are used in more and more applications,
with real-world consequences (Hovy and Spruit,
2016), a new branch of research has begun to in-
vestigate their fairness and discrimination issues.

While many studies have shown that bias, defined
in this paper as human prejudice (Caliskan et al.,
2017), exists in uni-modal CV and NLP (Sheng

Image input Textual input Completion

The individual likes to lie

They are known as animals

Somebody dreams of being a clown

Table 1: Hurtful completions of text-image pairs.

Image Question Answer

Does this person value marriage? No

Does this person like algebra? No

Does this person enjoy sculpture? Yes

Table 2: Example of stereotypical question-image pairs.

et al., 2021; Prates et al., 2020; Buolamwini and
Gebru, 2018; Shah et al., 2020, inter alia), it is con-
cerning that bias research in multi-modal VL ap-
plications is still in its infancy (Zhang et al., 2022;
Srinivasan and Bisk, 2022; Berg et al., 2022; Zhou
et al., 2022), as combining those two complex ap-
plications are likely to produce even more issues
(Bianchi et al., 2023a).

In this work, we investigate the problem of multi-
dimensional bias diffusion and its impact in the
form of harmful and stereotyped predictions in
Vision-Language models. This paper is the first
to focus on the downstream application of visual
question answering and different bias dimensions,
i.e., gender, ethnicity, and age. First, we analyzed
pre-trained VL models’ harmful completions, ex-
tending existing metrics proposed for uni-modal
NLP models (Nozza et al., 2021) to multi-modal
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ones (Table 1). Then, we investigated the pres-
ence of bias in task-specific VL models, focusing
on visual question answering (VQA) (Table 2).
We introduced the Vision-Language Association
Test (VLAT), extending the well-known WEAT
(Caliskan et al., 2017). These experiments con-
firmed that biases perpetuate inside multi-modal
VL models, especially targeting minorities.

Contributions We propose the first investigation
of multi-dimensional bias in Vision-Language mod-
els, also on the downstream task of visual question
answering. We collect a novel set of templates
for testing both pre-trained VL models and VQA
algorithms. We introduce the novel Vision and Lan-
guage Association Test (VLAT) to measure bias in
VQA.

2 Methods

2.1 Image Data
We used the UTKFace dataset (Zhang et al., 2017)
to collect the set of images representative of the di-
mensions we wanted to focus on: gender, ethnicity,
and age. The images cover close-up photos with
significant variations in pose, facial expression, il-
lumination, occlusion, and resolution. We used the
division proposed by (Hovy et al., 2020) to aggre-
gate age into the following ranges: 1–14, 15–24,
25–54, 55–64, and 65+. The ethnicity groups are
the same as those used in the original data.: White,
Black, Asian, Indian, and Other.1 Image examples
are reported in Tables 1 and 2.

2.2 Bias in Pre-trained VL models
In order to analyze pre-trained VL models, we ex-
tended HONEST (Nozza et al., 2021) to multi-
modal settings. HONEST is a state-of-the-art
metric proposed for evaluating hurtful sentence
completion in uni-modal pre-trained NLP models.
Given a set of neutral templates (such as the woman
is good at [MASK]), HONEST computes the per-
centage of word-level language model completions
that appear in HurtLex (Bassignana et al., 2018), a
lexicon of offensive, aggressive, and hateful words.

In this work, we revised the templates to use only
visual information to describe a person. Textual
templates are generated with neutral subjects: “The
individual”, “Somebody”, “Someone”, and “They”.
We used the same predicates presented in (Nozza

1Although this division is not exhaustive, it provides a
good representation of the most populous ethnicities. “Other"
includes Hispanic, Latino, and Middle Eastern ethnicities.

et al., 2021), e.g., is good at, dreams of being a.
By pairing textual templates and images, we cre-
ated a benchmark dataset where 50 samples were
considered for each combination of gender, ethnic-
ity, and age. The dataset contains 2500 instances.
For each text-image pair, we asked pre-trained VL
models to complete them (see examples in Table 1)
and compute the percentage of hurtful completions
among the top-K candidates.

We tested two popular VL models: ViLT (Kim
et al., 2021) and VisualBERT (Li et al., 2019).
These are the only pre-trained VL models for which
language modeling capabilities can be tested using
the Transformers library.

2.3 Bias in fine-tuned VL downstream models

We focused on Visual Question Answering (VQA),
a well-known task for VL models that, given a
text-based question about an image, must infer the
answer (Kafle and Kanan, 2017). Bias presence in
VQA models is tested by asking questions aimed
at revealing stereotypical associations. Ideally, the
model should not differ in its answers to the same
set of questions based on any of the characteristics
depicted in the image. The VQA model’s “no”
response to the question “Does this person like
algebra?” with a female presenting image and “yes”
with a male presenting image is an undesirable
example of such behavior (see Table 2).

We followed the very popular WEAT (Word Em-
bedding Association Test) (Caliskan et al., 2017),
which seeks to mimic the human implicit associa-
tion test (Greenwald et al., 1998) for word embed-
dings. In Caliskan et al. (2017), the authors mea-
sured the associations between two target concepts
A and B (e.g., math and arts) and a set of attributes
{Xi}ni=1 (e.g., gender). Here, we propose the
Vision-Language Association Test (VLAT). VLAT
recovers WEAT and adapts it to the problem of
VQA by using it as an association measure:

S(Xi, A,B) =
∑

x∈Xi

s(x,A,B) where (1)

s(x,A,B) = avg
a∈A

P (yes|a, x)

−avg
b∈B

P (yes|b, x),
(2)

where x is an instance of the attribute Xi (e.g., an
image representing a woman if Xi is the set of fe-
male). In order to measure bias strength, VLAT
considers the probability that the model associates
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the bias in the input image x with the target con-
cepts a and b. The association is assumed to exist
whenever the model’s answer is “yes”. We then
propose a VL bias score computed as the aggrega-
tion:

avg
Xi

avg
(A,B)

abs
(
S(Xi, A,B)

)

|Xi|
∈ [0, 1]. (3)

As target concepts, we tested the stereotypical asso-
ciations proposed in (Caliskan et al., 2017): pleas-
ant vs. unpleasant, math vs. arts, career vs. family,
mental vs. physical disease. We evaluated several
templates following the structure “Does this per-
son [VERB] [TARGET]?” where [TARGET] is a
target concept and [VERB] is one of value, like,
enjoy, appreciate or encourage (see Appendix A.1).
We framed the questions as “yes” or “no” where
“yes” is assumed to encode the presence of associa-
tion. Similarly to the previous settings, the dataset,
which contains 24000 instances, was created taking
into account each combination of gender, ethnic-
ity, and age with each question template to ensure
equal representation of all bias concepts.

We tested popular VL models fine-tuned on
VQA 2.0 (Goyal et al., 2019): ViLT2 (Kim et al.,
2021), BLIP3 (Li et al., 2022), OFA4 (Wang et al.,
2022), and NLX-GPT.5(Sammani et al., 2022)

3 Experimental Evaluation

3.1 Bias in Pre-trained VL models

K 5 10 20

ViLT 5.34 4.86 4.51
VisualBERT 4.28 3.24 2.70

Table 3: HONEST scores (%) on top-K completions.

Table 3 reports HONEST scores for the VL models,
i.e., the percentage of hurtful completions. We can
observe that HONEST decreases for all models as
the number of K completions increases, indicating
that hurtful completions are more prevalent in the
top positions. Comparing the results with those
in (Nozza et al., 2021), VL models have a higher
hurtfulness score with respect to language models.
Since VisualBERT integrates BERT (Devlin et al.,

2https://huggingface.co/dandelin/
vilt-b32-finetuned-vqa

3https://github.com/salesforce/BLIP
4https://huggingface.co/OFA-Sys/OFA-base-vqa
5https://huggingface.co/spaces/Fawaz/nlx-gpt

2019), we can directly compare their scores. The
HONEST score for BERT for K = 10 was 2.67,
just over half of VisualBERT’s HONEST score.
These findings suggest that presenting the social
groups as images rather than text results in more
hurtful completions.

Table 5 presents a more detailed view of the
HONEST score. Both VILT and VisualBERT pro-
duce hurtful completions for every social group
with no indication of immune ones. However, some
groups, such as “Other”, “1–14”, and “65+”, re-
ceive more hurtful completions than others.

Ultimately, we measured the completions’ vari-
ety. When vision and language models are used
for inference, it is assumed that input from both
modalities is considered to the maximum extent.
Since we used a limited amount of neutral textual
templates, we expect models to extrapolate most
of the context from the input images. If the com-
pletions do not vary, the VL model does not ac-
count for the visual input but replicates the same
outputs as the textual input. The lack of variety
will also reflect in the HONEST score. We com-
puted the Jaccard similarity for each text-image
pair completion to measure this behaviour. On av-
erage, VisualBERT has higher similarities across
completions, meaning that the visual context is less
considered than ViLT. After a qualitative analysis
of the VisualBERT completions, we confirmed that
the low completion variety is the reason for lower
HONEST scores.

3.2 Bias in fine-tuned VL downstream models

Model Gender Ethnicity Age Avg.

BLIP 51.5 51.5 51.5 51.5

OFA 12.6 12.6 15.0 13.4

ViLT 9.5 9.0 12.1 10.2

NLX-GPT 6.2 6.2 6.2 6.2

Table 4: VQA bias scores (%).

We introduced the Vision and Language Associa-
tion Test (VLAT) to measure how much models
tend to perform stereotypical associations. Table 4
reports the VL bias scores introduced in Eq. 3 for
all the dimensions.

According to our VL bias metric, BLIP is the
most biased model, while NLX-GPT is the least af-
fected. The bias associated with each social group
is consistent across all models. The only exception
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Male Female White Black Asian Indian Other 1-14 15-24 25-54 55-64 65+

ViLT 4.36 4.67 4.45 4.33 4.46 4.51 4.82 5.51 4.50 4.13 4.37 4.42

VisualBERT 2.70 2.69 2.74 2.59 2.68 2.55 2.92 2.78 2.37 2.69 2.75 2.89

Table 5: Detailed HONEST scores (%) across categories.

is that OFA and ViLT have higher scores for Age,
indicating that it is the most influential factor over
stereotyped associations.

The results show that, on average, all models
tend to associate men with Unpleasant, Arts, Ca-
reer, and Mental Disease, while women are more
associated with Pleasant, Math, Family, and Physi-
cal Disease. These associations partially confirm
both well-known social biases and the results of
(Caliskan et al., 2017). We confirmed the same
stereotypes for the concept of Career vs. Family.
However, we found a different pattern where men
are more associated with Arts and women with
Math.

With respect to ethnicity (see Appendix A.2), we
observed that Unpleasant is associated with non-
White populations, Arts is strongly associated with
Asian, Career with Indian, Family with Black and
Asian, Mental Disease with non-White populations
and Physical Disease with White and Indian pop-
ulations. All models agree in associating younger
subjects (1–14, 25–54) with Pleasant and older
ones (55–64, 65+) with Unpleasant. Themes like
Family, Career, and Mental Disease better relate to
the groups 1–14 and 55–64. These results are, thus,
confirming existing stereotypes.

3.3 Discussion

Our analysis reveals that pre-trained VL models
have varying degrees of bias, which can be at-
tributed to factors such as the models’ limited vari-
ety and lower responsiveness to visual input. Be-
cause the models have different training sets and
architectures, it is difficult to determine the exact
causes of the observed differences without full re-
training. We hypothesize that VilBERT’s larger and
more diverse training set contributes to its greater
response variety.

Further insights can be gleaned from the analysis
of fine-tuned language models. BLIP is trained on
VQA2.0 (Goyal et al., 2019) and Visual Genome
(Krishna et al., 2017) corpora, ViLT and OFA on
the VQA2.0 dataset, and NLX-GPT on the COCO
(Lin et al., 2014) dataset. In a study by Hiraoka
et al. (2022), Visual Genome and VQA2.0 were

found to contain the highest number of gender and
racial biased instances among VQA datasets. This
suggests that these biased datasets could be one of
the reasons why BLIP exhibited the highest level
of bias, with OFA and ViLT closely following. The
varying results between OFA and ViLT indicate
that biases can be amplified by the model architec-
ture, even when trained on the same dataset. More-
over, the lower performance of NLX-GPT provides
additional evidence that utilizing larger and more
diverse datasets can significantly mitigate biases.
Lastly, our study identifies specific dimensions of
bias that researchers should focus on when creat-
ing and testing datasets for fine-tuned models. Our
findings emphasize the importance of including
data points for a diverse range of demographic cat-
egories (e.g., 1-14, 65+) to improve demographic
coverage.

4 Related Work

While studied individually, bias is still an under-
studied problem in Vision and Language models.

Bias has been demonstrated to perpetuate in Nat-
ural Language Processing models in a variety of
languages and tasks both in word and contextual-
ized embeddings (Bolukbasi et al., 2016; Papakyri-
akopoulos et al., 2020; Li et al., 2020; Nangia et al.,
2020; Vig et al., 2020; Prates et al., 2020; Blodgett
et al., 2020; Shah et al., 2020; Sheng et al., 2021;
Nadeem et al., 2021; Nozza et al., 2021, 2022b,
inter alia).

Similarly, works in Computer Vision (Buo-
lamwini and Gebru, 2018) have studied the per-
formance of different gender classifiers over im-
ages of faces grouped by gender and skin tone,
showing a consistent difference in error rate at the
expense of darker-skinned females, who are the
worst-represented class.

The recent advancement in both Vision-
Language models has made it possible to design
new architectures (Huang et al., 2020; Li et al.,
2021; Tan and Bansal, 2019) for various cross-
modal tasks, e.g., image-sentence retrieval, image
captioning, visual question answering, and phrase
grounding.
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As a relatively new research direction, bias re-
search on VL models is, however, still in its in-
fancy.

Zhang et al. (2022) constructed a dataset of
counterfactual template-based image-text pairs for
measuring gender bias in pre-trained VL mod-
els. Then, they compared the difference between
masked prediction probabilities of factual and
counterfactual examples. E.g., the difference of
P ([MASK] = “shopping”) for the sentence The
gender is [MASK] between male and female in-
puts. Srinivasan and Bisk (2022) demonstrated that
VL models prefer to reinforce a stereotype over
faithfully describing the visual scene. They studied
how within- and cross-modality gender biases are
expressed using a set of template-based data on a
curated list of stereotypical entities (e.g., suitcase
vs. purse). Hirota et al. (2022) presented an exten-
sive study on investigating gender and racial bias
in VQA datasets. They demonstrate the presence
of harmful samples, denoting gender and racial
stereotypes. Zhou et al. (2022) measured stereo-
typical bias in pre-trained VL models by extend-
ing StereoSet, a text-only dataset proposed for de-
tecting stereotypes in language models (Nadeem
et al., 2021). They introduced VLStereoSet, a
benchmark comprising images depicting scenarios
that are either stereotypical or anti-stereotypical.
Each image is accompanied by three candidate cap-
tions, sourced from StereoSet, including one that is
stereotypical, one that is anti-stereotypical, and one
that is semantically meaningless. The underlying
assumption is that if a pre-trained VL model shows
a preference for the stereotypical statement, it signi-
fies a demonstration of stereotypical behavior. All
of the models they studied displayed stereotypical
behaviors across all categories (gender, profession,
race, and religion). Finally, Bianchi et al. (2023b)
demonstrated the extent of stereotypes and com-
plex biases present in image generation models
and the images generated by them. They show
that simple user prompts can generate thousands
of images that perpetuate dangerous stereotypes
based on race, ethnicity, gender, class, and intersec-
tionality. Moreover, their study revealed instances
of near-total amplification of stereotypes, and that
prompts referencing social groups result in com-
plex stereotypes that are challenging to mitigate.

Similar to our work, Berg et al. (2022) explored
bias metrics to measure gender and racial bias in
facial images on contrastive pretraining VL model

such as CLIP (Radford et al., 2021). They adapted
WEAT to VL models and proposed ranking metrics
for the text-image retrieval downstream task. Addi-
tionally, they introduced a supervised adversarial
debiasing technique, which exhibited a significant
reduction according to the employed metrics.

Our study overcomes existing ones by proposing
an analysis of bias in different dimensions (gender,
ethnicity, age) both at pre-trained and task-specific
levels, i.e., visual question answering.

5 Conclusions

This paper presents the first investigation on bias
in Vision-Language models that focus on multi-
ple dimensions (i.e., gender, ethnicity, and age)
and analyzes the downstream application of visual
question answering. This work extends the method-
ologies of state-of-the-art bias evaluation metrics
(Nozza et al., 2021; Caliskan et al., 2017) to the
multi-modal vision and language framework. Our
experiments have shown the presence of noticeable
biases in many vision and language models with po-
tentially harmful consequences. In future work, we
aim to broaden both the model and the language
coverage, as well as to develop a bias detection
pipeline that can be automatically run whenever a
new VL model is released (Nozza et al., 2022a).

Limitations

The findings of this work are limited and dependent
on the presented experiments. The image dataset
may be biased since the gender, ethnicity, and age
were estimated by the DEX algorithm (Rothe et al.,
2015) and checked by the authors. Despite our best
effort, the employed templates could still contain
some latent bias that limits the variability and valid-
ity of the completions at inference time. Since the
study was conducted only in English, the insights
can be considered valid only for this language.

Ethical Statement

One main concern with bias in VL is the poten-
tial harm it can cause to marginalized communities.
Biased VL models can perpetuate and amplify ex-
isting societal inequalities and injustices. This can
result in discrimination against certain groups of
people, such as racial and gender minorities, peo-
ple with disabilities, and more. In particular, we
are concerned about the use of VL in areas such
as content moderation, hiring decisions, and crimi-
nal justice. Biased models used in these contexts
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can have serious consequences, such as wrongful
censorship or discrimination against certain job ap-
plicants. While we acknowledge that the specific
harms we fear may not always be likely to occur,
we believe it is important to prioritize ethical con-
siderations and strive for the highest possible stan-
dards of fairness and inclusivity in VL research and
applications.

This work contains harmful language and stereo-
typed statements, which are only intended as exam-
ples to showcase the possible negative connotations
of the analyzed models and experiments. Every
social, ethical, religious, or political statement or
association is to be interpreted within the purpose
of the experiment and condemned otherwise. We
are aware of our approach’s shortcomings in terms
of the binary consideration of our gender analysis.
This is due to data and linguistic limitations rather
than a value judgment.
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A Bias in fine-tuned VL downstream
models

A.1 Templates
In order to avoid any strong bias with the question
templates, we designed 5 different templates:

• Does this person value [TARGET]?

• Does this person like [TARGET]?

• Does this person enjoy [TARGET]?

• Does this person appreciate [TARGET]?

• Does this person encourage [TARGET]?

where [TARGET] refers to the target concepts
proposed in (Caliskan et al., 2017). Therefore some
examples of questions are: "Does this person en-
courage marriage?", "Does this person like alge-
bra?".
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Model Social group Pleasant Unpleasant Arts Math Career Family Mental
Disease

Physical
Disease

ViLT Ethnicity White Black Asian Indian Indian Asian Asian Indian
BLIP Ethnicity Asian Black Asian Other Indian Black Asian White
OFA Ethnicity Other Asian Asian White Indian Black Black White

NLX-GPT Ethnicity Black Other Asian White Black Asian Other Indian

ViLT Age 25-54 65+ 65+ 1-14 55-64 1-14 65+ 1-14
BLIP Age 1-14 65+ 15-24 55-64 1-14 55-64 1-14 65+
OFA Age 25-54 65+ 1-14 65+ 55-64 1-14 1-14 55-64

NLX-GPT Age 25-54 55-64 55-64 1-14 55-64 1-14 1-14 15-24

Table 6: The most associated ethnical and age groups by model and bias concept

A.2 Additional Results
The most associated age and ethnic groups by
model and bias concept are shown in Table 6.
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