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Abstract

Natural Language Processing (NLP) models
have gained great success on clean texts, but
they are known to be vulnerable to adversarial
examples typically crafted by synonym sub-
stitutions. In this paper, we target to solve
this problem and find that word embedding is
important to the certified robustness of NLP
models. Given the findings, we propose the
Embedding Interval Bound Constraint (EIBC)
triplet loss to train robustness-aware word em-
beddings for better certified robustness. We
optimize the EIBC triplet loss to reduce dis-
tances between synonyms in the embedding
space, which is theoretically proven to make the
verification boundary tighter. Meanwhile, we
enlarge distances among non-synonyms, main-
taining the semantic representation of word em-
beddings. Our method is conceptually simple
and componentized. It can be easily combined
with IBP training and improves the certified
robust accuracy from 76.73% to 84.78% on the
IMDB dataset. Experiments demonstrate that
our method outperforms various state-of-the-art
certified defense baselines and generalizes well
to unseen substitutions. The code is available
at https://github.com/JHL-HUST/EIBC-IBP/.

1 Introduction

Deep neural networks have achieved impressive
performance on many NLP tasks (Devlin et al.,
2019; Kim, 2014). However, they are known to
be brittle to adversarial examples: the model per-
formance could dramatically drop when applying
imperceptible crafted perturbations, especially syn-
onym substitutions, into the input text. These phe-
nomena have been observed in a wide range of
practical applications (Alzantot et al., 2018; Ren
et al., 2019; Wallace et al., 2019; Zang et al., 2020;
Maheshwary et al., 2021; Meng and Wattenhofer,
2020; Yu et al., 2022).

∗ The first two authors contribute equally.
† Corresponding author.

To mitigate the vulnerability of NLP models,
many adversarial defense methods have been pro-
posed to boost the model robustness from various
perspectives, such as adversarial training (Wang
et al., 2021b; Dong et al., 2021; Li et al., 2021; Si
et al., 2021), advanced training strategy (Liu et al.,
2022), input transformation (Wang et al., 2021a),
and robust word embedding (Yang et al., 2022).
However, these methods could only provide empir-
ical robustness, i.e., the robust accuracy of these
models varies depending on the heuristic search
used in the attacks. In contrast, certified robustness
guarantees that a model is robust to all adversarial
perturbations of a given input, regardless of the at-
tacks for evaluation. Certified robustness provides
a lower bound on the robust accuracy of a model
in the face of various adversarial attacks.

In this work, we aim to design better training
methods for certified robustness. In particular,
our algorithm is mainly based on Interval Bound
Propagation (IBP). IBP is initially designed for
images (Gowal et al., 2019) and is also utilized to
provide certified robustness in NLP models (Huang
et al., 2019; Jia et al., 2019). In the first step, we
compute the interval of embedding of all possi-
ble texts perturbed on the current input by word
substitutions, where the embedding layer is fixed
using the commonly used word embeddings, such
as GloVe (Pennington et al., 2014). Then, in the
second step, given the pre-computed interval, IBP
is used to estimate the upper and lower bounds of
the output layer by layer and minimize the worst-
case performance to achieve certified robustness.

However, previous works of IBP method (Huang
et al., 2019; Jia et al., 2019) use fixed word embed-
dings and we argue that may not be good enough
for certified robustness. As shown in the experi-
ments of Huang et al. (2019), the embedding space
significantly impacts the IBP bounds and the effec-
tiveness of IBP training. Though the close neigh-
bor words in the embedding space are selected for
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the synonym set, the volume of the convex hull
constructed by them is still large for IBP training,
which will lead to loose bounds through propagat-
ing and a poor robustness guarantee. Inspired by
the above observation, in this work, we develop
a new loss to train robustness-aware word embed-
dings for higher certified robustness.

We first decompose certified robust accuracy
into robustness and standard accuracy. We opti-
mize for robustness from the perspective of embed-
ding constraint and optimize for standard accuracy
by training the model normally. It can be proved
that the upper bound of certified robustness can be
optimized by reducing the interval of the convex
hull constructed by synonyms in the embedding
space. Therefore, we propose a new loss called Em-
bedding Interval Bound Constraint (EIBC) triplet
loss. Specifically, given a word, on each dimen-
sion in the embedding space, we aim to reduce the
maximum distance between each word and its syn-
onyms, which is actually to make a smaller interval
of the convex hull formed by synonyms. Then,
we freeze the embedding layer after training the
word embeddings by EIBC triplet loss, and train
the model by normal training or IBP training to
achieve higher certified robust accuracy.

Extensive experiments on several benchmark
datasets demonstrate that EIBC could boost the
certified robust accuracy of models. Especially
when EIBC is combined with IBP training, we
could achieve SOTA performance among advanced
certified defense methods. For instance, on IMDB
dataset, EIBC combined with IBP training achieves
84.78% certified robust accuracy, surpassing IBP
by about 8%, which indicates that constraining the
embedding interval bound will significantly boost
the performance of IBP. Our main contributions are
as follows.

• We prove theoretically that the upper bound of
certified robustness can be optimized through
reducing the interval of the convex hull
formed by synonyms in the embedding space.

• We propose a new loss of EIBC constraining
the word embeddings. EIBC is plug-and-play
and could combine with normal training or
IBP training to boost certified robust accuracy.

• Extensive experiments demonstrate that EIBC
combined IBP training significantly promotes
the certified robustness of the model across

multiple datasets. EIBC also exhibits good
generalization to unseen word substitutions.

2 Related Work

There are many adversarial defense methods to
boost the model’s robustness to adversarial word
substitutions. Adversarial Training (AT), one of
the most popular defense approaches, crafts ad-
versarial examples during the training and injects
them into the training set (Alzantot et al., 2018;
Ren et al., 2019; Ivgi and Berant, 2021; Si et al.,
2021). A stream of work aims to improve the ef-
fectiveness and efficiency of textual adversarial
training by adversary generation based on gradi-
ent optimization (Wang et al., 2021b; Dong et al.,
2021; Li et al., 2021). To eliminate the differences
between clean samples and adversarial examples,
Wang et al. (2021a) insert a synonym encoder be-
fore the input layer, and Yang et al. (2022) propose
Fast Triplet Metric Learning (FTML) to train ro-
bust word embeddings. Liu et al. (2022) leverage
the Flooding training method (Ishida et al., 2020) to
guide the model into a smooth parameter landscape
that leads to better adversarial robustness. Besides,
adversarial detection methods detect the adversar-
ial examples before feeding the input samples to
models by training a classifier (Zhou et al., 2019) or
randomized substitution (Wang et al., 2022). How-
ever, these methods can only provide empirical
robustness, which is unstable for attacks based on
different heuristic searches.

Certified robustness is proposed to guarantee
that a model is robust to all adversarial perturba-
tions of any given input. Interval Bound Propaga-
tion (IBP) calculates the input interval involving
all possible word substitutions and propagates the
upper and lower bounds through the network, then
minimizes the worst-case loss that any combina-
tion of the word substitutions may cause (Jia et al.,
2019; Huang et al., 2019). Randomized smooth-
ing methods, such as SAFER (Ye et al., 2020) and
RanMASK (Zeng et al., 2021), mask a random
portion of the words in the input text to construct
an ensemble and utilize the statistical properties
of the ensemble to predict the output. Zhao et al.
(2022) propose Causal Intervention by Semantic
Smoothing (CISS), which associates causal inter-
vention with randomized smoothing in latent se-
mantic space to make provably robust predictions.

Most previous works do not attach importance
to word embeddings concerning certified robust-
ness. Our work introduces EIBC triplet loss to

674



achieve certified robustness through constraining
word embeddings and incorporates it into IBP to
boost certified robustness.

In the field of adversarial images, Shi et al.
(2021) improve the IBP training method by mit-
igating the issues of exploded bounds at initializa-
tion and the imbalance in ReLU activation states.
It is worth noting that our work differs from Shi
et al. (2021). We particularly focus on reducing the
difference between the upper and lower bounds of
initial inputs by fine-tuning the embeddings. The
reduction of bounds interval provably causes the
tightening of bounds in following propagation.

3 Preliminaries

For the text classification task, a model f : X → Y
predicts label y ∈ Y given a textual input x ∈ X ,
where x = ⟨x1, x2, · · · , xN ⟩ is a sequence con-
sisting of N words, and the output space Y =
{y1, y2, · · · , yC} contains C classes. In this paper,
we focus on an adversarial scenario in which any
word in the textual input can be arbitrarily replaced
by its synonyms so as to change the model’s pre-
diction. Formally, we use S(xi) to denote the syn-
onym set of the ith word xi of input x. Then, we
formulate the set consisting of all the adversarial
examples with allowed perturbations of x:

Badv(x) = {⟨x′1, x′2, · · · , x′N ⟩, x′i ∈ S(xi)∪{xi}}.
(1)

Our goal is to defend against the adversarial
word substitutions and train models with certified
robustness, i.e.,

∀ x′ ∈ Badv(x), f(x′) = f(x) = y. (2)

If Eq. (2) holds and the model classifies the instance
correctly, that is, y = ytrue, then we call the model
prediction on input x is certified.

We can easily decompose certified robust accu-
racy into robustness and standard accuracy. Ro-
bustness cares about whether the model predic-
tion is consistent under perturbations. Clearly,
achieving robustness is a necessary condition for
obtaining models with high certified robust accu-
racy. We then illustrate the conditions to be sat-
isfied for robustness in terms of interval bound.
For a K-layer neural network, assuming we can
calculate the interval bound of the output logits
zK : zK ≤ zK ≤ zK of all the perturbed inputs
x′ ∈ Badv(x), the model with robustness satisfies
that the lower bound of the model’s largest logit

zKymax
is greater than the upper bound of other log-

its, i.e.,

zKymax
≥ zKy , ∀y ∈ Y, y ̸= ymax. (3)

To evaluate the model’s certified robust accuracy,
we just need to replace the model’s largest logit
zKymax

with the logit of the true class zKytrue in
Eq. (3).

Interval Bound Propagation IBP provides the
solution to estimate the interval bound layer by
layer. We could represent a K-layer neural network
model as a series of transformations fk (e.g., linear
transformation, ReLU activation function):

zk = fk(z
k−1), k = 1, · · · ,K, (4)

where zk is the vector of activations in the kth layer.
To calculate the interval bound of the output logits,
we need to construct the interval bound of the input
vector and propagate it through the network. Let
φ(xi) ∈ RD denote the embedding word vector of
word xi with D dimensions. The word vector input
is z0 = ⟨φ(x0), φ(x1), · · · , φ(xN )⟩. We obtain
the interval bounds of the word vector input z0

by constructing the convex hull of S(xi) in the
embedding space:

z0ij = min
xi∈S(xi)∪{xi}

φ(xi)j ,

z0ij = max
xi∈S(xi)∪{xi}

φ(xi)j ,
(5)

where φ(xi)j is the jth element of the word vector
of word xi. z0 and z0 are the lower and upper
bounds of z0, respectively.

Similarly, for subsequent layers k > 0, we de-
note the lower and upper bounds of activations
in the kth layer as zk and zk, respectively. The
bounds on the zk can be obtained from the bounds
of previous layer zk−1:

zki = min
zk−1≤zk−1≤zk−1

e⊤i fk(z
k−1),

zki = max
zk−1≤zk−1≤zk−1

e⊤i fk(z
k−1),

(6)

where ei is the one-hot vector with 1 in the ith

position. Interval Bound Propagation (IBP) (Gowal
et al., 2018) gives a simple way to solve the above
problems for affine layers and monotonic activation
functions as described in Appendix B.
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4 Methodology

In this section, we first theoretically demonstrate
the influence of word embedding on the model ro-
bustness and then introduce the proposed EIBC
triplet loss to optimize the word embedding. Fi-
nally, we describe how to incorporate EIBC into
the training process.

4.1 Word Embedding Matters Robustness
Previous works on the IBP method (Huang et al.,
2019; Jia et al., 2019) use fixed word embeddings.
As illustrated in Figure 1, IBP constructs an axis-
aligned box around the convex hull constructed
by synonyms in the embedding space. As stated
in Huang et al. (2019), since synonyms may be
far away from each other, the interval of the axis-
aligned box can be large. Through propagating the
interval bounds in the network, the interval bounds
become too loose to satisfy the certified conditions.

To be concrete, based on Eq. (3), training a
model with certified robustness is an optimization
problem formulated as follows:

minimize zKy − zKymax
, ∀y ∈ Y, y ̸= ymax.

(7)

We propose the following theorem to demonstrate
that minimizing the objective in Eq. (7) could be
converted to an optimization objective with respect
to the word embeddings by backpropagating the
interval bounds through the network. We provide
the proof in Appendix A.

Theorem 1 The upper bound on the solution of
Eq. (7) is

minimize max
xi∈x

( max
x′
i∈S(xi)

(
∣∣φ(xi)− φ(x′i)

∣∣)). (8)

where max(·) and | · | are the element-wise opera-
tors.

Theorem 1 inspires us that we could approach
certified robustness by reducing the interval of the
convex hull constructed by synonyms in the em-
bedding space.

4.2 Robustness-Aware Word Embedding
Based on Theorem 1, we attach importance to
word embeddings and propose the Embedding
Interval Bound Constraint (EIBC) triplet loss to
train robustness-aware word embeddings to achieve
higher certified robustness while maintaining their
representation capability for classification.
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Figure 1: EIBC triplet loss reduces the area of the
axis-aligned box formed by synonyms and meanwhile
holds the distance between the word and its non-
synonyms in the embedding space. xi is a word with
x′1
i , x

′2
i , ..., x

′5
i ∈ S(xi) as its synonyms and xj , xk as

its non-synonyms. The dashed line represents the bound
of the convex hull constructed by synonyms.

We measure the interval of the convex hull con-
structed by synonyms of word xi in the embedding
space by:

dbound(xi,S(xi)) = ∥ max
x′
i∈S(xi)

∣∣φ(xi)− φ(x′i)
∣∣ ∥p,

(9)
where ∥ · ∥p indicates p-norm. According to Theo-
rem 1, the certified robustness can be optimized by
minimizing dbound(xi,S(xi)) for each word xi in
the input squence x.

Meanwhile, non-synonyms may be connected
by multiple synonym pairs, and simply reducing
the distance between synonyms will also reduce
the distance between non-synonyms. To prevent
all words from being drawn close to each other and
hurting semantic representation, we also control the
distances between words and their non-synonyms.
Inspired by FTML (Yang et al., 2022), we adopt the
triplet metric learning to reduce the interval of con-
vex hull constructed by synonyms and increase the
distance between words and their non-synonyms
simultaneously. Consistent with Eq. (9), we also
use the p-norm distance of word vectors in the em-
bedding space as the distance metric between two
words xa and xb:

d(xa, xb) = ∥φ(xa)− φ(xb)∥p. (10)

In this work, we adopt the Manhattan distance,
i.e., p = 1 and provide analysis on different p-
norms in Section 5.7.

Finally, we design the EBIC triplet loss for each

676



word xi as follows:

LEIBC(xi,S(xi),N (M)) = dbound(xi,S(xi))

− 1

M

∑

x̃i∈N (M)

min(d(xi, x̃i), α) + α,

(11)

where S(xi) denotes the synonym set of word xi,
and N (M) denotes the set containing M words
randomly sampled from the vocabulary. We set M
to be the same as the maximum size of the synonym
set of a word to maintain the duality of the maxi-
mization and minimization problem. Note that the
purpose of increasing the distance between words
and their non-synonyms is to prevent them from
getting too close and losing semantic representa-
tions, without constantly increasing their distance.
Thus we set a scalar hyperparameter α to control
that they would no longer be pushed away once the
distance exceeds α.

We minimize LEIBC(xi,S(xi),N (M)) to re-
duce the interval of convex hull shaped by word
xi and its synonyms (positive samples) and main-
tain the distances between xi and its non-synonyms
(negative samples) in the embedding space.

Figure 1 illustrates the effect of EIBC triplet
loss. In the embedding space, the interval of the
convex hull constructed by synonyms of word xi
is reduced, while distances between xi and its non-
synonyms xj , xk are maintained.

4.3 Overall Training Process

As described in Section 3, we decompose certified
robust accuracy into two parts: certified robustness
and standard accuracy. We utilize the proposed
EIBC triplet loss to achieve certified robustness
from the perspective of word embeddings, and op-
timize for standard accuracy by training the model
normally.

In the first part, we use EIBC triplet loss to fine-
tune the pretrained word embeddings, e.g., GloVe
word embeddings (Pennington et al., 2014) to get
robust word embeddings. To employ the LEIBC

to each word of input x in the embedding space,
we sum up LEIBC of each word and take the mean
value as our final loss Lemb to train the word em-
beddings:

Lemb =
1

|x|
∑

xi∈x
LEIBC(xi,S(xi),N (M)).

(12)

In the second part, since our BIEC method
merely provides the word embedding with certified
robustness, which is componentized, we could com-
bine it with various training methods to boost the
certified robust accuracy. Specifically, we freeze
the embedding layer trained by EIBC triplet loss
and train the model with normal cross-entropy loss
or with IBP training method (Jia et al., 2019) to-
wards higher certified robust accuracy.

The loss of IBP training is as follows:

Lmodel = (1− β) · LCE + β · LIBP (ϵ), (13)

where LCE denotes the normal cross-entropy loss
and LIBP denotes the IBP loss (we give a brief
description of the IBP loss in Appendix B). Scalar
hyperparameter β governs the relative weight be-
tween the robustness and standard accuracy. The
IBP loss uses ϵ to control the perturbation space
size, and ϵ = 1 means the original size. To main-
tain the balance between robustness and standard
accuracy during training, the IBP training method
gradually increases β and ϵ from 0 to 1. With the
help of EIBC, we could reduce the training epochs
to half of the original IBP training method.

5 Experiments

This section evaluates the proposed method with
three advanced certified defense methods on three
benchmark datasets. In addition, we further study
EIBC on the generalization to unseen word sub-
stitutions, the empirical robustness, the trade-off
between clean and robust accuracy, the training pro-
cedure, and the robustness with different distance
metrics.

5.1 Experimental Setup
Tasks and Datasets We focus on evaluating cer-
tified robustness against adversarial word substitu-
tions. Aligned with previous works (Jia et al., 2019;
Ye et al., 2020; Zhao et al., 2022), we evaluate the
proposed method on three benchmark datasets for
the text classification task, including IMDB (Maas
et al., 2011), YELP (Shen et al., 2017), and SST-
2 (Wang et al., 2019).

Baselines We compare our proposed method
with IBP (Jia et al., 2019), SAFER (Ye et al., 2020)
and CISS (Zhao et al., 2022). We use the models
with the best results for baselines. We also make
our own implementation of IBP method on the
TextCNN model (Kim, 2014). In our implementa-
tion of IBP, we tune and choose the best training
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Method Model IMDB YELP SST-2
IBP Training (Jia et al., 2019) CNN 67.83 85.94 66.17
IBP Training* TextCNN 76.73 88.72 69.15
SAFER (Ye et al., 2020)† BERT 69.20 80.63 -
CISS (Zhao et al., 2022)† BERT 75.25 90.47 -
EIBC+Normal Training TextCNN 72.37 89.51 66.86
EIBC+IBP Training* TextCNN 84.78 93.66 76.95

* Our implementation.
† Results are obtained from Zhao et al., 2022

Table 1: The certified robust accuracy (%) against word substitutions on the IMDB, YELP and SST-2 datasets. All
models are trained and evaluated using the word substitutions from Jia et al. (2019) as the perturbations for a fair
comparison. Ye et al. (2020) and Zhao et al. (2022) do not report their results on the SST-2 dataset.

schedule and hyperparameters depending on certi-
fied robust accuracy, and the performance is better
than that reported in Jia et al. (2019).

Perturbation Setting Following previous work,
we use the same synonym substitutions as in Jia
et al. (2019) and Zhao et al. (2022), which are
initially defined in Alzantot et al. (2018). The syn-
onyms of each word are defined as the n = 8
nearest neighbors satisfying the cosine similarity
≥ 0.8 in the GloVe embedding space (Pennington
et al., 2014) processed by counter-fitting (Mrksic
et al., 2016).

Model Setting Jia et al. (2019) adopt a simple
CNN model with the filter size of 3 and 100 as the
hidden size, termed CNN in the experiments. We
adopt a TextCNN model (Kim, 2014) with three
filter sizes (2, 3, 4) and 200 as the hidden size,
termed TextCNN. Following Jia et al. (2019), we
set a linear layer before the CNN layers of the
models to further control the shape of the convex
hull constructed by synonyms. We study the impact
of different architectures in Appendix C.3.

Implementation Details We use the default
train/test split for IMDB and YELP datasets. For
SST-2, we use the default training set and take the
development set as the testing set. For the gen-
eralization of EIBC, we set the hyperparameter
α = 10.0 in Eq. (11) for all experiments. Analyses
of the impact of α are discussed in Section 5.5.

For the EIBC+Normal training method, we first
use our EIBC triplet loss to train the word embed-
dings for 20 epochs, then we use cross-entropy
loss to train the model with only 1 epoch, because
further unconstrained normal training will lead to
a decline in certified accuracy as shown in Sec-
tion 5.6. For the EIBC+IBP training method, we

use EIBC triplet loss to train the word embeddings
and the IBP training method to train the model si-
multaneously, with half epochs of the original IBP
method. We provide more implementation details
in Appendix C.

5.2 Main Results

We combine the proposed EIBC with normal train-
ing and IBP training, respectively, to boost the cer-
tified robustness. Then, we compare them with
three state-of-the-art baselines, IBP, SAFER, and
CISS, in terms of certified robust accuracy against
word substitutions.

As seen from Table 1, EIBC incorporated with
normal training already achieves certified robust-
ness to a certain extent without any other defense
technique. Especially on the YELP dataset, it gains
89.51% certified robust accuracy, which performs
significantly better than SAFER and IBP. Also,
EIBC combined with IBP training achieves domi-
nant certified robustness on all datasets with clear
margins. For instance, it achieves 84.78% certified
robust accuracy on the IMDB dataset, surpassing
the original IBP on the TextCNN model by about
8%. This indicates that the tight embedding bounds
benefiting from EIBC will considerably boost the
performance of IBP.

It is worth noting that though EIBC combined
with IBP training is implemented on simple CNN
architectures, it achieves higher certified robust ac-
curacy than SAFER and CISS based on large-scale
pre-trained BERT models (Devlin et al., 2019),
suggesting the superiority and lightness of our ap-
proach.

5.3 Generalization to Unseen Substitutions

The defense methods generally assume that the syn-
onym lists used by attackers are known, which is
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Figure 2: The certified robust accuracy (%) against unseen word substitutions on IMDB and SST-2 datasets with
different γ. The methods are implemented on TextCNN models.

under the ideal assumption. To study the general-
ization of our method to unseen word substitutions,
we only use part of the word substitutions to train
the model and all the word substitutions for robust
evaluation.

Specifically, for each word with n synonyms, we
randomly select its ⌈γn⌉ synonyms (0 < γ ≤ 1)
for training, where γ controls the proportion of the
seen word substitutions during training. We ob-
serve the certified robust accuracy under the word
substitutions based on the entire synonyms.

Figure 2 shows the certified robust accuracy with
different γ. The performance of IBP decreases
rapidly with the decline of γ, but the EIBC com-
bined with normal training is relatively stable, indi-
cating that EIBC has a remarkable generalization to
unseen word substitutions. It also suggests that the
improvement benefiting from the word embeddings
is more generalized than that from other parts of the
model under unseen word substitutions. Further-
more, EIBC combined with IBP training achieves
the best certified robust accuracy in most cases.

5.4 Empirical Robustness

We utilize the Genetic Attack (GA) (Alzantot et al.,
2018) to investigate the empirical robustness of our
method. GA generates a population of perturbed
texts by random substitutions, then searches and
updates the population by the genetic algorithm.
Following Jia et al. (2019), we set the population
size as 60 and run 40 search iterations on 1,000
testing data randomly sampled from each dataset.

As shown in Table 2, without any defense tech-
nique, the genetic attack can dramatically mislead
the normally trained model and degrade its accu-
racy to 8.0% on the IMDB dataset and 40.5% on

Method IMDB YELP
Normal Training 8.00 40.50
IBP Training* 74.90 87.50
EIBC+Normal Training 77.10 90.40
EIBC+IBP Training* 86.10 93.40

* Our implementation.

Table 2: The empirical robust accuracy (%) against ge-
netic attack on IMDB and YELP datasets. The methods
are implemented on TextCNN models.

the YELP dataset. Among all the defense baselines,
our proposed method exhibits better performance
with a clear margin under GA.

5.5 Clean Accuracy versus Robust Accuracy

In Eq. (11), our EIBC triplet loss uses hyperparam-
eter α to control the distance between words and
their non-synonyms to hold the semantic represen-
tation capability of the word embeddings. We use
clean accuracy to denote the accuracy (%) on clean
testing data without any perturbation, and robust
accuracy to denote the certified robust accuracy
(%) against word substitutions.

We observe the trade-off between clean accuracy
and robust accuracy controlled by α. As depicted
in Figure 3, when α is low, the distances among
any words are close, which harms the semantic rep-
resentation of word vectors and leads to low clean
accuracy. Meanwhile, the interval of convex hull
constructed by synonyms is also small. Thus, the
output bounds are tight, and the gap between robust
accuracy and clean accuracy is reduced. Further,
when α approaches 0, the term pushing away the
non-synonyms in EIBC triplet loss tends to be in-
valid. The shape decline in clean accuracy in this
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Figure 3: The impact of hyperparameter α on the trade-
off between clean accuracy and robust accuracy of EIBC
with normal training on the IMDB dataset.

case demonstrates the importance of pushing away
non-synonyms. As α grows, the distance between
words and their non-synonyms gradually increases,
thus ensuring better semantic representation and
higher clean accuracy. However, the further in-
crease of α leads to the enlargement of the interval
of convex hull formed by synonyms and hinders
the robust accuracy.

5.6 Training Procedure
To investigate how the word embeddings pre-
trained by EIBC help improve the training process,
in Figure 4, we illustrate the changing curve of the
certified robust accuracy in the training procedure
for IBP, EIBC with normal training, and EIBC with
IBP training.

With loose interval bounds, the certified robust
accuracy of IBP increases slowly during the train-
ing procedure, finally achieving a relatively low
certified guarantee. For EIBC combined with nor-
mal training, since the word embeddings trained
by EIBC have provided the model with initial certi-
fied robustness, the model only normally trains one
epoch to achieve a certified robust accuracy slightly
lower than IBP. However, further normal training
without constraint leads to a decline in certified ro-
bust accuracy. We could combine EIBC with IBP
training to achieve the best certified robust accu-
racy with half epochs of IBP. These results suggest
that tightening word embeddings with EIBC can
boost the certified robustness and accelerate the
training process of IBP.

5.7 Analysis on Distance Metric
We explore the effect of different lp-norm distance
metrics in Eqs. (9) and (10), such as Manhattan
distance (p = 1), Euclidean distance (p = 2),
and Chebyshev distance (p = ∞). Table 3 shows
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Figure 4: The curve of certified robust accuracy (%) in
the training procedure of different methods.

Distance Metric IMDB YELP
p = 1 84.78 93.66
p = 2 81.47 92.68
p = ∞ 60.60 82.26

Table 3: The certified robust accuracy (%) of models
trained by EIBC+IBP Training method using different
distance metrics on the IMDB and YELP datasets.

the results of models trained by EIBC combined
with IBP training on the IMDB and YELP datasets.
EIBC with Euclidean distance achieves competitive
robustness to EIBC with Manhattan distance. The
performance of Euclidean distance and Manhat-
tan distance is relatively close on the two datasets
because they can constrain the bound on each di-
mension in the embedding space. In contrast, the
effectiveness of Chebyshev distance is the worst
as it can only constrain one dimension, which is
inefficient.

6 Conclusion

In this work, we attach importance to word em-
beddings and prove that the certified robustness
can be improved by reducing the interval of the
convex hull constructed by synonyms in the em-
bedding space. We introduce a novel loss termed
the Embedding Interval Bound Constraint (EIBC)
triplet loss to constrain the convex hull. Since EIBC
merely provides word embeddings with certified
robustness, which is componentized, we could in-
corporate EIBC into the normal training or IBP
training to boost the certified robust accuracy. Ex-
periments on three benchmark datasets show that
EIBC combined with IBP training achieves much
higher certified robust accuracy than various state-
of-the-art defense methods. EIBC also exhibits
good generalization to unseen word substitutions.
We will further study how to incorporate EIBC
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with other certified defense methods in future work.
Moreover, we will apply the proposed method in
transformer-based models and extend the research
to defend against character-level or sentence-level
perturbations.

An essential difference between image and text
data is that text data is discrete and needs to be
transformed into continuous word vectors by word
embeddings. Tightened bounds of word embed-
dings benefiting from EIBC could boost the certi-
fied robustness of IBP, which is a typical example
to indicate that word embeddings are vital to the ro-
bustness of NLP models. We hope our work could
inspire more studies on the robustness of NLP mod-
els enhanced by word embeddings.

Limitations

As pointed out by Shi et al. (2020), applying IBP
technologies to large-scale pre-trained BERT mod-
els is challenging because of the calculation of
bound propagation on the attention layer is rela-
tively loose. Since BERT is currently one of the
most popular architectures in NLP, there is a limita-
tion that the proposed method combined with IBP
training could not generalize to BERT architec-
tures. However, it is worth noting that the proposed
method based on TextCNN architectures achieves
better certified robustness than the advanced base-
lines, SAFER and CISS based on BERT. Besides,
this paper focuses on enhancing the model’s ro-
bustness to word substitutions, but not investigates
the robustness to character-level or sentence-level
perturbations.
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A Proof of Theorem 1

In Theorem 1, minimizing the objective in Eq. (7) is
converted to an optimization objective with respect
to the word embeddings. We prove the theorem in
two steps. Firstly, we prove the upper bound solu-
tion of the optimization objective in Eq. (7) is to
minimize the maximum gap between the model’s
logits and its bound. Secondly, we convert the
optimization of the gap to an optimization objec-
tive with respect to the word embeddings by back-
propagating the interval bound.

Lemma 1 The upper bound on the solution of
Eq. (7) is

minimize max(
∣∣zK − zK

∣∣) + max(
∣∣zK − zK

∣∣).
(14)

where max(·) and | · | are the element-wise opera-
tors.

Proof of Lemma 1. For a fixed model, we have:
zKymax

− zKy = (zKymax
− zKymax

)− (zKy − zKymax
)+

(zKy − zKy ) , which is a constant. Therefore, the
optimization objective in Eq. (7) is equivalent to:

minimize (zKymax
− zKymax

) + (zKy − zKy ),

∀y ∈ Y, y ̸= ymax.

(15)

Besides, we have the following upper bound
relationship:

(zKymax
− zKymax

) ≤ max(
∣∣zK − zK

∣∣),
(zKy − zKy ) ≤ max(

∣∣zK − zK
∣∣),

∀y ∈ Y, y ̸= ymax.

(16)

Then, based on Eq. (15) and Eq. (16), we can
easily derive that Eq. (14) is the upper bound on
the solution of Eq. (7).

□

Bound Backpropagation We back-propagate
the interval bounds from the output logits to the em-
bedding space through the network layer by layer.
Assuming we have already obtained the interval
bounds of layer k + 1, we need to calculate the
bound of the previous layer k. We mainly deal
with two cases:

• For an affine transformation, denoted by
zk+1 = Wzk + b, we have:

∣∣∣zk+1 − zk+1
∣∣∣ = |W|

∣∣∣zk − zk
∣∣∣ ,

∣∣∣zk+1 − zk+1
∣∣∣ = |W|

∣∣∣zk − zk
∣∣∣ ,

(17)

where | · | is the element-wise absolute value
operator.

• For an element-wise monotonic activation
function (e.g. ReLU, tanh, sigmoid), denoted
by zk+1 = h(zk), we have:

∣∣∣zk+1 − zk+1
∣∣∣ ≤ Ca

∣∣∣zk − zk
∣∣∣ ,

∣∣∣zk+1 − zk+1
∣∣∣ ≤ Ca

∣∣∣zk − zk
∣∣∣ ,

(18)

where Ca is the Lipschitz constant of the acti-
vation function.

For z0 ∈ RN∗D, we use max∗(·) to denote the
max operator over each dimension of the embed-
ding space, and we have max∗(z0) ∈ RD. With
the bound backpropagation, we have:

∣∣zK − zK
∣∣ ≤ C1max∗(

∣∣z0 − z0
∣∣),

∣∣zK − zK
∣∣ ≤ C2max∗(

∣∣z0 − z0
∣∣),

(19)

where C1 and C2 are calculated by interval bound
backpropagation, and they are constant matrices
for a fixed model. Then, we can derive the upper
bound of the optimization objective in Eq. (14):

minimize max∗(
∣∣z0 − z0

∣∣) + max∗(
∣∣z0 − z0

∣∣).
(20)

According to Eq. (5), we have:

max∗(
∣∣z0−z0

∣∣)≤max
xi∈x

( max
x′
i∈S(xi)

(
∣∣φ(xi)−φ(x′i)

∣∣)),

max∗(
∣∣z0−z0

∣∣)≤max
xi∈x

( max
x′
i∈S(xi)

(
∣∣φ(xi)−φ(x′i)

∣∣)),

(21)
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and then we can construct the upper bound on the
solution of Eq. (20):

minimize max
xi∈x

( max
x′
i∈S(xi)

(
∣∣φ(xi)− φ(x′i)

∣∣)).

(22)

Based on Lemma 1, we can derive that Eq. (22)
is the upper bound on the solution of Eq. (7).

□

B Interval Bound Propagation

Here we give a brief description of Interval Bound
Propagation (IBP) (Gowal et al., 2018; Jia et al.,
2019) on its calculation of bound propagation and
training loss.

Bound Propagation For Eq. (6), IBP provides
corresponding calculation methods for affine layers
and monotonic activation functions:

• For the affine transformation, denoted by
zk+1 = Wzk + b, we have:

uk+1 =
1

2
W(zk + zk) + b,

rk+1 =
1

2
|W| (zk − zk),

zk+1 = uk+1 + rk+1,

zk+1 = uk+1 − rk+1,

(23)

where | · | is the element-wise absolute value
operator.

• For the element-wise monotonic activation
function (e.g. ReLU, tanh, sigmoid), denoted
by zk+1 = h(zk), we have:

zk+1 = h(zk),

zk+1 = h(zk).
(24)

IBP Loss For the interval bounds calculated by
Eq. (5), the IBP method scales them with scalar ϵ:

z0ij(ϵ) = z0ij − ϵ(z0ij − z0ij),

z0ij(ϵ) = z0ij + ϵ(z0ij − z0ij).
(25)

Using bound propagation, we can get the lower
bound and upper bound of logits with the scalar ϵ:
zK(ϵ) and zK(ϵ), respectively. Similar to Eq. (3),
we can get the worst-case logits and use them to
construct the IBP loss:

LIBP (ϵ) = LCE(z
K
worst(ϵ), ytrue), (26)

where LCE is the cross-entropy loss and zKworst(ϵ)
is the worst-case logits:

zKworst(ϵ) =

{
zKytrue(ϵ) if y = ytrue,

zKy (ϵ) otherwise.
(27)

Then, IBP loss can be combined with normal
cross-entropy loss to train the model and boost the
certified robust accuracy:

Lmodel = (1− β)LCE(z
K , ytrue) + βLIBP (ϵ).

(28)

C More Experimental Details

C.1 Dataset Statistics

IMDB is a binary sentiment classification dataset
with 25,000 training data and 25,000 testing data.
YELP is much larger, with 560,000 training data
and 38,000 testing data. SST-2 is one of the classi-
fication tasks from GLUE (Wang et al., 2019) and
contains 67,350 training data and 873 development
data.

C.2 Detailed Setup

For the EIBC+Normal Training method, we divide
the overall training process into two steps. In the
first step, we use EIBC triplet loss to fine-tune the
pretrained word embeddings, namely GloVe word
embeddings (Pennington et al., 2014). We use the
constant learning rate in the first eemb1 epochs and
the cosine decay learning rate schedule in the last
eemb2 epochs to decrease the learning rate to 0. In
the second step, we freeze the embedding layer and
use the normal cross-entropy loss to train the model
with emodel epochs.

For the EIBC+IBP training method, we use
EIBC triplet loss to train the word embeddings
and the IBP training method to train the model si-
multaneously. We use the constant learning rate in
the first e1 epochs and the cosine decay learning
rate schedule in the last e2 epochs to decrease the
learning rate to 0. For implementing the IBP train-
ing method, following Jia et al. (2019), we use a
linear warmup over ϵ and β in the first e1 epochs
from ϵstart to ϵend and βstart to βend, respectively.

All the experiments are run for five times on a
single NVIDIA-RTX 3090 GPU and the median of
the results is reported. We provide the details of
the EIBC+Normal training and EIBC+IBP training
method in Table 4 and Table 5, respectively.
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Dataset IMDB YELP SST-2
Optimizer Adam(β1 = 0.9, β2 = 0.999)
Batch size 32
Learning rate 10−3

Weight decay 10−4 10−3

eemb1 15
eemb2 5
emodel 1
α 10.0
Total epochs 21
GPU hours 0.2 0.5 0.2

Table 4: Training configuration and hyperparameters of
EIBC+Normal training method. GPU hours are tested
on a single NVIDIA-RTX 3090 GPU.

Dataset IMDB YELP SST-2
Optimizer Adam(β1 = 0.9, β2 = 0.999)
Batch size 32
Learning rate 10−3

Weight decay 10−4 10−3

e1 20 10
e2 10 5
ϵstart 0.0
ϵend 1.0
βstart 0.0
βend 1.0
α 10.0
Total epochs 30 15
GPU hours 0.5 1.5 0.5

Table 5: Training configuration and hyperparameters of
EIBC+IBP training method. GPU hours are tested on a
single NVIDIA-RTX 3090 GPU.

Our implementation of the IBP training method
follows the original settings described in Jia et al.
(2019) except for a few differences below:

• We do not use early stopping but instead the
cosine decay learning rate schedule to stabi-
lize the training process.

• Jia et al. (2019) removes the words that are
not in the vocabulary of the counter-fitted
GloVe word embeddings space (Mrksic et al.,
2016) from the input text data. However,
some datasets, such as YELP, contain some
short text samples, and such a pre-processing
approach would result in no words existing.
We retain all the words that appear in the
vocabulary of the original GloVe word em-
beddings, which is a much larger vocabulary.
We also show the model performance on the
IMDB dataset under the two pre-processing

Method Vocab IMDB
IBP Training* CF 76.16

GloVe 76.73
EIBC+Normal Training CF 69.54

GloVe 72.37
EIBC+IBP Training* CF 82.40

GloVe 84.78
* Our implementation.

Table 6: The certified robust accuracy (%) against word
substitutions on the IMDB dataset with different vo-
cabulary. The methods are implemented on TextCNN
models. CF means vocabulary of counter-fitted word
embeddings.

Method Model IMDB
IBP Training* CNN 76.00

TextCNN 76.73
EIBC+Normal Training CNN 72.22

TextCNN 72.37
EIBC+IBP Training* CNN 84.40

TextCNN 84.78
* Our implementation.

Table 7: The certified robust accuracy (%) of models
with different architectures and defense methods on
the IMDB dataset.

approaches. The results are in Table 6.

• We set the βend to 1.0 instead of 0.8 towards
higher certified robust accuracy.

C.3 Robustness on Different Architectures
We implement IBP, EIBC with normal training, and
EIBC with IBP training on two architectures, i.e.,
CNN and TextCNN. As shown in Table 7, using
the same architectures, EIBC combined with IBP
training performs better than IBP on both CNN and
TextCNN models. Using the same training method,
the models based on the TextCNN architecture per-
form better than that based on the CNN architec-
ture, because TextCNN is more complicated.
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