
Findings of the Association for Computational Linguistics: ACL 2023, pages 6716–6724
July 9-14, 2023 ©2023 Association for Computational Linguistics

Revisiting Sample Size Determination in Natural Language Understanding

Ernie Chang†∗, Muhammad Hassan Rashid‡∗, Pin-Jie Lin‡∗,
Changsheng Zhao†, Vera Demberg‡, Yangyang Shi† and Vikas Chandra†

†Reality Labs, Meta Inc.
‡Saarland Informatics Campus, Saarland University, Germany

{erniecyc, cszhao, yyshi, vchandra}@meta.com
hassanrashid725@gmail.com
pinjie@lst.uni-saarland.de
vera@coli.uni-saarland.de

Abstract

Knowing exactly how many data points need
to be labeled to achieve a certain model perfor-
mance is a hugely beneficial step towards reduc-
ing the overall budgets for annotation. It per-
tains to both active learning and traditional data
annotation, and is particularly beneficial for low
resource scenarios. Nevertheless, it remains a
largely under-explored area of research in NLP.
We therefore explored various techniques for
estimating the training sample size necessary to
achieve a targeted performance value. We de-
rived a simple yet effective approach to predict
the maximum achievable model performance
based on small amount of training samples –
which serves as an early indicator during data
annotation for data quality and sample size de-
termination. We performed ablation studies on
four language understanding tasks, and showed
that the proposed approach allows us to forecast
model performance within a small margin of
mean absolute error (∽ 0.9%) with only 10%
data1.

1 Introduction

Labeled data play an important role in creating per-
formant machine learning models, which makes
data annotation a fundamental process for any
natural language application pipeline (Lewis and
Catlett, 1994). Recent work has sought to re-
duce the annotation costs through the use of active
learning (Ducoffe and Precioso, 2018; Margatina
et al., 2021) and data sampling (Sener and Savarese,
2018; Coleman et al., 2019; Killamsetty et al.,
2021a,b). Indeed, these approaches are shown to
be effective in identifying or constructing data sub-
sets needed to achieve a competitive model perfor-
mance. For instance, the active learning paradigm
adds new data iteratively to the existing set before

∗ These authors contributed equally to this work.
1Our code is available at: https://github.com/

pjlintw/sample-size.

model retraining (Agarwal et al., 2020; Margatina
et al., 2021), improving upon the traditional human
annotation pipeline that obtains the entire labeled
set all at once.

Nevertheless, the data labeling process typically
annotates as much data as the annotation budget
permits, or by clearly defined stopping criteria to
terminate the labeling process. Unfortunately, this
is usually challenging as annotators do not have the
knowledge of the effect of added labels to model
performance nor how much more data is needed to
arrive at the desired model generalizability (Kil-
lamsetty et al., 2020). The stopping condition is in
fact tied to the quality of data samples w.r.t. model
parameters (Hu et al., 2021), which influences the
effective sample size2, and it is then beneficial
to obtain an approximation of the expected per-
formance (Vlachos, 2008; Olsson and Tomanek,
2009a; Zhu et al., 2010; Ishibashi and Hino, 2020).
Therefore, knowing the approximate amount of
training data needed for this particular performance
would serve as an useful knowledge not only for
deciding when to stop adding labeled data, but also
as an early indication for the data quality. For in-
stance, by having early label quality signals, we
can decide between two different types of annota-
tion, or even between two pools of annotators with
different expertise.

To this end, we explored the relationship be-
tween data sample size and model performance in
the context of language understanding via learning
curve modeling, which defines model performance
as a function of dataset sizes. By modeling this
relationship in low resource settings, we obtain use-
ful early signals with approximated accuracies for
any given the labeled set, which can provide an
idea for the sample size and data quality (Olsson
and Tomanek, 2009b; Figueroa et al., 2012). Pre-
vious studies have shown that nonlinear weighted

2It is the size of datasets which could have been achieved
by an effective unweighted random sample (Guo et al., 2022).
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curve fitting methods such as inverse power laws
or exponential functions can provide decent ap-
proximations of the empirical predictive perfor-
mances (Frey and Fisher, 1999; Figueroa et al.,
2012). We thus put forward an ensemble of these
functions which we showed to display a consis-
tently highly correlated behavior across four lan-
guage understanding benchmarks and with as little
as 10% of the entire training set. This work makes
the following contributions:

1. We revisit the task of sample size determina-
tion in four natural language understanding
benchmarks and empirically explore the cor-
relation strengths of several successful tech-
niques.

2. Based on our findings, we propose an ENSEM-
BLE function and demonstrated across several
benchmarks and low resource settings that the
ensemble function is consistently providing a
high correlation with the empirical learning
curve plots.

2 Background

Our method is a sample size determination tech-
nique that helps to design annotation projects by
determining the necessary sample size. Previous
methods have focused on identifying the sample
size required to reach a specific target performance,
such as a high correlation coefficient (Beal, 1989;
Stalbovskaya et al., 2007; Beal, 1989), which often
involves predicting the sample size necessary for a
classifier to attain a specific accuracy level (Fuku-
naga and Hayes, 1989). There are two main ap-
proaches for predicting the sample size needed
to achieve a particular classifier performance: (1)
Dobbin et al. (2008) present a model-based method
for predicting the number of samples required for
classifying microarray data. (2) A more general ap-
proach involves fitting a classifier’s learning curve
to inverse power law models (Figueroa et al., 2012).
Examples of this approach include algorithms pro-
posed by Mukherjee et al. (2003); Boonyanunta
and Zeephongsekul (2004); Last (2007).

3 The Approach

Learning Curve Modeling. A learning curve is
a graphical representation of how a classifier’s per-
formance changes as the size of the training set in-
creases. The curve typically has three sections: an
initial section where performance improves rapidly

with increasing training set size, a middle section
where the rate of improvement slows down, and a
final section where the classifier reaches its maxi-
mum performance and further increases in training
set size do not lead to significant improvements.
This relationship can be quantified using a set of
data points, each of which represents the expected
performance of the classifier Eacc on a particular
training set size Dk. These data points can be plot-
ted to create the learning curve, which can help to
understand the behavior of the classifier and inform
decision-making about how much training data is
needed to achieve a desired performance level.

Task Description. Given a downstream classifi-
cation task with Ntotal data points, a learning curve
model F predicts the expected performance Eacc

when a classifier trained on the an observed range
of training set size (Dk; k >= N ). The empir-
ical learning curve is assessed by the parametric
models for the learning algorithm performance ex-
trapolation. In our settings, we set k << Ntotal to
simulate practical settings, where few data points
consisting of (Eacc, DK) are to be obtained.

Types of Extrapolations. Here, we study differ-
ent forms of learning curve models with few learn-
able parameters that have been proven as simple
yet effective. The simplest type of learning curve
model exponential function (EXP) only introduces
two parameters a and b to fit the exponent behavior
of learning curve (Frey and Fisher, 1999). The sec-
ond form, Inverse Power Law function (INVERSE),
fits the inverse power law (Figueroa et al., 2012)
and has three parameters. The third form uses a
function from the power law family – Power4 func-
tion (POW4) (Kolachina et al., 2012) with four
parameters. Lastly, we propose to combine all
functions into one (ENSEMBLE) so that it has all
their characteristics in order to make it more robust
across benchmarks. Table 1 shows the formulae of
our investigated extrapolating functions.

EXTRAPOLATING FUNCTIONS FORMULA

EXP (A) a ·N b

INVERSE (B) (1− a)− b ·N c

POW4 (C) a− (b ·N + c)−d

ENSEMBLE (A+B+C) −

Table 1: Overview of extrapolating functions
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4 Experimental Settings

We study four NLU tasks: (1) IMDB (Maas
et al., 2011) is a binary classification dataset (25K/–
/25K)3 where model predicts the sentiment (pos-
itive/negative) for movie reviews from IMDB;
(2) SST2 (Socher et al., 2013) is also a senti-
ment classification datatset (67K/0.8K/1.8K) con-
taining reviews of different movies and since the
model predicts if the review is positive or negative,
it also falls in the category of binary classifica-
tion; (3) AG NEWS is a multi-class classification
dataset (120K/–/7.6K) containing texts from dif-
ferent news where the model predicts whether the
news text is about sports, science/technology, world
or business from the four different classes. We also
consider one other multi-class classification task,
(4) DBPEDIA dataset (560K/–/70K) , since it could
help us in testing the robustness of the methods
used in our experiments.

Configs. To investigate how changes in data size
affect the predictiveness of the learning curves, un-
der the assumption that the model structure and
settings remain unchanged, we perform all exper-
iments using a transformer model (Vaswani et al.,
2017) and average the results over 3 initialization
runs. The embedding and hidden layer dimensions
are 1000 and 1820; and we use a 6-layer encoder
with 4 multi-heads, and the dropout is 0.2. To find
the parameters of learning curve models, we con-
sider unweighted and for the gradient descent and
non-linear least squares optimizers. The Adam al-
gorithm (Kingma and Ba, 2014) was used as the
optimizer with learning rate of 1e-5 and ReLU
was used as the activation function. The cross-
entropy objective was used for all classification
benchmarks, and we select the models using loss
values. Finally, we chose a batch size of 8 with 200
number of epochs.

Evaluation. We use the aforementioned func-
tions: EXP, INVERSE, POW4 and ENSEMBLE

for fitting the empirical learning curve. For each
dataset, we select training set sizes ranging from
1% to 10% data sizes at an interval of 1%. The
learning curve testsets were created with the data
splits in the range [55, 100] at 5% interval by train-
ing the classifier, and obtaining the testset4 perfor-
mance for each corresponding data split. Therefore,

3Expressed in the order (train/dev/test).
4Here, we make the distinction between testset for learning

curve and the original testset split.

we collect the accuracies against different sample
sizes and report the mean absolute error (MAE) as
the evaluation metric for learning curve modeling.

5 Results and Analysis

We present results of ensemble method for learning
curve modeling on the NLU benchmarks.

5.1 Main Results
Figure 1 demonstrates that by using only 10% of
the data for learning curve modeling, ENSEMBLE

is able to effectively predict model performance
within a 0.9% margin of the actual model per-
formance. Moreover, we observe the same trend
across all four benchmarks consisting of different
training set sizes (i.e. ranging from 25K to 250K)
and varying number of classification classes (i.e.
ranging from 2 to 14), see the appendix A for re-
maining figures. Our result shows that the proposed
approach is not confined by the classification types
and sample sizes.

Table 2 shows the saturated points of the learning
curve when the performance improvement is less
than a threshold α = 0.2 – we found that the pre-
dicted performance with only 19% data is within
2.44 accuracy points from the trained model perfor-
mance for IMDB. Another key observation is that
the size (%) needed to predict a low L1 distance
increases as the number of classification classes
goes up, which indicates that task difficulty does
influence the ease of extrapolation. An example
is that AG NEWS requires up to 51% to predict a
low L1 distance. Next, we perform further abla-
tion studies to investigate the effect of sample size,
types of non-linear functions used, or the effect of
data weighting.

BENCHMARK CLS (#N) SIZE (%) SIZE (#N) L1↓ 100%
α = 0.2

IMDB 2 36% 6, 300 2.44 17K
SST2 2 19% 8, 958 5.57 47K
AG NEWS 4 51% 42, 840 2.6 84K
DBPEDIA 14 51% 199, 920 2.39 392K

Table 2: CLS (#N) stands for the number of classes, SIZE
(%) for the percentages of the data size for the learning curve
modeling. SIZE (#N) is the number of the corresponding data
size, L1 is the L1 distance between the accuracy of models
using all the training data and the estimated accuracy based
on the saturated point. 100% specifies all training samples for
learning curve.

5.2 Ablation Study
Effect of sample size. In Figure 1, we study the
correlation between sample sizes and the absolute
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Figure 1: Learning curves on 10% sample size of IMDB and SST2 datasets. We plot learning curves using the exponential
(Exp), inverse power law (Inv), power4 (Pow4) function, and the combination of the aforementioned forms (Ensemble). The
learning curves only fit on 10% training sample (blue) and generalize on the unseen data sizes. We evaluate the learning curves
on the testing sample (yellow). Data sizes from 10% to 50% (teal) are neither used in training nor testing.

mean error between the learning curve model and
empirical model performance trend. Surprisingly,
we discovered by having more samples does not
necessarily help with modeling a better learning
curve5, and that with only 10% data to build the
(Dk, Eacc) data points is sufficient to obtain rather
small errors across all four benchmarks.

Types of learning curve functions. We are also
interested in seeing how each of the non-linear
learning curve function fare against each other in
simpler settings. To this end, we used up to 10%
data to model the learning curves and obtained their
respective mean absolute error values. In Figure 1,
we present this comparison where we showed that
on IMDB and SST2, the ENSEMBLE function con-
sistently fit best against the empirical data. We
observed a similar trend across other benchmark
DBPEDIA with the exception of AG NEWS. We
placed the plot for AG NEWS in appendix A.3.

Influence of data weighting. Previous
work (Paul et al., 2021; Guo et al., 2022) has found
that not all data points are equally important in
terms of curve fitting. In fact, data points at a later
phase corresponding to more samples are to be
given more weight compared to earlier points. We
thus investigate this phenomenon in the context
of our benchmark, and we observed this to be
true anecdotally. The detailed result can be found
in Appendix A.2. The reason for this is that the
more data samples there are, the more closely they
resemble the entire training set, and this makes

5We showed this result in the Appendix A.5.

their signals a better estimation of a point on the
actual learning curve. Another perspective is
that the more data samples are used, the less the
effect of random sampling on the performance,
which affects model performance in extremely low
resource scenarios.

FUNCTION TYPE
NON-LINEAR LEAST SQUARES

UNWEIGHTED WEIGHTED

EXP 0.0417 0.0244
INV 0.00777 0.00442
POW4 0.00795 0.00795

Table 3: Better curve fitting when weighting data points at lat-
ter phase. We examine the effectiveness of weighting data size
on the exponential (EXP), inverse power law (INV), power4
(POW4) function using non-linear least squares method. The
learning curves fit on 5%, 10%, 25% and 50% data sizes of
IMDB and is evaluated on testing sample with mean absolute
error (MAE).

6 Conclusions and Future Works

In this work, we investigated techniques for estimat-
ing the amount of training data needed to achieve a
target performance in four natural language under-
standing benchmarks. We demonstrated that our
approach allows for accurate prediction of model
performance using only a small portion of the data,
which can be useful in scenarios with limited re-
sources. Nevertheless, we also recognize the lim-
itation in our current study. For instance, we did
not explore sampling techniques other than ran-
dom sampling; while recent works (Yuan et al.,
2020; Paul et al., 2021; Guo et al., 2022) have
shown promising directions in data sampling that
outperforms random sampling. Another interesting
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direction is to explore the model architecture’s in-
fluence on generalizability, and thus the learning
curve, which we left for future works.

Limitations

While the effectiveness of the expressive learn-
ing curve in settings with limited data has been
demonstrated, it is uncertain if this success can be
replicated in more complex natural language under-
standing tasks, such as question answering or tasks
that involve a large amount of data. Furthermore,
it is assumed that all data samples have the same
impact on the model’s performance. However, the
actual performance of the model may vary based
on the method used to select the data or the specific
set of tasks being performed, e.g., coreset selection.
Similarly, the quality of the labels used for the data
can also play a significant role in predicting the
performance of the model. Overall, we plan to fur-
ther investigate these questions and explore them
in future studies.

Ethics Statement

We address the efficiency of data annotation by
investigating learning curves to estimate the neces-
sary training sample size to reach a desired model
performance. However, it is imperative to take into
consideration the potential biases that may exist
in the model predictions when utilizing a reduced
amount of labeled data in the system construction
process. Furthermore, when addressing complex
tasks such as machine translation and text summa-
rization, it is essential to guarantee the factuality
of output generated by the system trained with the
suggested data sample size.
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A Detailed Results

A.1 Predicting the Required Data Size
Table 4 presents the results of required data size
prediction using threshold α = 0.1 and α = 0.3.

BENCHMARK CLS (#) SIZE (%) SIZE (#N) L1↓ 100%
α = 0.1

IMDB 2 19% 16, 800 6.56 17K
SST2 2 8% 25, 458 8.27 47K
AG NEWS 4 28% 82, 320, 2.96 84K
DBPEDIA 14 27% 384, 160 3.44 392K

α = 0.3

IMDB 2 96% 3, 325 5.84 17K
SST2 2 54% 3, 772 0.704 47K
AG NEWS 4 98% 23, 521 9.9 84K
DBPEDIA 14 98% 105, 840 9.68 392K

Table 4: We show the results with the thresholds α = 0.1
and α = 0.3. SIZE (%) stands for the percentages of the
data size for the learning curve modeling, SIZE (#N) is the
number of the corresponding data size, L1 is the L1 distance
between the accuracy of models using all the training data and
the estimated accuracy based on the saturated point. 100%
specifies all training samples.

A.2 Data Weighting
We apply data weighting on three extrapolating
functions using gradient decent methods in 5.

EXTRAPOLATING
GRADIENT DESCENT

UNWEIGHTED WEIGHTED

EXP 0.0417 0.0342
INV 0.0706 0.0519
POW4 0.0979 0.0652

Table 5: Better curve fitting when weighting data points
at latter phase. We examine the effectiveness of weight-
ing data size on the exponential (EXP), inverse power
law (INV), power4 (POW4) function using gradient de-
cent method. The learning curves fit on 5%, 10%, 25%
and 50% data sizes of IMDB and is evaluated on testing
sample with mean absolute error (MAE).

A.3 Learning curve on 10% data sizes of AG
NEWS

Figure 2 shows the learning curves fitting on 10%
data sizes of AG NEWS dataset.

A.4 Learning curve on 10% data sizes of
DBpedia

Figure 3 shows the learning curves fitting on 10%
data sizes of DBPEDIA dataset.

A.5 Effect of Sample Sizes for Learning
Curve Fitting

We examined the relationship between sample
sizes and the difference in mean absolute error
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Figure 2: Learning curves on 10% data size using AG
NEWS.
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Figure 3: Learning curves on 10% data size using DB-
PEDIA.

(MAE) between the predicted and actual perfor-
mance trends across four benchmarks. Table 6
showed MAEs when ENSEMBLE fitting on 50%
and 10% of data respectively. We observed that
having more samples does not necessarily lead to
a better model and that using only 10% resulted in
smaller MAEs on all four benchmarks. Therefore,
we select 10% of data points for learning curve
modeling.

BENCHMARK
SAMPLE SIZES

50% 10%
IMDB 0.0458 0.00961
SST2 0.0299 0.0132
AG NEWS 0.0704 0.0209
DBPEDIA 0.0734 0.0158

Table 6: Learning Curve Fitting on 50% and 10% data size
respectively.
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