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Abstract

Spoken language understanding (SLU) is a fun-
damental task in the task-oriented dialogue sys-
tems. However, the inevitable errors from au-
tomatic speech recognition (ASR) usually im-
pair the understanding performance and lead
to error propagation. Although there are some
attempts to address this problem through con-
trastive learning, they (1) treat clean manual
transcripts and ASR transcripts equally with-
out discrimination in fine-tuning; (2) neglect
the fact that the semantically similar pairs are
still pushed away when applying contrastive
learning; (3) suffer from the problem of Kull-
back–Leibler (KL) vanishing. In this paper, we
propose Mutual Learning and Large-Margin
Contrastive Learning (ML-LMCL), a novel
framework for improving ASR robustness in
SLU. Specifically, in fine-tuning, we apply mu-
tual learning and train two SLU models on the
manual transcripts and the ASR transcripts, re-
spectively, aiming to iteratively share knowl-
edge between these two models. We also in-
troduce a distance polarization regularizer to
avoid pushing away the intra-cluster pairs as
much as possible. Moreover, we use a cyclical
annealing schedule to mitigate KL vanishing
issue. Experiments on three datasets show that
ML-LMCL outperforms existing models and
achieves new state-of-the-art performance.

1 Introduction

Spoken language understanding(SLU) is an impor-
tant component of various personal assistants, such
as Amazon’s Alexa, Apple’s Siri, Microsoft’s Cor-
tana and Google’s Assistant (Young et al., 2013).
SLU aims at taking human speech input and ex-
tracting semantic information for two typical sub-
tasks, mainly including intent detection and slot fill-
ing (Tur and De Mori, 2011). Pipeline approaches
and end-to-end approaches are two kinds of solu-
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Figure 1: An example of the intent being predicted
incorrectly due to the ASR error.

tions of SLU. Pipeline SLU methods usually com-
bine automatic speech recognitgion (ASR) and nat-
ural language understanding (NLU) in a cascaded
manner, so they can easily apply external datasets
and external pre-trained language models. How-
ever, error propagation is a common problem of
pipeline approaches, where an inaccurate ASR out-
put can theoretically lead to a series of errors in
subtasks. As shown in Figure 1, due to the error
from ASR, the model can not predict the intent
correctly. Following Chang and Chen (2022), this
paper only focuses on intent detection.

Learning error-robust representations is an ef-
fective method to mitigate the negative impact of
errors from ASR and is gaining increasing attention.
The remedies for ASR errors can be broadly cate-
gorized into two types: (1) applying machine trans-
lation to translate the erroneous ASR transcripts to
clean manual transcripts (Mani et al., 2020; Wang
et al., 2020; Dutta et al., 2022); (2) using masked
language modeling to adapt the model. However,
these methods usually requires additional speech-
related inputs (Huang and Chen, 2019; Sergio et al.,
2020; Wang et al., 2022), which may not always be
readily available. Therefore, this paper focuses on
improving ASR robustness in SLU without using
any speech-related input features.

Despite existing error-robust SLU models have
achieved promising progress, we discover that they
suffer from three main issues:

(1) Manual and ASR transcripts are treated
as the same type. In fine-tuning, existing methods
simply combine manual and ASR transcripts as the
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final dataset, which limits the performance. Intu-
itively, the information from manual transcripts and
the information from ASR transcripts play differ-
ent roles, so the model fine-tuned on their combina-
tion cannot discriminate their specific contributions.
Based on our observations, models trained on the
clean manual transcripts usually has higher accu-
racy, while models trained on the ASR transcripts
are usually more robust to ASR errors. Therefore,
manual and ASR transcripts should be treated dif-
ferently to improve the performance of the model.

(2) Semantically similar pairs are still pushed
away. Conventional contrastive learning enlarges
distances between all pairs of instances and po-
tentially leading to some ambiguous intra-cluster
and inter-cluster distances (Mishchuk et al., 2017;
Zhang et al., 2022), which is detrimental for SLU.
Specifically, if clean manual transcripts are pushed
away from their associated ASR transcripts while
become closer to other sentences, the negative im-
pact of ASR errors will be further exacerbated.

(3) They suffer from the problem of KL van-
ishing. Inevitable label noise usually has a negative
impact on the model (Li et al., 2022; Cheng et al.,
2023b). Existing methods apply self-distillation to
minimize Kullback–Leibler (KL) divergence (Kull-
back and Leibler, 1951) between the current predic-
tion and the previous one to reduce the label noises
in the training set. However, we find these methods
suffer from the KL vanishing issue, which has been
observed in other tasks (Zhao et al., 2017). KL
vanishing can adversely affect the training of the
model. Therefore, it is crucial to solve this problem
to improve the performance.

In this paper, we propose Mutual Learning and
Large-Margin Contrastive Learning (ML-LMCL),
a novel framework to tackle above three issues.
For the first issue, we propose a mutual learning
paradigm. In fine-tuning, we train two SLU models
on the manual and ASR transcripts, respectively.
These two models are collaboratively trained and
considered as peers, with the aim of iteratively
learning and sharing the knowledge between the
two models. Mutual learning allows effective dual
knowledge transfer (Liao et al., 2020; Zhao et al.,
2021; Zhu et al., 2021), which can improve the
performance. For the second issue, our framework
implements a large-margin contrastive learning to
distinguish between intra-cluster and inter-cluster
pairs. Specifically, we apply a distance polariza-
tion regularizer and penalize all pairwise distances

within the margin region, which can encourage po-
larized distances for similarity determination and
obtain a large margin in the distance space in an
unsupervised way. For the third issue, following Fu
et al. (2019), we mitigate KL vanishing by adopting
a cyclical annealing schedule. The training process
is effectively split into many cycles. In each cy-
cle, the coefficient of KL Divergence progressively
increases from 0 to 1 during some iterations and
then stays at 1 for the remaining iterations. Exper-
iment results on three datasets SLURP, ATIS and
TREC6 (Bastianelli et al., 2020; Hemphill et al.,
1990; Li and Roth, 2002; Chang and Chen, 2022)
demonstrate that our ML-LMCL significantly out-
performs previous best models and model analysis
further verifies the advantages of our model.

The contributions of our work are four-fold:
• We propose ML-LMCL, which utilizes mutual

learning to encourage the exchange of knowl-
edge between the model trained on clean man-
ual transcripts and the model trained on ASR
transcripts. To the best of our knowledge, we
make the first attempt to apply mutual learn-
ing to improve ASR robustness in SLU task.

• To better distinguish between intra-cluster and
inter-cluster pairs, we introduce a distance po-
larization regularizer to achieve large-margin
contrastive learning.

• We adopt a cyclical annealing schedule to mit-
igate KL vanishing, which is neglected in the
previous SLU approaches.

• Experiments on three public datasets demon-
strate that the proposed model achieves new
state-of-the-art performance.

2 Approach

Our framework includes four elements: (1) Self-
supervised contrastive learning with a distance po-
larization regularizer in pre-training. (2) Mutual
learning between the model trained on clean man-
ual transcripts and the model trained on ASR tran-
scripts in fine-tuning. (3) Supervised contrastive
learning with a distance polarization regularizer in
fine-tuning. (4) Self-distillation with the cyclical
annealing schedule in fine-tuning.

2.1 Self-supervised Contrastive Learning

Following Chang and Chen (2022), we utilize self-
supervised contrastive learning in pre-training for
learning sentence representations invariant to mis-
recognition to handle ASR errors. Inspired by the
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Figure 2: The illustration of the pre-training stage. We
apply large-margin self-supervised contrastive learning
with paired transcripts. A positive pair consists of clean
data and the associated ASR transcript.

success of pre-trained models (Liu et al., 2022b;
Zhang et al., 2023a; Cheng et al., 2023a; Zhang
et al., 2023b; Yang et al., 2023a), we continually
train a pre-trained RoBERTa (Liu et al., 2019) on
spoken language corpus.

Given a mini-batch of input data of N pairs of
transcripts B={(xpi , x

q
i )}i=1..N , where xpi denotes

a clean manual transcript and xqi denotes its asso-
ciated ASR transcript. As shown in Figure 2, we
first apply the pre-trained RoBERTa and utilize the
last layer of [CLS] to obtain the representation hpi
for xpi and hqi for xqi :

hpi = RoBERTa(xpi ) (1)

hqi = RoBERTa(xqi ) (2)

Then we apply the proposed self-supervised con-
trastive loss Lsc (Chen et al., 2020a; Gao et al.,
2021) to adjust the sentence representations:

Lsc = − 1

2N

∑

(h,h+)∈P

log
es(h,h

+)/τsc

∑B
h′ ̸=h es(h,h′)/τsc

= −EP

[
s(h, h+)/τsc

]
+ E

[
log

( B∑

h′ ̸=h

es(h,h
′)/τsc)]

(3)

where P is composed of 2N positive pairs of ei-
ther (hpi , h

q
i ) or (hqi , h

p
i ), τsc is the temperature

hyper-parameter and s(·, ·) denotes the cosine sim-
ilarity function. In Eq.3, the first term brings the
clean manual transcript and its associated ASR
transcript (positive example) near together and the
second term pushes irrelevant ones (negative exam-
ples) far apart to promote uniformity in representa-
tion space (Wang and Isola, 2020). Note that for a
transcript, its negative examples may be clean man-
ual transcripts or ASR transcripts. For example, in
Figure 2, recap my day is a clean manual transcript
and chicken tikka recipe is an ASR transcript.

However, conventional contrastive learning has
a problem that semantically similar pairs are still

pushed away (Chen et al., 2021). It indiscrimi-
nately enlarges distances between all pairs of in-
stances and may not be able to distinguish intra-
cluster and inter-cluster correctly, which causes
some similar instance pairs to still be pushed away.
Moreover, it may discard some negative pairs and
regard them as semantically similar pairs wrongly,
even though their learning objective treat each pair
of original instances as dissimilar. These problems
result in the distance between the clean manual tran-
script and its associated ASR transcript not being
significantly smaller than the distance between un-
paired instance, which is detrimental to improving
ASR robustness. Motivated by Chen et al. (2021),
we introduce a distance polarization regularizer to
build a large-margin contrastive learning model.
For simplicity, we further denote the following nor-
malized cosine similarity:

Dij = (1 + s(hi, hj)) /2 (4)

which measures the similarity between the pairs
of (hi, hj) ∈ B with the real value Dij ∈ [0, 1].
We suppose that the matrix D =

{
Dij ∈ RM×M

}

where M = 2N denotes the total number of tran-
scripts in B. D consists of distances Dij and there
exists 0 < δ+ < δ− < 1 where the intra-class
distances are smaller than δ+ while the inter-class
distances are larger than δ−. The proposed distance
polarization regularizer Lreg is as follows:

Lreg =
∥∥min

((D −∆+)⊙
(D −∆−) , 0

)∥∥
1

(5)

where ∆+=δ+ × 1M×M and ∆−=δ− × 1M×M

are the threshold parameters and ∥ · ∥1 denotes
the ℓ1-norm. The region (δ+, δ−) ⊆ [0, 1] can be
regarded as the large margin to discriminate the
similarity of data pairs. Lreg can encourage the
sparse distance distribution in the margin region
(δ+, δ−), because any distance Dij fallen into the
margin region (δ+, δ−) will increase Lreg. Mini-
mizing the regularizer Lreg will encourage more
pairwise distances {Dij}Mi,j=1 to distribute in the
regions [0, δ+] or [δ−, 1], and each data pair is adap-
tively separated into similar or dissimilar result. As
a result, through introducing the regularizer, our
framework can better distinguish between intra-
cluster and inter-cluster pairs.

Then the final large-margin self-supervised con-
trastive learning loss Lreg

sc is the weighted sum of
self-supervised contrastive learning loss Lsc and
the regularizer Lreg, which is calculated as follows:

Lreg
sc = Lsc + λreg · Lreg (6)
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Figure 3: The illustration of the fine-tuning stage. Two networks on the clean manual transcripts and the ASR
transcripts are collaboratively trained via mutual learning (§2.2). Large-margin supervised contrastive learning (§2.3)
and self-distillation (§2.4) are applied to further reduce the impact of ASR errors.

where λreg is a hyper-parameter.

2.2 Mutual Learning

Previous work reveals that mutual learning can ex-
ploit the mutual guidance information between two
models to improve their performance simultane-
ously (Nie et al., 2018; Hong et al., 2021). By mu-
tual learning, we can obtain compact networks that
perform better than those distilled from a strong
but static teacher. In fine-tuning, we use the same
pre-trained model in Sec.2.1 to train two networks
on the manual transcripts and the ASR transcripts,
respectively. For a manual transcript xpi and its as-
sociated ASR transcript xqi , the output probabilities
pti,p and pti,q at the t-th epoch are as follows:

pti,p = Mclean(x
p
i ) (7)

pti,q = Masr(x
q
i ) (8)

where Mclean denotes the model trained on clean
manual transcripts and Masr denotes the model
trained on ASR transcripts.

We adopt Jensen-Shannon (JS) divergence as
the mimicry loss, with the aim of effectively en-
couraging the two models to mimic each other. The
mutual learning loss Lmut in Figure 3 is as follows:

Lmut =
N∑

i=1

JS(pti,p∥pti,q) (9)

2.3 Supervised Contrastive Learning

We also apply supervised contrastive learning in
fine-tuning by using label information. The pairs

with the same label are regarded as positive sam-
ples and the pairs with different labels are regarded
as negative samples. The embeddings of positive
samples are pulled closer while the embeddings
of negative samples are pushed away (Jian et al.,
2022; Zhou et al., 2022). We utilize the supervised
contrastive loss Lp

c for the model trained on manual
transcripts and Lq

c for the model trained on ASR
transcripts to encourage the learned representations
to be aligned with their labels:

Lp
c =− 1

N
·

N∑

i=1

N∑

j ̸=i

1yp
i =y

p
j
log

es(h
p
i ,h

p
j )/τc

∑N
k ̸=i e

s(h
p
i ,h

p
k
)/τc

(10)

Lq
c=− 1

N
·

N∑

i=1

N∑

j ̸=i

1yq
i =y

q
j
log

es(h
q
i ,h

q
j )/τc

∑N
k ̸=i e

s(h
q
i ,h

q
k
)/τc

(11)

where ypi =ypj denotes the labels of hpi and hpj are
the same, yqi =yqj denotes the label of hqi and hqj are
the same and τc is the temperature hyper-parameter.

Like Sec.2.1, we also use distance polarization
regularizers Lp

reg and Lq
reg to enhance the general-

ization ability of contrastive learning algorithm:

Lp
reg =

∥∥min
((Dp −∆+)⊙

(Dp −∆−) , 0
)∥∥

1
(12)

Lq
reg =

∥∥min
((Dq −∆+)⊙

(Dq −∆−) , 0
)∥∥

1
(13)

where Dp denotes the matrix consisting of pairwise
distances on the clean manual transcripts and Dq

denotes the matrix on the ASR transcripts.
The large-margin supervised contrastive learning

loss Lreg
c,p and Lreg

c,q in Figure 3 are as follows:

Lreg
c,p = Lp

c + λp
regLp

reg (14)

Lreg
c,q = Lq

c + λq
regLq

reg (15)
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where λp
reg and λq

reg are two hyper-parameters.
The final large-margin supervised contrastive

learning loss Lreg
c is as follows:

Lreg
c = Lreg

c,p + Lreg
c,q (16)

2.4 Self-distillation
To further reduce the impact of ASR errors, we ap-
ply a self-distillation method. We try to regularize
the model by minimizing Kullback–Leibler (KL)
divergence (Kullback and Leibler, 1951; He et al.,
2022) between the current prediction and the pre-
vious one (Liu et al., 2020, 2021). For the man-
ual transcript xpi and its corresponding label ypi ,
pti,p = P (ypi |x

p
i , t) denotes the probability distribu-

tion of xpi at the t-th epoch, and pti,q = P (yqi |x
q
i , t)

denotes the probability distribution of xqi at the
t-th epoch. The loss functions Lp

d and Lq
d of self-

distillation in Figure 3 are formulated as:

Lp
d=

1

N

N∑

i=1

τ2dKL
(pt−1

i,p

τd
∥
pti,p
τd

)
(17)

Lq
d=

1

N

N∑

i=1

τ2dKL
(pt−1

i,q

τd
∥
pti,q
τd

)
(18)

where τd is the temperature to scale the smoothness
of two distributions, note that p0i,p is the one-hot
vector of label ypi and p0i,q is that of label yqi .

Then the final self-distillation loss Ld is the sum
of two loss functions Lp

d and Lq
d:

Ld = Lp
d + Lq

d (19)

2.5 Training Objective
Pre-training Following (Chang and Chen, 2022),
the pre-training loss Lpt is the weighted sum of the
large-margin self-supervised contrastive learning
loss Lreg

sc and an MLM loss Lmlm:

Lpt = λptLreg
sc + (1− λpt) · Lmlm (20)

where λpt is the coefficient balancing the two tasks.

Fine-tuning Following Haihong et al. (2019);
Chen et al. (2022), the intent detection objective is:

Lp
ce = −

N∑

i=1

ypi log p
t
i,p (21)

Lq
ce = −

N∑

i=1

yqi log p
t
i,q (22)

Lce = Lp
ce + Lq

ce (23)

The final fine-tuning loss Lft is the weighted
sum of cross-entropy loss Lce, mutual learning loss
Lmut, large-margin supervised contrastive learning
loss Lreg

c and self-distillation loss Ld:

Lft = Lce + αLmut + βLreg
c + γLd (24)

where α, β, γ are the trade-off hyper-parameters.
However, directly using KL divergence for self-

ditillation loss may suffer from the vanishing issue.
To mitigate KL vanishing issue, we adopt a cyclical
annealing schedule, which is also applied for this
purpose in Fu et al. (2019); Zhao et al. (2021).
Concretely, γ in Eq.24 changes periodically during
training iterations, which is described by Eq.25:

γ =

{
r

RC , r ⩽ RG
1, r > RG

(25)

r = mod(t− 1, G) (26)

where t represents the current training iteration and
R and G are two hyper-parameters.

3 Experiments

3.1 Datasets and Metrics
Following Chang and Chen (2022), we conduct the
experiments on three publicly available benchmark
datasets1: SLURP, ATIS and TREC6 (Bastianelli
et al., 2020; Hemphill et al., 1990; Li and Roth,
2002; Chang and Chen, 2022). The statistics of the
three datasets included are shown in Table 1.

Dataset #Class Avg. Length Train Test

SLURP 18× 46 6.93 50,628 10,992
ATIS 22 11.14 4,978 893
TREC6 6 8.89 5,452 500

Table 1: The statistics of all datasets. The test set of
SLURP is sub-sampled.

SLURP is a challenging SLU dataset with vari-
ous domains, speakers, and recording settings. An
intent of SLURP is a (scenario, action) pair, the
joint accuracy is used as the evaluation metric and
the prediction is considered correct only when both
scenario and action are correctly predicted. The
ASR transcripts are obtained by Google Web API.

ATIS and TREC6 are two SLU datasets for flight
reservation and question classification respectively.

1SLURP is available at https://github.com/MiuLab/
SpokenCSE, and ATIS and TREC6 are available at https:
//github.com/Observeai-Research/Phoneme-BERT.
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Model
w/o manual transcripts w/ manual transcripts

SLURP ATIS TREC6 SLURP ATIS TREC6

RoBERTa (Liu et al., 2019) 83.97 94.53 84.08 84.42 94.86 84.54
Phoneme-BERT (Sundararaman et al., 2021) 83.78 94.83 85.96 84.16 95.14 86.48
SimCSE (Gao et al., 2021) 84.47 94.07 84.92 84.88 94.32 85.46
SpokenCSE (Chang and Chen, 2022) 85.26 95.10 86.36 85.64 95.58 86.82

ML-LMCL 88.52† 96.52† 89.24† 89.16† 97.21† 89.96†

Table 2: Accuracy results on three datasets. † denotes ML-LMCL obtains statistically significant improvements
over baselines with p < 0.01. "w/o manual transcripts" denotes clean manual transcripts are not used in fine-tuning,
i.e. the loss functions associated with clean manual transcripts are set to 0, including Lp

ce, Lmut, Lreg
c,p , and Lp

d. "w/
manual transcripts" denotes clean manual transcripts are used in fine-tuning.

We use the synthesized text released by Phoneme-
BERT (Sundararaman et al., 2021), where the data
is synthesized by a text-to-speech (TTS) model and
later transcribed by ASR. We adopt accuracy as the
evaluation metric for intent detection.

3.2 Implementation Details

We pre-train the model for 10K steps with a batch
size 128 on each dataset, and finetune the whole
model up to 10 epochs with a batch size 256 to
avoid overfitting. The training will early-stop if
the loss on dev set does not decrease for 3 epochs.
On SLURP, two separate classification heads are
trained for scenario and action with the shared
BERT embeddings. The mask ratio of MLM is
set to 0.15, τsc is set to 0.2, δ+ is set to 0.2, δ− is
set to 0.5, λreg is set to 0.1, τc is set to 0.2, λp

reg is
set to 0.15, λq

reg is set to 0.15, τd is set to 5, λpt is
set to 0.5, α is set to 1, β is set to 0.1, R is set to
0.5, and G is set to 5000. The reported scores are
averaged over 5 runs. During both pre-training and
fine-tuning, we utilize Adam optimizer (Kingma
and Ba, 2015) with β1 = 0.9, β2 = 0.98, and 4k
warm-up updates to optimize the parameters. The
training process lasts a few hours. All experiments
are conducted at an Nvidia Tesla-A100 GPU.

3.3 Baslines

We compare our model with the following base-
lines: (1) RoBERTa (Liu et al., 2019): a RoBERTa-
base model directly fine-tuned on the target train-
ing data; (2) Phoneme-BERT (Sundararaman et al.,
2021): a RoBERTa-base model which is further pre-
trained on an additional corpus with the phoneme
information and then fine-tuned on the target train-
ing data; (3) SimCSE (Gao et al., 2021): a state-
of-the-art sentence embedding method applying

contrastive learning; (4) SpokenCSE (Chang and
Chen, 2022): a strong baseline for improving ASR
robustness in SLU task.

3.4 Main Results

The performance comparison of ML-LMCL Net
and baselines are shown in Table 2, from which we
have the following observations:

(1) Our ML-LMCL gains consistent improve-
ments on all tasks and datasets. This is because our
model achieves the mutual guidance between the
model trained on the manual and ASR transcripts,
allowing these two models to share the knowledge
for each other. Moreover, large-margin contrastive
learning encourages the model to more accurately
distinguish between intra-cluster and inter-cluster
pairs, which can avoid pushing away the semanti-
cally similar pairs as much as possible. And cycli-
cal annealing schedule is applied to mitigate KL
vanish, which can improve the robustness of the
model. When not using manual transcripts, it still
overpasses SpokenCSE, which also demonstrates
the effectiveness of large-margin contrastive learn-
ing and cyclical annealing schedule to improve
ASR robustness in SLU.

(2) In contrast, it is obvious that the improvement
on SLURP dataset is more significant. We believe
the reason is that SLURP is a more challenging
SLU dataset than ATIS and TREC6. An intent of
SLURP is a (scenario, action) pair and the predic-
tion is considered to be correct only if the scenario
and action are both correctly predicted. Due to the
shortcomings of conventional contrastive learning,
previous work fail to align the ASR transcript and
its associate manual transcript with high accuracy.
As a result, due to ASR errors, it is common that
one of the two components of an intent is incor-
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rectly predicted. Our ML-LMCL is dedicated to
overcome the shortcomings of conventional con-
trastive learning, resulting in better alignment and
the improvement of performance.

3.5 Analysis

To verify the advantages of ML-LMCL from differ-
ent perspectives, we use clean manual transcripts
and conduct a set of ablation experiments. The
experimental results are shown in Table 3.

Model w/ manual transcripts
SLURP ATIS TREC6

ML-LMCL 89.16 97.21 89.96
w/o Lmut 88.68 (↓0.48) 96.83 (↓0.38) 89.52 (↓0.44)
w/o Lreg 88.92 (↓0.24) 96.98 (↓0.23) 89.77 (↓0.19)
w/o Lq

reg & Lq
reg 88.75 (↓0.41) 96.92 (↓0.29) 89.74 (↓0.22)

w/o cyc 88.98 (↓0.18) 97.08 (↓0.13) 89.85 (↓0.11)
w/o Lmut + bsz↑ 88.72 (↓0.44) 96.92 (↓0.29) 89.65 (↓0.31)
w/ Lsoft 89.12 (↓0.04) 97.18 (↓0.03) 89.92 (↓0.04)

Table 3: Results of the ablation experiments when using
clean manual transcripts.

3.5.1 Effectiveness of Mutual Learning
One of the core contributions of ML-LMCL is mu-
tual learning, which allows the two models trained
on manual and ASR transcripts learn from each
other. To verify the effectiveness of mutual learn-
ing, we remove mutual learning loss and refer it
to w/o Lmut in Table 3. We observe that accu-
racy drops by 0.48, 0.38 and 0.44 on SLURP, ATIS
and TREC6, respectively. Contrastive learning ben-
efits more from larger batch size because larger
batch size provides more negative examples to fa-
cilitate convergence (Chen et al., 2020a), and many
attempts have been made to improve the perfor-
mance of contrastive learning by increasing batch
size indirectly (He et al., 2020; Chen et al., 2020b).
Therefore, to verify that the proposed mutual learn-
ing rather than the indirectly boosted batch sizes
works, we double the batch size after removing
mutual learning loss and refer it to w/o Lmut +
bsz↑. The results show that despite the boosted
batch size, it still performs worse than ML-LMCL,
which demonstrate that the improvements come
from the proposed mutual language rather than the
boosted batch size.

3.5.2 Effectiveness of Distance Polarization
Regularizer

To verify the effectiveness of distance polarization
regularizer, we also remove distance polarization
regularizer in pre-training and fine-tuning, which

is named as w/o Lreg and w/o Lp
reg & Lp

reg, re-
spectively. When Lreg is removed, the accuracy
drops by 0.24, 0.23 and 0.19 on SLURP, ATIS and
TREC6, respectively. And when Lp

reg and Lq
reg

are removed, the accuracy drops by 0.41, 0.29 and
0.22 on SLURP, ATIS and TREC6. The results
demonstrate that distance polarization regularizer
can alleviate the negative impact of conventional
contrastive learning. Furthermore, the drop in ac-
curacy is greater when fine-tuning than when pre-
training. We believe that the reason is that super-
vised contrast learning in fine-tuning is easier to be
affected by label noise than unsupervised contrast
learning in pre-training. As a result, more semanti-
cally similar pairs are incorrectly pushed away in
fine-tuning when the regularizer is removed.

Chang and Chen (2022) also proposes a self-
distilled soft contrastive learning loss to relieve
the negative effect of noisy labels in supervised
contrastive learning. However, we believe that the
regularizer can also effectively reduce the impact
of label noise. Therefore, our ML-LMCL does not
include another module to tackle the problem of la-
bel noise. To verify this, we augument ML-LMCL
with the self-distilled soft contrastive learning loss,
which is termed as w/ Lsoft. We can observe that
not only Lsoft does not bring any improvement, it
even causes performance drops, which proves that
the distance polarization regularizer can indeed re-
duce the impact of label noise.

3.5.3 Effectiveness of Cyclical Annealing
Schedule

We also remove cyclical annealing schedule and
relate it to w/o cyc. We observe that the accuracy
drops by 0.18, 0.13 and 0.11 on SLURP, ATIS and
TREC6, respectively, which demonstrates that the
cyclical annealing schedule also plays an important
role in enhancing the performance by mitigating
the problem of KL vanishing.

3.6 Visualization

To better understand how mutual learning and large-
margin contrastive learning affects and contributes
to the final result, we show the visualization of an
example on SLURP dataset in Figure 4. “local
theater screening which movie” and “olly what
movies are playing near me” are two manual tran-
scripts with the same intent, and the representa-
tions of them and their associated ASR transcripts
stay close to each other in ML-LMCL. However, in
SpokenCSE, their representations keep a longer dis-
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play lupe

olly what movies are playing near me

what times are playing near me

olly what movies are playing near me

local theater screening which movie

regal theater screen in which movie

i want to slow down my speaker

(a) SpokenCSE (b) ML-LMCL

want to slow down my speaker

play low ASR

Manual

what times are playing near me
regal theater screen in which movie

local theater screening which movie
want to slow down my speaker

i want to slow down my speaker

play lupe play low

Figure 4: Visualization of representations of manual
transcripts and ASR transcripts. We visualize the rep-
resentations by reducing the dimension with Principal
Component Analysis (PCA) (Abdi and Williams, 2010).
The circle and square in the same color means the corre-
sponding manual and ASR transcriptions are associated.

tance, which further demonstrates that our method
can align the ASR transcript and its associate man-
ual transcript with high accuracy and better avoid
semantically similar pairs being pushed away.

4 Related work

Error-robust Spoken Language Understanding
SLU usually suffers from ASR error propagation
and this paper focus on improving ASR robust-
ness in SLU. Chang and Chen (2022) makes the
first attempt to use contrastive learning to improve
ASR robustness with only textual information. Fol-
lowing Chang and Chen (2022), this paper only
focuses on intent detection in SLU. Intent detec-
tion is usually formulated as an utterance classifi-
cation problem. As a large number of pre-trained
models achieve surprising results across various
tasks (Dong et al., 2022; Yang et al., 2023c; Zhu
et al., 2023; Yang et al., 2023b), some BERT-
based (Devlin et al., 2019) pre-trained work has
been explored in SLU where the representation of
the special token [CLS] is used for intent detection.
In our work, we adopt RoBERTa and try to learn
the invariant representations between clean manual
transcripts and erroneous ASR transcripts.

Mutual Learning Our method is motivated by
the recent success in mutual learning. Mutual learn-
ing is an effective method which trains two models
of the same architecture simultaneously but with
different initialization and encourages them to learn
collaboratively from each other. Unlike knowledge
distillation (Hinton et al., 2015), mutual learning
doesn’t need a powerful teacher network which

is not always available. Mutual learning is first
proposed to leverage information from multiple
models and allow effective dual knowledge trans-
fer in image processing tasks (Zhang et al., 2018;
Zhao et al., 2021). Based on this, Wu et al. (2019b)
utilizes mutual learning to capture complementary
features in semi-supervised classification. Wu et al.
(2019a) applies mutual learning between contour
extraction and edge extraction for saliency detec-
tion. In NLP, Zhao et al. (2021) utilizes mutual
learning for speech translation to transfer knowl-
edge between a speech translation model and a
machine translation model. In our work, we apply
a mutual learning framework to transfer knowledge
between the model trained on manual transcripts
and the model trained on ASR transcripts.

Contrastive learning Contrastive learning aims
at learning example representations by minimizing
the distance between the positive pairs in the vec-
tor space and maximizing the distance between
the negative pairs (Saunshi et al., 2019; Liang
et al., 2022; Liu et al., 2022a), which is first pro-
posed in the field of computer vision (Chopra et al.,
2005; Schroff et al., 2015; Sohn, 2016; Chen et al.,
2020a; Wang and Liu, 2021). In the NLP area,
contrastive learning is applied to learn sentence
embeddings (Giorgi et al., 2021; Yan et al., 2021),
translation (Pan et al., 2021; Ye et al., 2022) and
summarization (Wang et al., 2021; Cao and Wang,
2021). Recently, Chen et al. (2021) points that
conventional contrastive learning algorithms are
still not good enough since they fail to maintain
a large margin in the distance space for reliable
instance discrimination Inspired by this, we add a
similar distance polarization regularizer as Chen
et al. (2021) to address this issue. To the best of our
knowledge, we are the first to introduce the idea of
large-margin contrastive learning to the SLU task.

5 Conclusion

In this paper, we propose ML-LMCL, a novel
framework for improving ASR robustness in SLU.
We apply mutual learning and introduce the dis-
tance polarization regularizer. Moreover, cyclical
annealing schedule is utilized to mitigate KL van-
ishing. Experiments and analysis on three bench-
mark datasets show that our model significantly
outperforms previous models whether clean man-
ual transcriptions is available in fine-tuning or not.
Future work will focus on improving ASR robust-
ness with only clean manual transcriptions.
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Limitations

By applying mutual learning, introducing distance
polarization regularizer and utilizing cyclical an-
nealing schedule, ML-LMCL achieves significant
improvement on three benchmark datasets. Never-
theless, we summarize two limitations for further
discussion and investigation of other researchers:

(1) ML-LMCL still requires the ASR transcripts
in fine-tuning to align with the target inference
scenario. However, the ASR transcripts may not
always be readily available due to the constraint
of ASR systems and privacy concerns. In the fu-
ture work, we will attempt to further improve ASR
robustness without using any ASR transcripts.

(2) The training and inference runtime of ML-
LMCL is larger than that of baselines. We attribute
the extra cost to the fact that ML-LMCL has more
parameters than baselines. In the future work, we
plan to design a new paradigm with fewer parame-
ters to reduce the requirement for GPU resources.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
In section 3. Experiments.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
In section 3. Experiments.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
In section 3. Experiments.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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