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Abstract

Although the incorporation of pre-trained lan-
guage models (PLMs) significantly pushes the
research frontier of multi-turn response se-
lection, it brings a new issue of heavy com-
putation costs. To alleviate this problem
and make the PLM-based response selection
model both effective and efficient, we pro-
pose an inference framework together with
a post-training strategy that builds upon any
pre-trained transformer-based response selec-
tion models to accelerate inference by progres-
sively selecting and eliminating unimportant
content under the guidance of context-response
dual-attention. Specifically, at each trans-
former layer, we first identify the importance
of each word based on context-to-response
and response-to-context attention, then select
a number of unimportant words to be elimi-
nated following a retention configuration de-
rived from evolutionary search while passing
the rest of the representations into deeper layers.
To mitigate the training-inference gap posed
by content elimination, we introduce a post-
training strategy where we use knowledge dis-
tillation to force the model with progressively
eliminated content to mimic the predictions of
the original model with no content elimination.
Experiments on three benchmarks indicate that
our method can effectively speeds-up SOTA
models without much performance degradation
and shows a better trade-off between speed and
performance than previous methods.

1 Introduction

Constructing intelligent dialogue systems has at-
tracted wide attention in the field of natural lan-
guage processing (NLP) in recent years. There
are two approaches widely used for the dialogue

∗ Corresponding author: Dongyan Zhao.

Context

A: can someone help me with installing drivers?
this is the output file.
B: What drivers are you installing
A: I try to install the video card drivers, and it
says to check out the log file of it.
B: Give more detail. How do you try to install
those drivers? which log file is that.
A: The ones that ship with Ubuntu.

Response

B: This might be heavily connected, so maybe
you have another driver manager running other
open windows synaptic.

Table 1: A dialogue example from Ubuntu Corpus. The
light gray words are eliminated in shadow layers, the
light red words are eliminated in mediate layers, and
the black words are retained all the time and sent to the
deeper layer for the context and response matching.

system, generation-based and retrieval-based meth-
ods. The former views conversation as a generation
problem (Vinyals and Le, 2015; Serban et al., 2016;
Zhang et al., 2020b), while the latter aims to select
the optimal response from candidates given a dia-
log context (Wu et al., 2017; Tao et al., 2019b; Xu
et al., 2021; Han et al., 2021; Feng et al., 2022).
Since retrieval-based methods can usually provide
fluent and informative responses, they are widely
adopted in a variety of industrial applications such
as XiaoIce (Shum et al., 2018) from Microsoft and
AliMe Assist (Li et al., 2017) from Alibaba.

We focus on multi-turn response selection in
retrieval-based dialogue systems in this paper.
Recently advances of pre-trained language mod-
els (Devlin et al., 2019) further push the research
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frontier of this field by providing a much powerful
backbone for representation learning (Whang et al.,
2020; Gu et al., 2020) and dialogue-oriented self-
supervised learning (Xu et al., 2021; Zhang and
Zhao, 2021; Han et al., 2021). Although significant
performance improvement has been made by these
PLM-based response selection models, they usu-
ally suffer from substantial computational cost and
high inference latency due to the growing model
size, presenting challenges for their development
in resource-limited real-world applications. There-
fore, there is an urgent need to accelerate PLM-
based response selection models while maintaining
their satisfactory performance.

To accelerate PLM-based multi-turn response
selection, one direct idea is to avoid unnecessary
calculation when joint modeling dialogue context
and response. Through empirical observation, we
find that there are many unimportant contents that
are either redundant (i.e., repeated by many context
turns) or less relevant to the topic, especially in
the lengthy dialogue context (Zhang et al., 2018).
If accurately identified and appropriately elimi-
nated, the removal of the unnecessary calculation
on them can bring minimum performance degrada-
tion. Drawing inspiration from Goyal et al. (2020),
we propose an inference framework together with
a post-training strategy customized for PLM-based
multi-turn response selection, where unimportant
contents are progressively identified and dropped as
the calculation goes from shallow layers to deep. In
our framework, we seek to answer three research
questions (RQs): (1) how to accurately identify
these unimportant contents, (2) how to properly de-
cide the intensity of elimination for these unimpor-
tant contents under various computation demands,
and (3) how to eliminate unnecessary calculations
on those contents at the minimum cost of perfor-
mance degradation. As the answer to the above
questions, we propose an inference framework to-
gether with a post-training strategy customized for
PLM-based multi-turn response selection as illus-
trated in Table 1. For RQ1, we propose a dual-
attention-based method to measure the relative im-
portance of tokens in context and response as we
find this method is in accordance with our empir-
ical observation. For RQ2, we adopt evolutionary
search (Cai et al., 2019) to build the Pareto Frontier
of performance-efficiency map and choose proper
retention configurations (i.e., which defines how
many tokens are passed to the next layer for each

layer) from the frontier. For RQ3, we notice the
gap between the proposed efficient inference frame-
work and training and employ knowledge distilla-
tion (Hinton et al., 2015) to mitigate this gap by
forcing the model with progressively eliminated
contents to mimic the predictions of the original
model with no content elimination.

We evaluate our proposed method on three
benchmarks for multi-turn response selection:
Ubuntu (Lowe et al., 2015), Douban (Wu et al.,
2017) and E-commerce (Zhang et al., 2018). Ex-
perimental results show that our proposed method
can accelerate the inference of PLM-based multi-
response selection models with acceptable perfor-
mance degradation under various computation con-
straints, while significantly outperforming previous
acceleration methods. We also conduct comprehen-
sive analyses to thoroughly investigate the effec-
tiveness of proposed components.

We summarize the contributions of this paper
as follows: (1) We propose Attend, Select and
Eliminate (ASE), an efficient inference framework
customized for PLM-based multi-turn response
selection models that identify and progressively
eliminate unimportant contents. (2) We propose
a knowledge-distillation-based post-training strat-
egy to mitigate the training-inference gap and de-
crease the performance degradation caused by con-
tent elimination. (3) We conduct comprehensive
experiments on three benchmarks to verify the ef-
fectiveness of our proposed method and prove its
superiority over other acceleration methods.

2 Related Work

Recently, methods based on pre-trained models are
relatively popular, Whang et al. (2020) introduced
the next sentence prediction and mask language
model tasks in the PLMs into the conversation cor-
pus, conducted post-domain training, and finally
treated the context as a long sequence, and ad-
justed the model directly by fine-tuning the model.
Compute context-response match scores. Xu et al.
(2021) tries to introduce self-supervised learning
tasks to increase the difficulty of model training,
and the results show the effectiveness of these
works. From the perspective of data augmentation,
BERT-FP (Han et al., 2021) splits the context into
multiple sets of short context-response pairs and
introduces a conversational relevance task, which
achieves state-of-the-art performance.

Although the performance of the pre-training
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Figure 1: The Overall framework ASE.

model is powerful, it also brings some problems.
The expensive computational cost and high infer-
ence latency hinder the further implementation of
the PLMs to a certain extent. Some works try to
alleviate this problem, one of the branches is to re-
duce the model size, such as distillation (Jiao et al.,
2020; Wang et al., 2021; Liu et al., 2022a,b), struc-
tural pruning (Michel et al., 2019; Fan et al., 2019;
Gordon et al., 2020; Hou et al., 2020) and quanti-
zation (Zafrir et al., 2019; Shen et al., 2020; Zhang
et al., 2020a; Bai et al., 2021), etc. Goyal et al.
(2020) adopts the Attention Strategy to select the
important tokens with a fixed length configuration,
but its speed ratio cannot be selected as needed and
once full training can only get a model with a fixed
speedup.

Since existing method Goyal et al. (2020) is
mainly evaluated on single-sentence or sentence-
pair tasks, it not fully suitable for response selec-
tion where the model needs to understand the re-
lationship between all the utterances in a dialogue
session and learn the interaction of the utterances
closely related to the response. Therefore, we pro-
pose to select and eliminate the token representa-
tion based on context-to-response and response-
to-context attention (i.e., dual-attention, DualA),
which make good use of the relationship between
context-response.

3 Task Formulation

Considering a dialogue system given a dialogue
dataset D = {(ci, ri, yi)}ni=1. Each sample in
the dataset is a triple that consists of context ci,
response ri, and ground truth label yi. ci =
{u1, u2, ..., ul} is dialogue context with l utter-
ances and {uj}lj=1 are arranged in a temporal order.

ri is a response candidate and yi = 1 represents
ri is a proper response for the context ci, other-
wise yi = 0. The core problem of this research
is to learn a matching model M(·, ·) which can
measure the matching degree between context and
response.

4 Methodology

We aim to accelerate the inference of PLM-based
multi-turn response selection models by propos-
ing Attend, Select and Eliminate (ASE) that pro-
gressively identifies and eliminates unimportant
contents to avoid unnecessary calculations. The
overall framework is illustrated in Figure 1. There
are three crucial questions that need to be answered:
(1) how to accurately identify the unimportant con-
tents, (2) how to properly decide the intensity of
content elimination, and (3) how to effectively mit-
igate the training-inference gap in our framework
and decrease the performance degradation. In the
following part of this section, we elaborate on our
method by answering the above three research ques-
tions.

4.1 Content Selection

In the specific scenario of multi-turn dialogue,
there is a lengthy context with multiple turns and
a single sentence of candidate response and the
model aims to measure their semantic similarity.
To achieve this goal, existing PLM-based meth-
ods calculate the interaction of all contents without
distinction, regardless of the various importance
of contents where many of them are redundant or
topic-irrelevant. In order to eliminate them for in-
ference acceleration, we need to accurately identify
them first during encoder flow as in Figure 2(b).
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(a) self-attention matrix (b) encoder information flow

Figure 2: (a) The averaged attention weights of post
ed by the blue response part as the token w’s mutual-
importance. (b) between the encoders, tokens are elimi-
nated and selected to be sent to the next layer.

4.1.1 Empirical Methods
The multi-turn context accounts for a large pro-
portion of the input pair (ci, ri), making it a good
choice to start our content selection. For multi-
turn context, the easiest way is to conduct content
selection in sentence-level. Empirically, the last
few utterances in the dialogue context are more
close to the response in the dialogue flow, so they
might be more important than the utterances in the
beginning. Hereby, we can also simply select the
last k utterances in the original context as the new
context (i.e., ci = {uj}nj=n+1−k) and concatenate
them with the candidate response, resulting in the
setting that we denote as Lastk. Similarly, we can
select other context utterances, such as the first k ut-
terances and randomly selected k utterances which
are denoted as Firstk and Randk, respectively.

4.1.2 Dual-attention-based Content Selection
Although simply adopting empirical methods (i.e.,
Lastk) yields plausible results as will be shown in
our experiments later, this approach takes all the
last k utterances without distinction, regardless of
the various importance of utterances and tokens.
A reasonable way is to conduct content selection
in a more fine-grained manner (i.e., token-level).
Recent works have shown that the importance of
a token can be measured by the total attention
weights it receives from other tokens (Goyal et al.,
2020; Kim and Cho, 2021), denoted as AM. How-
ever, AM treats all tokens in the input sequence
equally without distinction, neglecting the imbal-
anced relationships between tokens in context and
response. Intuitively, for a token in the context,
the attention it receives from other context tokens
reflects its importance in the context, which we call

self-importance, and the attention obtained from
response tokens reflects its importance for seman-
tic matching, which we call mutual-importance.
Therefore, we propose to disentangle the attention
received by a token into two parts: (1) the self-
attention within a context or response and (2) the
mutual-attention between a context and a response,
and jointly consider them when measuring the im-
portance of a token, and we call it DualA. Specifi-
cally, take a token w in the context for example in
Figure 2(a), we use the averaged attention weights
posed by the response tokens on it as its mutual-
importance score, formulated as:

gc,mutual(w) =
1

H · |Tres|
·

H∑

h=1

∑

w′∈Tres

Ah[w
′, w],

(1)
where Tres means the set of tokens belonging to
the response, Ah represents the attention received
by token w from w′ on head h, and H denotes
the number of attention heads. While for the self-
importance of w, we adopt the averaged attention
weights posed by other context tokens on it:

gc,self(w) =
1

H · |Tcon|
·

H∑

h=1

∑

w′∈Tcon
w′ ̸=w

Ah[w
′, w],

(2)
where Tres means the set of context tokens. We
then jointly consider the self-importance and the
mutual-importance of w by a weighted sum of
gc,self(w) and gc,mutual(w):

gc(w) = αc · gc,self(w) + βc · gc,mutual(w), (3)

where αc, βc that satisfy 0 ≤ αc, βc ≤ 1 and
αc + βc = 1 are weights for calculating the over-
all importance score for context tokens. Similarly,
we can calculate the overall importance score for
the tokens in the response with the only difference
lying in the weights for response tokens αr, βr:

gr(w) = αr · gr,self(w) + βr · gr,mutual(w). (4)

It should be noted that our method can be viewed
as a generalization of typical attention-based im-
portance measurement (Goyal et al., 2020), and can
flexibly balance the influence of self-attention and
dual-attention parts.

4.2 Retention Configuration Search
After having the basis for evaluating the impor-
tance of the token, the model needs to determine
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retention configuration, i.e., how to properly decide
the intensity of content elimination and how many
tokens to keep and pass to deeper encoder layers.

Given a PLM-based model M(θ) with m en-
coder layers, and θ is the parameter of model M .
S = {s1, s2, · · · , sn} is a set called retention con-
figurations where si = [l1, l2, l3, · · · , lm] is a
monotonically non-increasing sequence and lj in-
dicates that lj tokens are kept from the output of
the lj−1-th encoder layer and passed to the lj-th en-
coder layer. According to s, the model M(θ) keeps
and eliminates the corresponding number of tokens
in each encoder, M(θ) can get faster inference, but
the performance may degrade.

In theory, there can be
(
l0
l1

)
×
(
l1
l2

)
×· · ·×

(lm−1

lm

)

possible combinations for each s. By using evo-
lutionary algorithms (Cai et al., 2019), we search
for the Pareto Frontier to make the optimal trade-
offs between performance and efficiency which can
satisfy various given computation constraints.

4.3 Training Framework

In the aforementioned sections, we have introduced
our accelerated inference framework for PLM-
based multi-turn response selection models. Here,
we present our training framework.

Given a pre-trained language model such as
BERT (Devlin et al., 2019), we first adapt it to the
task of multi-turn response selection by using the
SOTA method (i.e., BERT-FP (Han et al., 2021)) on
some multi-turn response selection dataset, obtain-
ing the model M(θ). Then we conduct retention
configuration search (described in Sec. 4.2) based
on our proposed method DualA to obtain a set of
optimal retention configurations S∗.

Now with the trained model M(θ) and S∗ with n
retention configurations, we can get n acceleration
settings for model inference with various speedup
ratio, denoted as G = {M(θ, s1), · · · , M(θ, sn)}.
Although one can directly utilize M(θ, sj) for
faster inference, we argue that there is a gap be-
tween the training and our proposed accelerated in-
ference framework. The previously trained model
M(θ) didn’t encounter the situation where the in-
put sequence of tokens is progressively eliminated
from shallow layers to deep layers. Therefore, we
propose to mitigate this training-inference gap with
once-for-all self-distillation. Specifically, we fix
M(θ) as the teacher and make a copy of it as the
student. During self-distillation, the teacher re-
ceives the complete inputs without content elim-

Algorithm 1: Model Training Steps

Input: PLM (i.e.,BERTbase) ;
Datasets Dtrain and Ddev;

1 Initialize retention set S;
2 Training BERTbase on Dtrain to get M(θ)

using BERT-FP (Han et al., 2021);
3 repeat
4 Sort the tokens based on the importance

through Eq.(3) and Eq.(4) ;
5 Generate new s′ by evolutionary

algorithms (Cai et al., 2019);
6 Update S based on the efficiency and

performance on Ddev of M(θ, s′);
7 until S converges to get S∗;
8 repeat
9 Randomly sample a configuration sj

from S∗;
10 Optimize M(θ, sj) by minimizing K-L

divergence through Eq.(5);
11 until convergence;

Output: M(θ∗) and S∗

ination and produces a probability distribution
pM(θ)(ci, ri) of whether the response is appropri-
ate to the context or not. While for the student, in
order to ensure it can be customized to all retention
configurations S∗ simultaneously with the same pa-
rameters θ∗, we randomly sample the configuration
sj and compute its output distribution under con-
tent elimination setting as pM(θ′,sj)(ci, ri), which
is used to compute the KL-divergence with the
teacher’s outputs following Hinton et al. (2015):

Lθ′ = DKL(pM(θ)(ci, ri)∥pM(θ′,sj)(ci, ri)). (5)

After self-distillation, we obtain the adapted
model M(θ∗) customized for all the searched
optimal retention configurations S∗, making
our final inference acceleration settings G∗ =
{M(θ∗, s1), · · · , M(θ∗, sn)} efficient at the min-
imum cost of performance degradation.

5 Experiments

5.1 Dataset

We evaluate our framework on three widely used
multi-turn response selection benchmarks: the
Ubuntu Corpus (Lowe et al., 2015), the Douban
Corpus (Wu et al., 2017)and the E-commerce Cor-
pus (Zhang et al., 2018).
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Model
Ubuntu Douban E-commerce

R10@1 R10@2 R10@5 Speed MAP MRR P@1 R10@1 R10@2 R10@5 Speed R10@1 R10@2 R10@5 Speed

SMN 0.726 0.847 0.961 - 0.529 0.569 0.397 0.233 0.396 0.724 - 0.453 0.654 0.886 -
DAM 0.767 0.874 0.969 - 0.550 0.601 0.427 0.254 0.410 0.757 - 0.526 0.727 0.933 -

MRFN 0.786 0.886 0.976 - 0.571 0.617 0.448 0.276 0.435 0.783 - - - - -
IOI 0.796 0.894 0.974 - 0.573 0.621 0.444 0.269 0.451 0.786 - 0.563 0.768 0.950 -

MSN 0.800 0.899 0.978 - 0.587 0.632 0.470 0.295 0.452 0.788 - 0.606 0.770 0.937 -

BERT 0.808 0.897 0.975 1x 0.591 0.633 0.454 0.280 0.470 0.828 1x 0.610 0.814 0.973 1x
BERT-DPT 0.851 0.924 0.984 1x - - - - - - - - - - -
BERT-SL 0.884 0.946 0.990 1x - - - - - - - 0.776 0.919 0.991 1x
BERT-FP 0.911 0.962 0.994 1x 0.644 0.680 0.512 0.324 0.542 0.870 1x 0.870 0.956 0.993 1x

BERT+ASE∗ 0.813 0.902 0.976 2.0x 0.591 0.639 0.462 0.283 0.475 0.814 2x 0.664 0.837 0.973 2.3x
BERT+ASE† 0.828 0.910 0.979 1.1x 0.602 0.646 0.469 0.290 0.489 0.837 1.3x 0.700 0.852 0.971 1.4x

BERT-FP+ASE∗ 0.897 0.955 0.991 1.5x 0.633 0.678 0.511 0.323 0.525 0.844 2x 0.843 0.941 0.993 1.4x
BERT-FP+ASE† 0.914 0.964 0.994 1.1x 0.650 0.691 0.532 0.343 0.536 0.856 1.4x 0.872 0.954 0.996 1.1x

Table 2: Model comparison on three benchmarks. BERT-FP is the previous SOTA model. ASE∗ and ASE† are two
representative points of the models with a different speedup ratio.
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Figure 3: Model performance-efficiency comparison of BERT-FP equipped with different accelerating methods.

5.2 Experimental Settings

We use BERT-FP’s trained model to search on the
validation set and get k (k<20) different length con-
figurations. We adopt the weighted sum of the
distillation loss and the cross-entropy loss, as the
training objective function running 5 to 8 epochs.
We employ recall rate Rn@k as the evaluation met-
ric. Especially for some samples in the Douban
corpus having more than one true candidate re-
sponse, we use MAP, MRR, and P@1 same as Tao
et al. (2019b) and Yuan et al. (2019). For infer-
ence efficiency, we employ FLOPs (floating-point
operations) speedup ratio compared to the BERT
model as the measure, as it is agnostic to the choice
of the underlying hardware. To avoid the pseudo
improvement by pruning padding, we evaluate all
models with input sequences without padding to
the maximum length such as to pad length to 256.

5.3 Comparison Methods

We compare our method with these baselines:
(1)Interaction-based Models where the context
and response candidate interact with each other
at the beginning stage. SMN (Wu et al., 2017),
DAM (Zhou et al., 2018), IOI (Tao et al., 2019b),

MSN (Yuan et al., 2019), MRFN (Tao et al., 2019a).
(2)BERT-based Models where the context and
response are concatenated together and feed into
BERT-based models to BERT (Devlin et al., 2019),
BERT-DPT (Whang et al., 2020), BERT-SL (Xu
et al., 2021), BERT-FP (Han et al., 2021). (3)Infer-
ence Accelerated Models PoWER-BERT (Goyal
et al., 2020), L-Adaptive (Kim and Cho, 2021).

5.4 Overall Performance

Table 2 and Figure 3 shows the overall compari-
son results with baselines. We can see that with
ASE, the performance and efficiency of the BERT
and BERT-FP are greatly improved. Specifically,
BERT-FP+ASE† performs slightly better than the
model BERT-FP on Ubuntu and E-commerce and
achieves a significant improvement by 2.0% in
P@1 and by 1.9% in R10@1 on Douban. BERT-
FP+ASE∗ achieves comparable performance with
a double speed on Douban. The ASE also gives
the vanilla BERT significant performance improve-
ment: 9.0% in R10@1 at 1.4x speed, 5.4% in
R10@1 at 2.3x on E-commerce, and slightly bet-
ter performance with a double speed on Ubuntu
and Douban. The detail of the BERT with ASE
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is shown in Appendix. Figure 3 compares the ef-
fect of combining BERT-FP with three different
accelerating methods: ASE, PoWER-BERT, and
L-adaptive. It can be seen that with ASE, BERT-FP
achieves better results than with other method by
a large margin, which demonstrates that extracting
important tokens based on dual attention is fea-
sible for accelerating the inference of multi-turn
response selection. In contrast, both baselines have
shown a large decline due to the incomplete adap-
tation of the task.

1.4 1.6 1.8 2.0 2.2
Speedup Ratio

0.60

0.70

0.80

0.90

R
10

@
1

DualA
AM
Lastk
Randk

Firstk

Figure 4: Comparison between different content selec-
tion strategies without self-distillation on Ubuntu.

5.5 Discussions
Comparison between different content selec-
tion strategies. Intuitively, the latter utterances
may be helpful for the multi-turn response selec-
tion. We compare several different strategies, in-
cluding empirical methods (i.e., Lastk, Firstk, and
Randk), the attention-based method AM and dual-
attention-based method DualA.

Figure 4 shows the results of these strategies
with k=3, 4, and 5 on Ubuntu. It can be seen
that based on the three simple empirical strate-
gies, Lastk, Firstk, and Randk, the model can also
achieve good performance with a certain inference
speed. Strategy Lastk performs much better than
strategy Firstk and Randk, which validates our
hypothesis that latter utterances in context may
be more helpful and more important for select-
ing appropriate responses. Most importantly, the
performance-efficiency tradeoffs of our proposed
strategy based on dual attention are completely bet-
ter than the other strategies. This result shows that
to achieve the effect of faster inference, DualA, a
fine-grained strategy of selecting token, is more
effective than the utterance-level selection method
for the response selection.

The effects of using only the k-th utterance from
last as the context. To understand the effect of
utterances in different positions on the task of re-
sponse selection, we test the performance using
only the k-th from last utterance as context. From
the validation set, we first filter out examples where
the context is too short and keep the examples
where the context consists of more than 6, 8, 10,
and 12 utterances on Ubuntu. Then, the k-th ut-
terance from last of the context and the candidate
response are concatenated, being fed to a trained
model for classification. As experimental results
in Figure 5(a) show, the overall performance of
the model is relatively low. Even for the last utter-
ance of the context, also the previous turn of the
response, the performance is still not high. How-
ever, model performance increases rapidly as the
utterance position moves forward under these four
settings, which means that the closer the utterance
to the candidate response, the better the perfor-
mance for the response selection. This is also in
line with the actual chat scene of human beings,
where both parties usually respond to each other’s
current utterance.

The distribution of the selected token represen-
tations. Under the same retention configuration,
the token selected by different strategies will be
different. To better observe which tokens are se-
lected by strategies, we divide the dialogue context
into three parts, the first third, middle third, and
last third of the context. On the Ubuntu IRC V1
corpus, we set the same retention configuration for
both strategies, then as the encoder layer deepens,
we count the distribution of token in the context
part that is selected using AM and DualA.

In Figure 5(b), under the same retention config-
uration, it can be seen that under the method AM
which uses the total attention weights it receives
from other tokens to evaluate the token’s impor-
tance, as the encoder layer deepens, the proportion
of token selected in the last third part is slightly
higher, while the first third and the middle third are
basically the same. However, there is almost no dif-
ference in the distribution of the three parts. While
in Figure 5(c), under the method DualA based on
the dual-attention of the context and response, it
can be seen that as the encoder layer deepens, the
percentage of token selected in the first third of the
context drops sharply. The middle and last third
parts still retain a large part. Until after the ninth
encoder layer, the middle and last parts begin to
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Figure 5: (a) Effect of using only single utterance for response selection. The distribution of selected tokens as the
encoder layer deepens based on (b) AM and (c) DualA. Selection strategies are at the same configuration on Ubuntu.
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Figure 6: Hyper-parameter tuning for α and β at dif-
ferent Speedratio without dynamic self-distillation on
Ubuntu. The dashed and solid lines represent the perfor-
mance of AM and our method DualA, respectively.

decrease drastically but are still more than the first
third part of the context. This is consistent with
the results in Figure 5(a). To a certain extent, this
result shows that when the attention of response-to-
context is used as the query, the response prefers
to focus on the middle and last parts of the context,
that is, the tokens that are closer to the response
will provide more help in response selection, but
are never the same.

Hyper-parameter tuning. According to Equa-
tion 4, the self-importance gr,self and the mutual-
importance gr,mutual have different contributions to
selecting tokens. We experiment with the effects on
the performance with different gr,self and gr,mutual
weights. As shown in Figure 6, the horizontal axis
is α/β, which represents the weight coefficient of
the gr,self to gr,mutual during the model selecting to-
kens belonging to the context. It can be seen that as
the α/β increases, the tokens selected in the con-
text change, and the performance also gradually
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Figure 7: The effect of once-for-all self-distillation. SD
and w/o. SD mean with and without self-distillation,
respectively.

improves, reaching the maximum at α/β = 0.25.
Consistent with our finds in Figure 4, method Du-
alA is consistently performant than AM by a large
margin. These results under different speedup ra-
tios show consistent trends, i.e., the method of se-
lecting tokens based on dual-attention is more ef-
fective for the response selection task.

The effects of the once-for-all self-distillation.
After token selection, we compare model perfor-
mance on Ubuntu with or without self-distillation.
Different from the traditional distillation method,
we adopt the once-for-all self-distillation method
to distill the teacher’s knowledge to the student
by sampling different retention configurations dur-
ing the training. Figure 7 is a comparison of the
performance with and without self-distillation. It
can be seen that with self-distillation, the perfor-
mance is significantly improved for the model un-
der all retention configurations, especially at large
speedup ratio. As the speedup ratio of the model in-
creases, that is, more tokens are eliminated during
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Figure 8: Comparison between BERT+ASE and BERT on (a) Ubuntu, (b) Douban and (c) E-commerce.

inference, and the performance of the model starts
to degrade, but the performance improvement of
self-distillation is also enhanced. This way of opti-
mizing all the retention in the training once avoids
the problem of re-distilling if configuration various
during the actual deployment process.

The flexibility of ASE. We demonstrate the flexi-
bility of ASE by applying it on top of vanilla BERT.
ASE can be easily integrated with any BERT-like
model. We use the bert-base model from Hugging-
face1 and finetune it on three benchmarks: Ubuntu,
Douban and E-commerce. Then we apply the Dual-
attention-based Content Selection method in Sec-
tion 4.1.2 to search for the optimal retention and
perform self-distillation. Figure 8 shows that ASE
can boost BERT performance by 2.0% at 1.1x on
Ubuntu and 9.0% at 1.4x on E-commerce.

6 Conclusion

In this paper, we propose a new framework of pro-
gressively extracting important tokens and elim-
inating redundant tokens to accelerate inference
for multi-turn response selection, which identifies
important tokens based on dual-attention of the
context and response. The experimental results em-
pirically verify the effectiveness of this method. In
the future, we plan to accelerate inference further
by combining it with the layer-wise reduction.

Limitations

During the configuration search stage, because this
is a multi-objective optimization problem involving
performance and efficiency, we use the evolution-
ary algorithm to search here. Designing a robust
and efficient optimization objective is not simple
and it will affect the convergence of search results.

1https://huggingface.co/bert-base-uncased,
https://huggingface.co/bert-base-chinese

Limited by hardware, and in order to speed up the
search, we use a small subset of the validation set
to search retention configuration, which is bound to
have a certain impact on the overall search results.

Ethical Statement

In this paper, we propose ASE, an algorithm to
accelerate multi-turn response selection by progras-
sively selecting and eliminating unimportant to-
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Corpus used for evaluating our framework are pub-
licly available and don’t pose privacy issues. The
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cal or social bias.
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