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Abstract

The BERT model and its variants have made
great achievements in many downstream natu-
ral language processing tasks. The achieve-
ments of these models, however, demand
highly expensive pre-training computation cost.
To address this pre-training efficiency issue,
the ELECTRA model is proposed to use a dis-
criminator to perform replaced token detection
(RTD) task, that is, to classify whether each
input token is original or replaced by a gener-
ator. The RTD task performed by the ELEC-
TRA accelerates pre-training so substantially,
such that it is very challenging to further im-
prove the pre-training efficiency established
by the ELECTRA by using or adding other
pre-training tasks, as the recent comprehensive
study of Bajaj et al. (2022) summarizes. To fur-
ther advance this pre-training efficiency fron-
tier, in this paper we propose to extend the RTD
task into a task of ranking input tokens accord-
ing to K different quality levels. Essentially,
we generalize the binary classifier in the ELEC-
TRA into a K-level ranker to undertake a more
precise task with negligible additional compu-
tation cost. Our extensive experiments show
that our proposed method is able to outperform
the state-of-the-art pre-training efficient mod-
els including ELECTRA in downstream GLUE
tasks given the same computation cost.

1 Introduction

Language model pre-training has made great
achievements in many natural language process-
ing (NLP) downstream tasks, by designing and
using effective pre-training tasks. A milestone is
the BERT model, which conducts a masked lan-
guage model (MLM) task by randomly masking
a proportion (typically 15%) of tokens in the in-
put sentence and then recover the original sentence.
Since the success of the BERT, many variant mod-
els (Liu et al., 2019; Joshi et al., 2019; Wang et al.,
2019; Yang et al., 2019; Dong et al., 2019; Wu
et al., 2020) have been proposed to further improve

the performance of the BERT by refining or adding
pre-training tasks.

One common issue of these MLM-based mod-
els, however, is the pre-training efficiency, because
they all need highly expensive pre-training com-
putation cost to achieve good performance. To
address this issue, the ELECTRA model is pro-
posed by Clark et al. (2020b). The ELECTRA uses
an auxiliary generator network to provide plausi-
ble tokens to replace a proportion (typically 15%)
of the original tokens according to the input con-
text, and then utilizes a main discriminator network
to perform replaced token detection (RTD) task,
that is, to classify whether each token is original
or replaced by the generator. In order to prevent
the generator from producing replaced tokens over-
challenging for the training of discriminator, the
ELECTRA make the generator relative weaker than
the discriminator by decreasing the hidden size of
the generator. After its pre-training, the generator
is discarded and the discriminator is further fine-
tuned for downstream NLP tasks. The ELECTRA
has shown impressive advantages over MLM-based
models in various downstream tasks under similar
computation cost, especially when a model size is
small.

After the success of the ELECTRA, researchers
have proposed quite a few models each of which
has an auxiliary generator network. Because the
RTD task performed by the ELECTRA has accel-
erated pre-training so substantially, however, it is
very challenging to advance the efficiency frontier
established by the ELECTRA, by using or adding
other pre-training tasks, as the recent comprehen-
sive study of Bajaj et al. (2022) summarizes. Thus,
to further improve the pre-training efficiency, we
propose to extend the RTD task in the ELECTRA
into a token quality ranking (TQR) task, a task
of ranking input tokens according to K different
quality levels. Besides determining whether each
input token is replaced by a generator or not, the
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TQR task also needs to distinguish replaced tokens
by ranking them according to their replacement
quality. We call our method PEER, Pre-training
ELECTRA Extended by Ranking. Please refer to
Figure 1 for demonstration. Our proposal is based
on the key observation that the quality of replaced
tokens are not even. While some replaced tokens
fit the context nearly as well as the corresponding
original tokens, others do not. Thus, our PEER
generalizes the binary classifier in the ELECTRA
into a K-level ranker to perform a more precise
task. We design a scheme capable of retrieving
rank labels for a majority of replaced tokens from
the relative weak generator, which serves as the
basis for the TQR task. The extension from the
ELECTRA to the PEER also adds negligible com-
putation cost, because the TQR task largely re-uses
the computation already performed by the original
ELECTRA. Additionally, our PEER adopts partial
transformer-layer sharing technique between gener-
ator and ranker to further reduce computation cost
in our method, as its advantage has been demon-
strated in the TEAMS model (Shen et al., 2021),
a recent model proposed to improve the ELEC-
TRA. Our extensive experiments in small and base
scale models show that the PEER is able to out-
perform both the ELECTRA and the TEAMS in
downstream GLUE tasks using the same or less
computation cost.

2 Related Work

As introduced in Section 1, since ELECTRA (Clark
et al., 2020b) greatly boosts the pre-training effi-
ciency, a few models have been proposed in order
to further advance this pre-training efficiency fron-
tier.

The Electric model is proposed by Clark et al.
(2020a) as an energy-based model to perform the
cloze task (Taylor, 1953) using noise-contrastive
estimation (Gutmann and Hyvärinen, 2012). It is
particularly effective at producing likelihood scores
for text but slightly under-performs ELECTRA on
the GLUE tasks.

The MC-BERT model is proposed by Xu et al.
(2020) to replace the RTD binary classification task
in ELECTRA with a multi-choice cloze test with
a reject option (which is essentially a multi-class
classification task). The MC-BERT consists of a
meta controller network and a generator network.
The meta controller corrupts the original input sen-
tence by replacing a proportion of tokens with sam-

pled tokens, just as ELECTRA’s generator does.
Meanwhile, the meta controller also generates a set
of k candidate tokens for each token in the input
sentence. The generator uses the corrupted sen-
tence as the input and learns to correct each token
by choosing the correct answer among its k candi-
dates. Xu et al. (2020) empirically show that the
overall performance of the MC-BERT is similar to
that of the ELECTRA in GLUE tasks, since the
MC-BERT outperforms the ELECTRA in GLUE
semantic tasks but is worse than the ELECTRA in
the GLUE syntactic task CoLA.

COCO-LM (Meng et al., 2021) is proposed to
improve ELECTRA by using two new pre-training
tasks called corrective language modeling (CLM)
task and sequence contrastive learning (SCL) task.
While ELECTRA’s main network (discriminator)
conducts only RTD task for each token position,
COCO-LM’s main network undertakes the CLM
task by jointly performing both RTD task and
MLM task for each token position in the corrupted
input. Additionally, COCO-LM’s main network
also performs the SCL task to find a pair of the
MLM replaced sentence and the cropped sentence
originated from the same source sentence among
all other sentences in the same training batch.

The DeBERTaV3 (He et al., 2021) is proposed
to combine both the advantages of the DeBERTa
model (He et al., 2020) and those of the ELEC-
TRA. The DeBERTa (He et al., 2020) introduces
two novel mechanisms to improve the effectiveness
of the MLM task: disentangled attention and an
enhanced mask decoder. The disentangled atten-
tion computes the attention weights among tokens
using disentangled matrices on two separate vec-
tors (content vector and relative position vector)
of each token, while an enhanced mask decoder
includes absolute positions in the decoding layer
to predict the masked tokens. The DeBERTaV3
keeps these mechanisms but replaces the MLM task
(used in the DeBERTa) with ELECTRA’s RTD task,
and shows that the new combination outperforms
both the original DeBERTa and the ELECTRA.
Additionally, the DeBERTaV3 introduces gradient-
disentangled embedding sharing method as a better
alternative to the vanilla token embedding sharing
used in the ELECTRA.

The SAS (self-augmentation strategy) is pro-
posed by Xu et al. (2021) in order to improve
ELECTRA’s pre-training efficiency from the per-
spective of data augmentation. The SAS uses a sin-
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Figure 1: Demonstration of PEER with a 3-level ranker.

gle network to jointly conduct MLM and RTD tasks
in order to reduce computation cost and regularize
the model parameters for training balance. Essen-
tially, the generator and the discriminator share all
their transformer layers in the SAS, and only two
separate light-weight heads (MLM and RTD heads)
are built on top of the common heavy-weight trans-
former layers. The MLM head also samples one
token in each selected position in order to generate
the corrupted input used for the next epoch of the
pre-training. The SAS is empirically shown by Xu
et al. (2021) to outperform the ELECTRA in small
models in GLUE tasks given the same computa-
tion cost, but such an advantage vanishes in larger
models.

The TEAMS is proposed by Shen et al. (2021)
to improve the ELECTRA by adding a multi-word
selection (MWS) task along with the original RTD
task. Similar to the MC-BERT, the MWS task,
which is a multi-choice cloze test, is conducted to
choose one correct answer from a candidate set
of tokens provided from the generator. Different
from the MC-BERT, however, the candidate set in
the TEAMS does not contain a reject option, since
the MWS task is only performed at the masked
positions (instead of all positions). Besides adding
the MWS task, the TEAMS introduces two refine-
ments to model structure. One is to share bottom
transformer layers of the generator and the discrim-
inator, the other is to use separate top transformer
layers for RTD head and MWS head. Both refine-
ments have been empirically shown to be able to
further improve the performance of the TEAMS.

Recently, Bajaj et al. (2022) conduct a compre-
hensive empirical study of ELECTRA-style pre-
training techniques, and propose a corresponding
pre-training recipe for Model-generated dEnoising

TRaining Objective (METRO). Their pre-training
recipe incorporates a set of techniques to improve
the efficiency and stability of large scale model pre-
training, such as the ZeRO optimizer (Rajbhandari
et al., 2020), scaled initialization techniques, cus-
tomized Fused Operations in mix-precision train-
ing. In terms of pre-training tasks, however, the em-
pirical study by Bajaj et al. (2022) shows that many
previously proposed tasks, such as multi-choice
cloze test (Xu et al., 2020), CLM and SCL (Meng
et al., 2021), do not provide much improvement for
the RTD task in GLUE and SQuAD tasks.

3 Method

In this section, we describe our PEER method,
which extends the binary discriminator of the
ELECTRA into a ranker. Our PEER method jointly
trains two neutral networks, an auxiliary gener-
ator network G and a main ranker network R.
Each network is mainly a Transformer encoder
(Vaswani et al., 2017), which transforms an in-
put token sequence x = (x1, x2, · · · , xn) into a
sequence of contextualized representation vectors
h(x) = (h(x)1, h(x)2, · · · , h(x)n).

3.1 Generator in PEER

The generator G in the PEER works exactly the
same as the generator in the ELECTRA. It first
randomly selects a proportion (typically 15%) of
position indexes {1, · · · , n} to produce a masked
position set M. It then generates a masked to-
ken sequence xM by replacing xi in x with a spe-
cial mask token [MASK] for each i ∈ M. After-
wards, the generator G transforms the input xM

into hG(x
M ) through transformer layers. For po-

sition i, the token generating probability of any
token xv given the context xM is produced from a
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softmax function as follows:

p
(i)
G (xv|xM ) =

exp{e(xv)ThG(xM )i}∑
x′∈V exp{e(x′)ThG(xM )i}

,

(1)
where e(xv) is the embedding of token xv, and V is
the vocabulary. The inner product e(xv)ThG(xM )i
in E.q. (1) is essentially a logit of token xv at posi-
tion i given the context xM , denoted as

logit(i)(xv|xM ) := e(xv)
ThG(x

M )i, (2)

which will be also used in our ranker.
The loss of the MLM task LMLM (x; θG) is a

cross entroy loss (i.e., negative log likelihood):

LMLM (x; θG) = −
∑

i∈M
log p

(i)
G (xi|xM ).

For each position i in M, the generator also sample
one token x̂i from the token generating probability
p
(i)
G (·|xM ), and then replace the original token xi

with the sampled x̂i to produce a corrupted token
sequence xC .

3.2 Ranker in PEER

Given the corrupted token sequence xC , the K-
level ranker performs token quality ranking (TQR)
task, that is, assigns each token in xC into a rank
value r ∈ {1, 2, . . . ,K}.

Assuming that rank label Ri at position i of the
corrupted token sequence xC is given, for rank
value r ∈ {1, 2, . . . ,K − 1}, the probability that
Ri ≤ r is given:

P (Ri ≤ r|xC) = σ(−wThR(x
C)i + ξr), (3)

where σ is a sigmoid function, hR(xC)i is the con-
textualized representation vector at position i out
of the ranker transformer, w is the to-be-learned
weight vector, {ξ1, ξ2, . . . , ξK−1} is a set of to-
be-learned threshold parameters with the property
ξ1 < ξ2 < · · · < ξK−1.

The binary discriminator in the ELECTRA can
be viewed as a ranker with K = 2, where rank
label Ri is naturally given by

{
Ri = 1 if xci ̸= xi
Ri = 2 if xci = xi

where xci is the token at position i in xC .
Accordingly, the loss of the TQR task with K =

2 levels is a binary cross entropy loss:

LTQR(x; θR)

=−
[ n∑

i=1

(
I[Ri ≤ K − 1]·

logP (Ri ≤ K − 1|xC)

+ I[Ri > K − 1] logP (Ri > K − 1|xC)
)]

,

(4)

where I[] is an indicator function.

3.2.1 Rank Label Retrieving Scheme
In order to use a ranker with K > 2, we need to
assign a rank label Ri to each xci , the token at po-
sition i in xC . Thus, we design a label retrieving
scheme to obtain rank labels from the generator.
For notational convenience, we use p

(i)
o to denote

p
(i)
G (xi|xM ), the generating probability of the orig-

inal token xi at position i in the context; and use
p
(i)
c denote p(i)G (xci |xM ), the generating probability

of any token xci at position i in the context. We
use rank(p(i)o ) ≤ T to represent that p(i)o is within
top T out of all |V | probabilities from p

(i)
G (·|xM ),

where T is a hyperparameter with a small value1.
Our rank label retrieving scheme is shown in Ta-

ble 1, where {τ1, τ2, · · · , τK−2} are a set of proba-
bility partitioning hyperparameters with property
0 < τ1 < τ2 < · · · < τK−2.2 We set the rank
label of the original token to the highest value K.
For each replaced token xci (which differs from xi),
we set up the levels (buckets) based on p

(i)
o and

{τ1, τ2, · · · , τK−2}, so that the rank label of xci is
set according to the bucket which p

(i)
c will fall into.

Note, however, just as the ELECTRA, the gener-
ator in our PEER is set to be weak (small) relative
to the ranker in order to prevent generating too-
challenging replaced tokens. Therefore we use the
condition rank(p(i)o ) ≤ T to identify every position
i where the generator can provide well-estimated
probability p

(i)
G (·|xM ) for tokens xi and xci . For ev-

ery replaced token xci at position i where rank(p(i)o )
> T , we just set its rank label to a special value −1
to indicate that its rank is less than K but the exact
rank value is unknown.3

1We set T to 3 in our experiments.
2We always set τ1 to 1 for a ranker with K > 2 in our

experiments.
3Appendix A.3 will show that a majority of tokens in the

masked positions have their rank labels other than −1 when
T is set to 3 in both small and base models.
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Ri Condition
K xci = xi

K − 1 p
(i)
c ∈ [p

(i)
o /τ1, 1] ∧ xci ̸= xi ∧ rank(p(i)o ) ≤ T

K − 2 p
(i)
c ∈ [p

(i)
o /τ2, p

(i)
o /τ1) ∧ xci ̸= xi ∧ rank(p(i)o ) ≤ T

· · · · · ·
2 p

(i)
c ∈ [p

(i)
o /τK−2, p

(i)
o /τK−3) ∧ xci ̸= xi ∧ rank(p(i)o ) ≤ T

1 p
(i)
c ∈ [0, p

(i)
o /τK−2) ∧ xci ̸= xi ∧ rank(p(i)o ) ≤ T

-1 xci ̸= xi ∧ rank(p(i)o ) > T

Table 1: Rank label retrieving scheme for a K-level ranker in PEER.

Ri Condition
K xci = xi

K − 1 logit(i)(xci |xM )− logit(i)(xi|xM ) ∈ [− log τ1,∞) ∧ xci ̸= xi ∧ rank(p(i)o ) ≤ T

K − 2 + ∆ logit(i)(xci |xM )− logit(i)(xi|xM ) ∈ [− log(τ1(1 + δ)),− log τ1) ∧ xci ̸= xi ∧ rank(p(i)o ) ≤ T

K − 2 logit(i)(xci |xM )− logit(i)(xi|xM ) ∈ [− log τ2,− log(τ1(1 + δ)) ∧ xci ̸= xi ∧ rank(p(i)o ) ≤ T
· · · · · ·
2 logit(i)(xci |xM )− logit(i)(xi|xM ) ∈ [− log τK−2,− log(τK−3(1 + δ))) ∧ xci ̸= xi ∧ rank(p(i)o ) ≤ T

1 + ∆ logit(i)(xci |xM )− logit(i)(xi|xM ) ∈ [− log(τK−2(1 + δ)),− log τK−2) ∧ xci ̸= xi ∧ rank(p(i)o ) ≤ T

1 logit(i)(xci |xM )− logit(i)(xi|xM ) ∈ (−∞,− log(τK−2(1 + δ)))) ∧ xci ̸= xi ∧ rank(p(i)o ) ≤ T

−1 xci ̸= xi ∧ rank(p(i)o ) > T

Table 2: Rank label retrieving scheme internally implemented for a K-level ranker in PEER, along with an additional
buffer option associated with hyperparameter δ.

For the purpose of numerical stability, determin-
ing which bucket p(i)c falls into (in Table 1) is ac-
tually implemented using its equivalent form on
the basis of the logit difference: logit(i)(xci |xM )−
logit(i)(xi|xM ), where both logit terms are defined
in E.q. (2). Additionally, in Table 2 we also intro-
duce a buffer option between level k and level k+1
for each k ∈ {1, · · · ,K − 2} to further safe-guard
against the relative weakness of the generator. All
the data points in the buffer are regarded as being
in a grey (potentially noisy) area and are excluded
for the binary classification between level k and
level k+ 1. If we want to use the buffer option, we
add a positive hyperparameter δ inside the relevant
buckets4 to set up the buffers and add a small fixed
value ∆ ∈ (0, 1) to the corresponding rank label5.
A larger value of δ leads to the smaller number
of the training data points, but adds confidence in
removing potentially noisy data points. If we do
not want to use the buffers, we set hyperparameter
δ equal to 0 so that these buffers will disappear.

4The hyperparameter δ needs to satisfy the condition that
τk(1 + δ) ≤ τk+1 for each k ∈ {1, · · · ,K − 3}.

5We internally set ∆ to 0.1 though its exact value does not
matter.

3.2.2 Loss of TQR Task

Because some replaced tokens have their exact rank
labels unknown (represented by the special value
−1), the loss of the TQR task cannot be directly
formulated as the loss of standard ordinal regres-
sion (McCullagh and Nelder, 1989). To address
this challenge, we set the loss of the TQR task with
K levels to be the summation of K−1 binary cross
entropy losses:

LTQR(x; θR)

=−
[ n∑

i=1

(
I[Ri ≤ K − 1]·

logP (Ri ≤ K − 1|xC)

+ I[Ri > K − 1] logP (Ri > K − 1|xC)
)
+

K−2∑

r=1

γr
∑

i∈{1,··· ,n}
i:Ri ̸=−1

(
I[Ri ≤ r] logP (Ri ≤ r|xC)

+ I[Ri > r +∆] logP (Ri > r|xC)
)]

,

(5)
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where γr is a positive relative weight hyperparam-
eter for the binary cross entropy loss at level r 6

Essentially, LTQR contains both the loss of RTD
task stated in E.q. (4) and each binary entropy loss
at level r ∈ {1, · · · ,K − 2}.

We set the loss of the TQR task to the summation
of K − 1 binary cross entropy losses in E.q. (5) in
the entire pre-training process except a beginning
warming-up phase. In the warming-up phase7 we
still use only one binary cross entropy stated in
E.q. (4) as the loss of the TQR task, in order to
ensure that the generator gets some basic training
so that its token generating probability p

(i)
G (·|xM )

is generally reliable for the rank labeling purpose.
Overall, we train the PEER by minimizing a

combined loss:
∑

x∈X
LMLM (x; θG) + λLTQR(x; θR),

where λ is the relative weight for the loss of TQR
task8. After pre-training, we discard the generator
and fine-tune the ranker for downstream NLP tasks.

As an additional note, extending the ELEC-
TRA to the PEER requires negligible increase
in computation cost. The only added parame-
ters in our PEER are K − 1 threshold parameters
{ξ1, ξ2, . . . , ξK−1}. The same sequence contextu-
alized representation vectors hR(x

C) out of the
ranker transformer is re-used for different levels,
along with the shared weight parameter vector w
in E.q. (3). The Ri labeling is also based on the
logit information in E.q. (2) which has already been
computed for p(i)G (·|xM ) in the generator.

4 Experiments

4.1 Experimental Setup
Pre-training Details: We implement the PEER
within Huggingface Transformers framework
(Wolf et al., 2020). We include ELECTRA,
TEAMS as well as BERT for comparison. Un-
der the current constraints of computation resource,
we focus on the small and base models which have
been extensively studied and compared by Clark
et al. (2020b), and we set architectures and hyper-
parameters largely aligned with ELECTRA. Please
refer to Appendix B for the detailed model architec-
ture and pre-training hyperparameter values. We

6We set every γr to 0.5 in our experiments.
7We use the first 0.8 epoch as the warming-up phase in our

experiments.
8We set λ to 50 in our experiments.

implement each model by largely re-using the cor-
responding code from Huggingface (Wolf et al.,
2020), if a pre-trained checkpoint has not been
publicly released by its authors. We use the same
pre-training data as BERT, ELECTRA-Small and
ELECTRA-Base, which consists of 3.3 Billion to-
kens from Wikipedia and BooksCorpus datasets.
For fair comparison, we follow Clark et al. (2020b)
to use FLOPs (floating point operations) to mea-
sure computation usage (since FLOPs is a measure
agnostic to the particular hardware and low-level
optimizations). We reuse the FLOPs computation
code9 released from Clark et al. (2020b) so that
we essentially take the exactly same assumptions
made by Clark et al. (2020b). Some details of the
experimented models are as follows.

• ELECTRA: We pre-train ELECTRA-Small
and ELECTRA-Base using the exactly same
hyperparameter values as Clark et al. (2020b),
except for larger batch size and learning
rate for ELECTRA-Small to reduce the pre-
training time (which is not reflected in the
FLOPs calculation). For ELECTRA-Small
model as well as all other small models, we
use batch size 512 and 250K pre-training
steps, instead of batch size 128 and 1M steps
in Clark et al. (2020b). Accordingly, we add
100% increase in learning rate for ELECTRA-
Small and BEET-Small, and add 50% increase
in learning rate for TEAMS-Small and PEER-
Small 10. We observe that the change in batch
size and learning rate is able to significantly
reduce the pre-training time without degrad-
ing the model performance. As a reference
point, we also include ELECTRA-Small++
whose pre-trained model checkpoint is pub-
licly released by Clark et al. (2020b). Note
that ELECTRA-Small++ uses 18x training
FLOPs compared to ELECTRA-Small, be-
cause it is pre-trained much longer with much
larger data and its input sequence length is
also quadrupled (Clark et al., 2020b).

• BERT: For BERT-Base, we use its model
checkpoint publicly released by Devlin et al.
(2018). We implement our BERT-Small and
set its embedding size the same as its hid-

9See https://github.com/google-research/
electra/blob/master/flops_computation.py

10We find that 100% increase in learning rate for TEAMS-
Small or PEER-Small often leads to some overflow errors
during their pre-training.
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den size11, according to the convention of the
BERT models. Please refer to the appendix
for the details about the hyperparameters. Our
BERT-Small setting makes its FLOPs similar
to that of ELECTRA-Small when the training
steps are the same, so that fair comparison of
their performance can be made directly.

• TEAMS: We pre-train TEAMS-Small and
TEAMS-Base using the same hyperparameter
values described by Shen et al. (2021), except
the aforementioned larger batch size and learn-
ing rate. The model structures of TEAMS-
Small and TEAMS-Base are also the same as
the ones used by Shen et al. (2021). Specifi-
cally, the discriminator in TEAMS-Small has
12 transformer layers and set its hidden size to
256; and the discriminator in TEAMS-Base
has 12 transformer layers and set its hidden
size to 768. The generator has 6 transformer
layers and set its hidden size same as the cor-
responding discriminator. The generator and
the discriminator share three layers on the bot-
tom, the discriminator also has one additional
separate transformer layer on the top for its
MWS task.

• PEER: We pre-train PEER using the hyper-
parameter values the same as TEAMS. With
respect to hyperparameter δ, we set it to 3 in
PEER-Small and set it to 9 in PEER-Base for
model comparison, and discuss the effect of δ
in Appendix A.2 due to space constraint. We
focus on the PEER with 3-level ranker, and
discuss the effect of the number of levels in
Appendix A.1. The model structures of the
PEER are the same as the TEAMS, except
that there is no additional transformer layer
for MWS task in the PEER. This difference
makes FLOPs per training step in the PEER
smaller than the ones of the corresponding
TEAMS. However, FLOPs per training step
in the PEER are still larger than the ones of
the corresponding ELECTRA. This is largely
because the generator in the ELECTRA de-
creases its hidden size (instead of its number
of transformer layers), which in turn leads to
the decrease in the intermediate size in every
fully connected feed-forward network (FFN).

11Clark et al. (2020b) define a different BERT-Small setting
where its embedding size is decreased to half of its hidden
size.

We will clearly record these training FLOPs
in our experimental results and ensure that our
PEER uses FLOPs no more than other models
during the performance comparison.

Downstream Tasks and Metrics: We evaluate
all models on the General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2018).
It contains a variety of tasks covering natural lan-
guage inference tasks MNLI (Williams et al., 2017),
QNLI (Rajpurkar et al., 2016) and RTE (Giampic-
colo et al., 2007); semantic similarity tasks MRPC
(Dolan and Brockett, 2005), QQP (Iyer et al., 2017),
and STS-B (Cer et al., 2017); sentiment classifica-
tion task SST-2 (Socher et al., 2013); and linguistic
acceptability classification CoLA (Warstadt et al.,
2019). See Appendix C.1 for more details on the
GLUE tasks.

The evaluation metrics are the average of MNLI-
match accuracy and MNLI-mismatch accuracy for
MNLI, the average of Spearman correlation and
Pearson correlation for STS-B, Matthews correla-
tion for CoLA, and accuracy for other GLUE tasks.
We also take the average of metrics of these eight
GLUE tasks, denoted by G-AVG, as the overall per-
formance metric on these tasks. All the evaluation
is based on the Dev dataset.

Fine-tuning Procedure: For the fine-tuning of
GLUE tasks, we add simple linear classifiers on
top of the encoder of a pre-trained model. Because
we observe a large performance variance in the
GLUE tasks with small data sizes (including CoLA,
MRPC, STS-B and RTE), we adopt the following
two methods to reduce the variance. First, we fol-
low the strategy proposed in the papers (Mosbach
et al., 2020; Zhang et al., 2020; Dodge et al., 2020)
to train more epochs with small learning rates for
these small tasks. Second, we fine-tune these small
tasks by using multiple random seeds and obtain
the average score across the seeds. Please refer to
Appendix C for the details in fine-tuning hyperpa-
rameter settings.

For base models, we pre-train each model once
and then use the above fine-tuning strategy to ob-
tain the score of each GLUE task. Since for some
small models we still observe non-negligible vari-
ance of the resulting scores, we pre-train each small
model using five different random seeds. The fi-
nally reported score of each task is the average
across the five pre-trained model checkpoints.
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Model Train
FLOPs

G-AVG
Mean±Std

MNLI CoLA SST-2 MRPC STS-B QQP QNLI RTE

BERT-Small 1.27e18 79.11±0.08 79.97 49.53 90.09 84.52 86.15 89.57 86.79 66.23
ELECTRA-Small 1.29e18 80.77±0.16 80.22 59.40 89.19 86.48 86.72 89.93 88.27 65.99
ELECTRA-Small++* 2.40e19 82.05 82.52 58.37 91.40 87.01 87.95 90.54 88.93 69.68
TEAMS-Small 1.55e18 80.84±0.23 81.05 55.83 89.81 87.71 87.34 89.72 88.31 66.94
PEER-Small (212.5K) 1.27e18 81.40±0.25 81.08 59.70 89.40 87.99 87.70 90.12 88.45 66.71
PEER-Small (250K) 1.50e18 81.50±0.30 81.19 59.66 89.29 88.09 87.66 90.15 88.55 67.44

*: ELECTRA-Small++ is the pre-trained model publicly released by Clark et al. (2020b).

Table 3: Comparison of small models on the GLUE dev set.

Model Train
FLOPs

G-AVG MNLI CoLA SST-2 MRPC STS-B QQP QNLI RTE

BERT-Base (1M)* 6.43e19 83.51 84.51 60.07 93.00 86.03 89.51 91.27 91.51 72.20
ELECTRA-Base (766K) 6.43e19 86.42 85.96 67.05 92.09 91.05 90.47 91.57 92.10 81.05
TEAMS-Base (666.9K) 6.66e19 86.11 86.48 66.30 93.00 90.44 90.22 91.38 92.36 78.70
PEER-Base (666.9K) 6.39e19 86.77 86.69 68.57 92.66 91.18 90.92 91.78 92.57 79.78

*: BERT-Base is the pre-trained model publicly released by Devlin et al. (2018).

Table 4: Comparison of base models on the GLUE dev set.

4.2 Overall Comparison Results

Table 3 shows the performance comparison among
the small models. In the table, the second column
lists the training FLOPs of each model, and the
third column shows the mean and the standard de-
viation of the G-AVG for each model across five
independently pre-trained checkpoints. We report
the performance of each small model pre-trained
through 250K steps (i.e., 5 epochs). Additionally,
we report the performance of PEER-Small pre-
trained exactly after 212.5K steps to ensure that
its computation cost is no more than that of any
other competitor.

Note that the G-AVG of ELECTRA-Small imple-
mented by us is about 98.44% of that of ELECTRA-
Small++ released by Clark et al. (2020b) (80.77
vs. 82.05), which is higher than the 97.87% in
Table 8 of the original paper (Clark et al., 2020b).
This verifies the correctness of our ELECTRA im-
plementation. As for TEAMS-Small, the G-AVG
of TEAMS-Small is slightly higher than that of
ELECTRA-Small when they go through the same
number of pre-training steps, which is consistent
with the comparison results shown by Shen et al.
(2021). While Shen et al. (2021) do not report
the performance of each individual task, our result
shows that TEAMS-Small performs much better
in MNLI task but much worse in CoLA task when
comparing with ELECTRA-Small.

With respect to our PEER, Table 3 clearly
demonstrates its advantages over all the other com-
petitors in small models. Using less computa-

tion cost, PEER-Small (212.5K) outperforms both
ELECTRA-Small and TEAMS-Small in six out
of eight GLUE tasks, as SST-2 and RTE tasks are
the only two exceptions. The G-AVG of PEER-
Small (212.5K) is 0.63 point higher than that of
ELECTRA-Small and is 0.56 point higher than
that of TEAMS-Small. Because we have inde-
pendently run the whole (pre-training and fine-
tuning) process five times for each small model,
by using the two-sample t test with unequal vari-
ances, we can conclude with strong evidence (at
the significance level 0.005) that the real mean
of G-AVG of our PEER-Small (212.5K) is larger
than that of ELECTRA-Small. Similarly, based on
the two-sample t test with unequal variances, we
can conclude with strong evidence (at the signif-
icance level 0.005) that the real mean of G-AVG
of our PEER-Small (212.5K) is larger than that of
TEAMS-Small.

Table 4 shows the comparison results on the
base models. In the first column of the table, we
show the pre-training steps of each model and have
ensured that PEER-Base takes FLOPs no more than
other models. Using less computation cost, PEER-
Base achieves the best performance among all the
investigated models in six out of eight GLUE tasks,
while two exceptions are SST-2 and RTE tasks (just
as in small models). Overall, PEER-Base has the
highest G-AVG, which is 0.35 point higher than
that of ELECTRA-Base and is 0.66 point higher
than that of TEAMS-Base.
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Figure 2: G-AVG for PEER-Small model and its com-
petitors with respect to the number of pre-training
epochs on the GLUE dev set.

4.3 Pre-Training Efficiency

To further investigate the pre-training efficiency,
in Figures 2 and 3, we plot G-AVG and MNLI
accuracy score with respect to the number of pre-
training epochs for PEER-Small, ELECTRA-Small
and TEAMS-Small. For each model, we select
the median run whose pre-training random seed
achieves the median G-AVG among the five ran-
dom seeds. Then for the selected median run of
each model, we save a checkpoint every epoch (i.e,
50K pre-training steps), and fine-tune it on every
GLUE task and finally report the scores across the
tasks. Note that the ratio of the training FLOPs
per epoch among PEER-Small, ELECTRA-Small
and TEAMS-Small is 1.50 : 1.29 : 1.55, which
has also been shown in Table 3. Figure 2 shows
that PEER-Small starts to significantly outperform
its competitors in G-AVG since the second epoch,
and its G-AVG at the end of third epoch is already
higher than G-AVG of both ELECTRA-Small and
TEAMS-Small at the end of the whole pre-training.
Figure 3 shows that both PEER-Small and TEAMS-
small perform considerably better than ELECTRA-
Small in MNLI task, and PEER-Small performs
better than TEAMS-small (by using less computa-
tion cost) since the third epoch.

5 Conclusion and Future Work

We propose the PEER by extending ELECTRA’s
RTD task to a token quality ranking (TQR) task in
order to further improve the pre-training efficiency.
Besides detecting whether every token is replaced
or not, the TQR task also needs to rank replaced to-
kens into different levels according to their quality

Figure 3: MNLI’s average accuracy for PEER-Small
model and its competitors with respect to the number of
pre-training epochs on the GLUE dev set.

given the context. We design a scheme to retrieve
rank label information from the generator so that
the complete TQR task can be performed for a ma-
jority of replaced tokens. We empirically show
that our proposed PEER outperforms the state-of-
the-art pre-training efficient competitors in small
and base scale models using the same or less com-
putation cost. In the future, we will validate the
advantages of our PEER in larger scale models
when sufficient computation resources are avail-
able. We also plan to improve our rank label re-
trieving scheme so that even larger proportion of
replaced tokens can be involved in the complete
TQR task.

Limitations

There are several limitations in our paper. First, we
have not validated the advantages of our proposed
PEER in model scales larger than base model, due
to the constraint in our computation resource. We
plan to experiment the PEER in larger scale mod-
els when more computation resource is available.
Second, in order to filter out potential noise from
the relative weak generator, our current rank label
retrieving scheme uses a strict condition T = 3,
which leads to the fact that a significant proportion
of tokens have rank label −1 and essentially are
involved only in the original RTD task. Please re-
fer to the details in Appendix A.3. We intend to
design some label retrieving scheme which applies
a softer criterion so that more tokens can be fully
or partially involved in the complete TQR task. Fi-
nally, our PEER currently does not have the ability
of automatically searching for an optimal value of
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hyperparameter δ, which we also plan to design in
the future.
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A Supplementary Experimental Results

A.1 Number of Levels K
We vary K (the number of levels used in the ranker)
from 3 to 5 in PEER-Small models to see its impact.
Table 5 shows the corresponding results. Each
model is pre-trained 212.5K steps and has nearly
the same computation cost. The table shows that
increasing K from 3 does not lead to further im-
provement in the performance of GLUE tasks. The
G-AVG of the PEER-Small with 4 or 5 levels actu-
ally decreases slightly, though it is still larger than
that of its competitors shown in Table 3 by using
less computation cost. We conjecture that the main
reason is that increasing K leads to the smaller
number of tokens staying in low levels, which in
turn brings difficulty in the learning process. We
will further investigate the impact of K in our fu-
ture work.

A.2 Buffer Hyperparameter δ

We test the impact of buffer hyperparameter δ by
using a set of three different values {0, 3, 9}, where
value 0 leads to no buffer and value 9 leads to a
large buffer. By its design, a larger buffer leads to
the smaller number of the training data points, but
adds confidence in removing potentially noisy data
points due to the relative weakness of the generator.
Tables 6 and 7 show the results in the PEER-Small
models and PEER-Base models respectively. Since
the value of δ has a negligible effect in the training
FLOPs, we do not list the training FLOPs here
as they have already been shown in Table 3 and 4.
Both tables show that the G-AVG decreases slightly
when δ decreases to 0, though it is still no worse
than that of any its competing model by using less
computation cost. The PEER-Small achieves the
highest G-AVG and MNLI scores when δ is set to 3.
The PEER-Base achieves the highest G-AVG when
δ is set to 9, and achieves the highest MNLI score
when δ is set to 3. In the future we will investigate
how to let the PEER automatically search for an
optimal value of δ during its pre-training to further
boost its performance.

A.3 Proportion of Tokens with Rank Label
−1

Figures 4 and 5 demonstrate the proportion of to-
kens with rank label −1 in the masked positions
during the pre-training for PEER-Small and PEER-
Base. With respect to PEER-Small, the proportion
decreases from 44.82% at 40K steps (i.e., the end

Figure 4: Proportion of tokens with rank label −1 in
the masked positions for PEER-Small during the pre-
training.

Figure 5: Proportion of tokens with rank label −1 in
the masked positions for PEER-Base during the pre-
training.

of the warm-up phase) to 40.42% at the end of
the pre-training. With regards to PEER-Base, the
proportion decreases from 36.20% at 33344 steps
(i.e., the end of the warm-up phase) to 27.33% at
the end of the pre-training. Thus, a majority of re-
placed tokens have their rank labels other than −1
during the pre-training of both PEER-Small and
PEER-Base.

B Pre-training Details

The following pre-training details apply to our
PEER and its competing methods including the
BERT, the ELECTRA and the TEAMS. We always
use Adam as the optimizer with weight decay. We
mostly use the same hyperparameters as BERT
and ELECTRA. Our own implementation does not
include the next sentence prediction (NSP) task
proposed in the original BERT, as the recent works
such as Liu et al. (2019) have suggested that it does
not improve the performance. We searched for the
best learning rate for Small models out of [1e-3,
7.5e-4, 5e-4] . Otherwise, we did no hyperparame-
ter tuning beyond the experiments. The full set of
hyperparameters is listed in Table 8.
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K {τ1, · · · , τK−2} G-AVG
Mean±Std

MNLI CoLA SST-2 MRPC STS-B QQP QNLI RTE

3 {1} 81.40±0.25 81.08 59.70 89.40 87.99 87.70 90.12 88.45 66.71
4 {1, 10} 81.13±0.14 81.06 59.08 88.90 87.45 87.59 90.00 88.39 66.57
5 {1, 8, 32} 81.28±0.12 80.77 59.68 88.74 87.79 87.45 90.08 88.15 67.58

Table 5: Comparison of PEER-Small models with different K levels (under 212.5K pre-training steps) on the GLUE
dev set.

δ G-AVG
Mean±Std

MNLI CoLA SST-2 MRPC STS-B QQP QNLI RTE

0 81.14±0.44 81.00 58.89 88.78 87.94 87.48 90.06 88.35 66.64
3 81.40±0.25 81.08 59.70 89.40 87.99 87.70 90.12 88.45 66.71
9 81.27±0.42 80.97 59.62 89.16 87.58 87.60 90.07 88.38 66.79

Table 6: Comparison of PEER-Small models with different δ values on the GLUE dev set. Each PEER-Small model
has 3 levels and is pre-trained 212.5K steps.

C Fine-tuning Details

We originally fine-tuned all the pre-trained mod-
els for 4 epochs. However, because we observed
a large variance in the small tasks in GLUE, fol-
lowing the advice from Mosbach et al. (2020), we
increase the fine-tuning process to 20 epochs and
select the best epoch for the four small tasks in-
cluding CoLA, MRPC, STS-B and RTE. For Small
models, we searched for the best learning rate out
of [1e-4, 7.5e-5]. For Base models, we searched for
a learning rate out of [5e-5, 3e-5] without the layer-
wise learning-rate decay proposed by ELECTRA,
but otherwise used the same hyperparameters as for
small models. Due to limited computation resource,
we adjust the number of independent fine-tuning
runs (with different random seeds) so that we fine-
tune more times for these tasks with smaller data
sizes (i.e., with more variability). The full set of
hyperparameters is listed in Table 9. Following the
BERT and the ELECTRA, we do not show results
on the WNLI GLUE task for the Dev set results.

C.1 Details about GLUE

We provide further details about the GLUE bench-
mark tasks as follows.

CoLA: Corpus of Linguistic Acceptability
(Warstadt et al., 2019). The task is to determine
whether a given sentence is linguistically accept-
able or not. The dataset contains 8.5k train exam-
ples from books and journal articles on linguistic
theory.

SST-2: Stanford Sentiment Treebank (Socher
et al., 2013). The task is to determine if the sen-
tence is positive or negative in sentiment. The

dataset contains 67k train examples from movie
reviews.

MRPC: Microsoft Research Paraphrase Corpus
(Dolan and Brockett, 2005). The task is to predict
whether two sentences are semantically equivalent
or not. The dataset contains 3.7k train examples
from online news sources.

STS-B: Semantic Textual Similarity (Cer et al.,
2017). The task is to predict how semantically sim-
ilar two sentences are on a 1-5 scale. The dataset
contains 5.8k train examples drawn from news
headlines, video and image captions, and natural
language inference data.

QQP: Quora Question Pairs (Iyer et al., 2017).
The task is to determine whether a pair of questions
are semantically equivalent. The dataset contains
364k train examples from the community question-
answering website Quora.

MNLI: Multi-genre Natural Language Inference
(Williams et al., 2017). Given a premise sentence
and a hypothesis sentence, the task is to predict
whether the premise entails the hypothesis, contra-
dicts the hypothesis, or neither. The dataset con-
tains 393k train examples drawn from ten different
sources.

QNLI: Question Natural Language Inference;
constructed from SQuAD (Rajpurkar et al., 2016).
The task is to predict whether a context sen-
tence contains the answer to a question sentence.
The dataset contains 108k train examples from
Wikipedia.

RTE: Recognizing Textual Entailment (Gi-
ampiccolo et al., 2007). Given a premise sentence
and a hypothesis sentence, the task is to predict
whether the premise entails the hypothesis or not.
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δ G-AVG MNLI CoLA SST-2 MRPC STS-B QQP QNLI RTE
0 86.42 86.72 66.44 92.09 90.20 90.75 91.69 92.59 80.87
3 86.63 86.88 68.24 92.43 90.20 90.63 91.70 92.48 80.51
9 86.77 86.69 68.57 92.66 91.18 90.92 91.78 92.57 79.78

Table 7: Comparison of PEER-Base models with different δ values on the GLUE dev set. Each PEER-Base model
has 3 levels and is pre-trained 666.9K steps.

Hyperparameter ELECTRA-Small All Other Small
Models

All Base Models

Number of layers 12 12 12
Hidden size 256 256 768
FFN inner hidden size 1024 1024 3072
Attention heads 4 4 12
Attention head size 64 64 64
Embedding size 128 256 768
Sequence length 128 128 512
Mask percent 15 15 15
Learning rate decay Linear Linear Linear
Warmup steps 10000 10000 10000
Learning rate 1e-3 1e-3/7.5e-4 2e-4
Adam ϵ 1e-6 1e-6 1e-6
Adam β1 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999
Attention dropout 0.1 0.1 0.1
Dropout 0.1 0.1 0.1
Weight decay 0.01 0.01 0.01
Batch size 512 512 256
Train steps 250K 250K 666.9K - 1M

Table 8: Pre-training hyperparameters for all the models pre-trained by us.

The dataset contains 2.5k train examples from a
series of annual textual entailment challenges.
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Hyperparameter Value
Learning rate 1e-4, 7.5e-5 for Small; 5e-5, 3e-5 for Base
Adam ϵ 1e-6
Adam β1, β2 0.9, 0.999
Layerwise LR decay None
Learning rate decay Linear
Warmup fraction 0.1
Attention dropout 0.1
Dropout 0.1
Weight decay None
Batch size 16, 32
Train epochs 20 for CoLA, MRPC, STS-B, RTE; 4 for other tasks
Seeds 5 for CoLA, MRPC, STS-B, RTE; 3 for QNLI, SST2; 1 for MNLI, QQP

Table 9: Fine-tuning hyperparameters for all the investigated models.
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