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Abstract
Existing supervised sign language recognition
systems rely on an abundance of well-annotated
data. Instead, an unsupervised speech-to-sign
language recognition (SSR-U) system learns to
translate between spoken and sign languages by
observing only non-parallel speech and sign-
language corpora. We propose speech2sign-
U, a neural network-based approach capable
of both character-level and word-level SSR-
U. Our approach significantly outperforms
baselines directly adapted from unsupervised
speech recognition (ASR-U) models by as
much as 50% recall@10 on several challenging
American sign language corpora with various
levels of sample sizes, vocabulary sizes, and au-
dio and visual variability. The code is available
at cactuswiththoughts/UnsupSpeech2Sign.git.

1 Introduction

Many hearing-impaired people communicate na-
tively in sign language (SL); for them, SL commu-
nication is as effortless as native spoken commu-
nication is for normal-hearing people. However,
when it comes to a conversation between a hearing-
impaired and a normal hearing, tremendous barri-
ers exist for several reasons. First, there is a short-
age of people who are bilingual in spoken and sign
languages. Automatic sign language recognition
models exists (Koller et al., 2016; Huang et al.,
2018) but are fully supervised and require a large
number of annotated data, which are hard to ac-
quire. As a result, such systems are often limited
to a small vocabulary. On the other hand, untran-
scribed speech audio and SL videos are quite com-
mon on the Internet, presenting an exciting possi-
bility: Given a non-parallel pair of speech and sign
language datasets, can we train a model to translate
between spoken and sign languages? This task,
we called unsupervised speech-to-sign language
recognition (SSR-U), is analogous to well-known
problems such as unsupervised machine transla-
tion (MT-U) (Ravi and Knight, 2011; Artetxe et al.,

2018a; Lample et al., 2018) and unsupervised au-
tomatic speech recognition (ASR-U) (Liu et al.,
2018; Chen et al., 2019; Baevski et al., 2021), al-
beit with a few new challenges. First of all, in the
case of SSR-U, both modalities are continuous as
opposed to at least one of them being discrete in
the case of ASR-U and MT-U. Consequently, the
matching process is much more challenging due to
higher within and cross-modal variability. Further,
most sign language and spoken language can only
be matched on the word level as opposed to the sub-
word level in the case of ASR-U. Not only does
the space of possible mappings explode combina-
torially, but less training data and fewer temporal
constraints are also available to recover the correct
mapping.

In this paper, we develop a neural network-based
framework, speech2sign-U, for both character-level
(with fingerspelling sequence) and word-level SSR-
U. It achieves promising results on datasets with
up to around 900 ASL signs.

2 Problem formulation

Suppose we have a corpus of unlabeled speech
recordings sampled from the random process A =
(A1, · · · , AT ) and another separately collected cor-
pus of unlabeled sign language videos sampled
from the random process V = (V1, · · · , VL).
Both A and V contain the same semantic infor-
mation but different para-linguistic information
such as speaker/signer identity and prosody. In
other words, if we filter out the para-linguistic
information and retain the semantic information
as X := X(A) = (X1, · · · , XT ) ∼ PX for the
speech and Y := Y (V ) = (Y1, · · · , YL) ∼ PY

for the videos, we can find a generator function
G : XT 7→ YL such that Y = G(X). Since the
corpora are unpaired, we cannot estimate G di-
rectly from samples, and the goal of SSR-U is to
“decipher” it using only the relations between the
speech-only and video-only distributions, PX and
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PY :
∑

x∈XT

PX(x)G(y|x) = PY (y), (1)

for all sign language unit sequences y ∈ YL, where
G(y|x) = 1 if and only if y = G(x).

3 Proposed Methods

3.1 Character-level speech2sign-U
In the case of character-level speech2sign-U, V is
drawn from a collection of unlabeled fingerspelling
sequences, where each Vi is the hand gesture for a
character. In this case, we adopt a similar architec-
ture as wav2vec-U (Baevski et al., 2021).

Sign video preprocessing Given a sign video
v ∼ V , we obtain its visual features (v1, · · · , vL)
by passing the raw video frames into a local feature
extractor such as VGG19 or RCNN (Ren et al.,
2015). The local features are then contextualized
by a sign language encoder, consisting of a two-
layer multilayer perceptron (MLP) and a one-layer
uni-directional LSTM:

c1, · · · , cL = LSTM(v1, · · · , vL). (2)

The sign language encoder is then trained using
contrastive predictive coding (CPC) (van den Oord
et al., 2018):

LCPC :=

− EV


∑

i,k

log
ec

⊤
i MLP(vi+k)

∑
n∈Ni,k

ec
⊤
i MLP(n)


 , (3)

where Ni,k is a set of negative samples chosen uni-
formly at random from times other than i+ k. Fi-
nally, we apply K-means clustering on (c1, · · · , cL)
to obtain the sign cluster units Y := (y1, · · · , yL).
Speech preprocessing As in wav2vec-U, for
each utterance, we first use a voice activity de-
tector (VAD) to remove silences between speech
frames and randomly insert silences between word
boundaries of the sign cluster sequence so that their
silence distributions match. Next, we contextual-
ize the raw speech frames using wav2vec 2.0 pre-
trained on LibriLight:

(z1, · · · , zT ) = wav2vec2(a1, · · · , aT ). (4)

Finally, we extract K-means clusters from
(z1, · · · , zT ) and merge consecutive frames belong-
ing to the same clusters to obtain the segment-level
speech features (x1, · · · , xT ).

Unsupervised training A convolutional gener-
ator G : X → Y then generates a sequence of
cluster units (Ŷ1, · · · , ŶL) = G(X) from the seg-
ment features X by sampling from the posterior
probabilities at each segment i:

Ŷi ∼ Gi(yi|X) :=
exp(Convi,yi(X))∑
k exp(Convi,k(X))

. (5)

Then we adopt the generative adversarial network
(GAN (Goodfellow et al., 2014)) objective by train-
ing a binary classifier D : Y 7→ [0, 1] to discrim-
inate between the real cluster sequence and the
generated one:

min
D

max
G

−EX∼PX
[log(1−D(G(X)))]

− EY∼PY
[logD(Y )]

+ λLgp + γLsp + ηLcd, (6)

where Lgp,Lsp and Lcd stand for the gradient
penalty, smoothness penalty and code diversity
losses as defined in (Baevski et al., 2021).

3.2 Word-level speech2sign-U

Word-level speech2sign-U is more challenging than
character-level: the GAN objective in Eq. (6) fails
to converge for vocabulary sizes of 100 or larger,
apparently due to variability in the audio and video
signals. Therefore, we instead adopt a novel GAN-
free architecture trained to match marginals be-
tween the generated and real probability distribu-
tions as shown in Fig. 1.

Preprocessing We extract the sign video and
speech features similar to Section 3.1, except with a
few modifications: first, we assume the word-level
boundaries for both the speech and sign videos are
available, which may be ground truth or bound-
aries detected using unsupervised word segmenta-
tion algorithms from phoneme boundaries (Kreuk
et al., 2020; Bhati et al., 2021; Cuervo et al., 2022).
Then we compute the segment-level speech fea-
tures by averaging the frame-level wav2vec 2.0
features within each word. Further, we use the
I3D (Carreira and Zisserman, 2017) as the local
feature extractor and average the pretrained video
feature frames within each word-level sign video
segment. Lastly, we perform K-means clustering
on the segment features and use the output cluster
units as inputs X to the speech generator as we
found that quantized speech features work better
than continuous features.
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Figure 1: Overall architecture of the word-level speech2sign-U. Solid blocks contain trainable parameters while
dashed blocks do not.

Unsupervised unigram matching Similar to
Section 3.1, we seek to match the probability distri-
butions in the two modalities as our unsupervised
training criterion. Instead of using a convolutional
generator as in Eq. (5), we instead use a linear
generator for each segment i:

G(yi|xi) :=
exp(Wyixi)∑

y′∈Y exp(Wy′xi)
, (7)

Eq. (1) can now be achieved by minimizing the ℓ1
distance between the empirical positional unigram
probabilities of the generated and real sign cluster
units:

Lpos(G) =
L∑

i=1

∥P̂XiG− P̂Yi∥1, (8)

where P̂Xi and P̂Yi are empirical unigram distri-
butions for the speech and sign units, and G ∈
R|X|×|Y| := (G(y|x))x∈X,y∈Y. Note that such
an objective is typically optimized implicitly by
a GAN, but we found that the explicit formula
not only avoids the need for a discriminator but
also leads to more stable training and better perfor-
mance.

Unsupervised skip-gram matching Positional
unigram constraints alone may not be sufficient for

word-level SSR-U. Therefore, we add additional
moment constraints using skip-grams. Define the
k-step skip-gram to be the joint probability

Pr[Z1 = z, Zk+1 = z′] :=

∑L−k
i=1 PZiZi+k

(z, z′)

L− k

=: (PZZ′
k )zz′ . (9)

Then, apply Eq. (1) again, we have the skip-grams
for the generated and real sign cluster units satisfy

G⊤PXX′
k G = P Y Y ′

k , 1 ≤ k ≤ K − 1. (10)

Again, we approximate this constraint by minimiz-
ing their ℓ1 distance:

Lskip(G) =
K∑

k=1

∥G⊤P̂XX′
k G− P̂ Y Y ′

k ∥1. (11)

The overall loss for the word-level speech2sign-U
is then

Lsp2sign−U,word = Lpos + λLskip. (12)

Speech-to-sign retriever Given a query speech
audio (sign video), we would like to use it to re-
trieve its translation from a database of sign videos
(speech audios). To this end, we use the generator
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# signs # train sents # valid # test

Character-level datasets

FS LibriSpeech 87k 287k 5.5k 5.6k
FS LJSpeech 87k 13.1k 348 523

Word-level datasets

ASL Libri. 100 2.6k 14.1k 56 54
ASL Libri. 200 4.4k 56.2k 291 311
ASL Libri. 500 8.2k 137k 941 956
ASL Libri. 1k 11.6k 290k 2.7k 2.5k

Table 1: Dataset statistics

to compute a similarity score between each speech
sequence X and sign sequence Y as:

Sim(X,Y ) = − 1

L
DTW(G(X), Y ), (13)

where DTW(·, ·) is the dynamic time warping dis-
tance between two feature sequences with cosine
distance as the frame-level metric, computed using
the DTW library (Giorgino, 2009).

4 Experiments

4.1 Datasets

The detailed statistics are shown in Table 1.

Fingerspelling LibriSpeech To extract seman-
tic units from the fingerspelling signs, we trained
the visual CPC encoder on a sentence-level fin-
gerspelling dataset constructed from the 960-hour
LibriSpeech dataset and the Unvoiced dataset (Na-
garaj, 2018). To construct the dataset, we replace
each letter in the LibriSpeech transcript with an
image of that letter’s ASL Alphabet symbol chosen
uniformly at random from Unvoiced. To study the
effect of visual variability on SSR-U, we subset the
ASL Alphabet images to 100, 300, 500, or 1000
images per letter sign. The dev-clean subset of
LibriSpeech is used as the validation set.

Fingerspelling LJSpeech We train our character-
level model on another sentence-level finger-
spelling dataset constructed from LJSpeech (Ito
and Johnson, 2017) and the ASL Alphabet dataset
similar to the fingerspelling LibriSpeech.

ASL LibriSpeech For the word-level SSR-U,
we construct another corpus using LibriSpeech
for speech and MSASL (Joze and Koller, 2019)
for word-level sign videos. Since many MSASL
videos no longer exist on YouTube, only 11.6k out
of 25k videos are downloaded. Further, due to the

mismatch in vocabulary size, we use forced align-
ment information to filter out LibriSpeech words
that don’t appear in MSASL and keep sentences
that are at least 5 words long. Next, for each word
in each sentence, we pick a word-level sign video
uniformly at random from MSASL. To study the
effect of vocabulary size on our model, we follow
the split provided by (Joze and Koller, 2019) to
subset the data to a vocabulary size of 100, 200,
500 or 1000.

4.2 Overall results

Evaluation metrics We evaluate the perfor-
mance of our systems using two metrics: the unit
error rate (UER) is the average insertion I , dele-
tion D, and substitution S error between the pre-
dicted and true visual cluster units, which may be
character- or word-level units depending on the
task:

UER =
I +D + S

3
× 100.

The other metric we used to evaluate the speech-to-
sign (A→ V) and sign-to-speech (V→ A) retrieval
tasks is recall@k (R@k) (k = 1, 5, 10), which is
the percentage of hits in the top k results returned
by the retriever.

Character-level SSR-U The character-level re-
sults are shown in Table 2. To obtain retrieval
results, we trained our own wav2vec-U 2.0 using
the code released by the authors. Unfortunately,
we were unable to achieve the same results they
report in their paper. For our ASR-U experiments,
wav2vec-U significantly outperforms wav2vec-U
2.0 in terms of both word error rates and retrieval
tasks. For SSR-U, we compare our models with
wav2vec-U (and 2.0) as well as a supervised im-
age and caption retrieval model trained under a
ranking-based criterion (Harwath et al., 2018). We
replace their original CNN speech encoder with
a two-layer MLP with hidden and output sizes of
256 and ReLU activation, and their VGG16 image
encoder with a linear image encoder with an out-
put size of 256. We found that our models with
100 and 300 images per letter achieve superior per-
formances in terms of recall scores, even to the
text-based wav2vec-U, but remain about 30% be-
low the supervised topline. Notably, our model
performs worse on the A → V direction than on
the V → A direction, especially in terms of re-
call@1. This is perhaps due to significant insertion
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Model Images/ltr UER↓ A→ V V→ A

R@1↑ R@5↑ R@10↑ R@1↑ R@5↑ R@10↑
Supervised speech-to-sign recognition

(Harwath et al., 2018) 1000 - 85.1 93.7 95.4 79.3 96.8 99.1

Unsupervised speech recognition

wav2vec-U - 39.5 1.9 42.1 59.5 17.6 44.2 65.2
wav2vec-U 2.0 - 68.1 1.1 6.3 11.8 2.6 9.8 14.9

Unsupervised speech-to-sign recognition

speech2sign-U 100 43.1 1.7 42.1 63.4 27.5 62.7 78.4
speech2sign-U 300 45.0 1.9 48.8 67.1 22.8 53.9 71.5
speech2sign-U 500 46.2 1.0 33.1 57.2 31.3 57.0 72.8
speech2sign-U 1000 48.6 1.3 43.8 63.8 32.5 58.7 71.5

Table 2: Overall speech2sign-U results on FS LJSpeech

errors in the generated character sequence, which
leads to many false positives during speech-to-sign
retrieval.

Word-level SSR-U The word-level results are
shown in Table 3. To establish top-line results
for error rates and retrieval recall scores, we
train a word-level unsupervised speech recogni-
tion model, speech2text-U, using the same criterion
as speech2sign-U in Eq. 12, except by replacing
the sign cluster sequences obtained from cluster-
ing word-level sign video features (see Section 3.2)
with the underlying textual word labels as the target
random variable Y . At the same time, for the sub-
set with a vocabulary size of 98, we compare the
performance of our model that uses unsupervised
unigram and skipgram matching with wav2vec-U,
which uses a JSD GAN for distribution matching,
to show our proposed training method significantly
improves the word error rates and the recall scores
for both retrieval directions. However, we still
observe a large gap in recall between our unsuper-
vised model and the supervised speech-to-image
retrieval model (Harwath et al., 2018). The per-
formance of both word-level ASR-U and SSR-U
degrades as the vocabulary size increases. The unit
error rate (UER) increases from 53.6% to 87.9%,
the recall@1 of speech-to-sign (A→V) retrieval
decreases from 69.6% to 12.1%, and the recall@1
of sign-to-speech (V→A) retrieval decreases from
71.4% to 10.9% as the vocabulary size increases
from 98 to 877. Such performance degradation is
much more significant than that of character-level
SSR-U because the word modality involves extra

morphological complexity on top of the phonologi-
cal character modality.

Figure 2: speech2sign-U retrieval results (recall@N ,
N ∈ {1, 5, 10}) vs skip-gram size K for various num-
ber of speech clusters on ASL LibriSpeech 100

4.3 Analysis
Effect of skip-gram size The relation between
recall@1, 5, 10 and skip-gram size K is shown
in Figure 2. Increasing K generally improves all
recall metrics for SSR-U by introducing more con-
straints to the generator mapping, though the per-
formance starts to saturate at K = 4.

Effect of the number of speech clusters We ex-
periment with speech2sign-U models with speech
cluster sizes |X| equal to 100, 200, 400, and a
model that directly takes raw wav2vec 2.0 features
as inputs (|X| = ∞), as shown in Figure 2. We
found that the continuous model is significantly
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Model Vocab size UER↓ A→ V V→ A

R@1↑ R@5↑ R@10↑ R@1↑ R@5↑ R@10↑
Supervised speech-to-sign recognition

(Harwath et al., 2018) 877 - 55.2 78.9 86.3 51.7 85.5 93.1

Unsupervised speech recognition

wav2vec-U 98 73.7 16.1 32.1 51.8 17.8 41.1 50.0
speech2text-U 98 7.5 98.2 98.2 100 98.2 98.2 98.2
speech2text-U 193 11.2 96.9 98.6 99.0 96.9 99.3 99.3
speech2text-U 468 30.0 68.0 86.2 90.2 66.7 85.3 90.2
speech2text-U 877 34.4 37.9 60.7 69.3 38.7 59.4 68.3

Unsupervised speech-to-sign recognition

speech2sign-U 98 53.6 69.6 96.4 98.2 71.4 96.4 100
speech2sign-U 193 60.8 75.3 91.1 92.4 69.4 90.0 93.5
speech2sign-U 468 73.2 56.5 76.8 83.6 47.6 74.5 83.5
speech2sign-U 877 87.9 12.1 25.5 32.6 10.9 22.1 29.7

Table 3: Overall speech2sign-U results on ASL LibriSpeech

Video
features

Vocab
Size

A→ V

R@1 R@5 R@10

VGG19 98 32.1 64.3 78.6

OpenPose 98 0.0 8.9 16.1

I3D RGB
98 76.8 89.3 96.4
193 66.0 86.3 91.4
877 1.1 3.0 5.1

I3D flow

98 69.6 96.4 98.2
193 63.9 86.9 91.1
468 43.9 68.5 76.6
877 12.1 25.5 32.6

I3D joint

98 28.6 67.9 76.8
193 75.3 91.1 92.4
468 56.5 76.8 83.6
877 0.1 0.2 0.4

Table 4: Effect of the video features on ASL Lib-
riSpeech with various vocabulary sizes

worse than discrete models and |X| = 200 provides
the most consistent recall scores across different
skip-gram sizes.

Effect of training objectives The effect of dif-
ferent training objectives including the default
speech2sign-U loss (L1) in Eq. (12), the maximum
mean discrepancy (MMD) GAN and the Jensen-
Shannon divergence (JSD) GAN is shown in Fig-
ure 3. For models trained with MMD and JSD

Boundary
Label

Word
Boundary F1

A→ V

R@1 R@5 R@10

speech2text-U

Word 100 98.2 98.2 100
Phoneme 88.1 78.6 98.2 98.2

speech2sign-U

Word 100 69.6 96.4 98.2
Phoneme 88.1 57.1 82.1 91.1

Table 5: Effect of the speech segmentation using
speech2sign-U on ASL LibriSpeech 100

GAN loss, we instead feed the generator outputs
to a discriminator with a single convolutional layer
while keeping all other settings the same. Our ex-
periment indicates that the GAN-free approach is
consistently more stable and accurate compared to
the GAN-based approach.

Effect of visual features The effect of visual
features is shown in Table 4. We experimented
with different types of visual features on ASL Lib-
riSpeech with different vocabulary sizes such as
VGG19 and the pose keypoint features from Open-
Pose (Cao et al., 2019). For the OpenPose features,
we extract the keypoints from each video frames
and re-sample each sign video feature frames to 30
frames as the segment-level feature. I3D architec-
ture (Carreira and Zisserman, 2017) significantly
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Figure 3: Retrieval results (recall@N , N ∈ {1, 5, 10})
vs skip-gram size K for various types of training objec-
tive on ASL LibriSpeech 100

Figure 4: Word detection F1 vs. word rank by frequency

outperforms VGG19 and OpenPose as a feature ex-
tractor, demonstrating the importance of temporal
information for SSR-U. We also found that I3D
with optical flow features performs better than I3D
with raw RGB inputs for most vocabulary sizes.
Further, we found that concatenating the features
from the RGB-based and flow-based I3Ds is benefi-
cial for vocabulary sizes 193 and 468 but not when
the vocabulary size is too small or too large, even
causing training instability for vocabulary size 877.

Effect of segmentations The effect of gold and
predicted speech segmentation for word-level SSR-
U is shown in Table 5. For models trained with
phoneme boundaries, we obtain predicted word seg-
mentations using a CPC-based unsupervised seg-
mentation system (Kreuk et al., 2020) with mean-

pooled phoneme-level wav2vec 2.0 features as in-
puts. The convolutional encoder in the original
model is replaced by a two-layer MLP with 256
output dimensions trained on ASL LibriSpeech
100 for 200 epochs. This yields an exact-match
boundary F1 of 88%. Using such detected word
boundaries, we found about a 20% drop in recall@1
for speech2text-U and an 8-17% relative drop in
recall@1,5,10 for speech2sign-U. Still, our model
remains much better than the wav2vec-U baseline
with ground-truth word boundaries, demonstrating
its robustness to segmentation noise.

Effect of word frequencies We plotted the F1
score of the first 100 word classes ranked by fre-
quency in Figure 4. For ASL LibriSpeech 100 and
500, while noisy, it is not hard to observe that the
F1 score positively correlates with word frequency
in a somewhat exponential fashion. Starting with
F1 above 0.55 for the most frequent word, the per-
formance quickly drops below 0.2 at around the
30th most frequent word. This trend is less con-
clusive on ASL LibriSpeech 1000 with generally
low F1 scores, but the highest F1 scores are still
observed for the most frequent words. The trend is
also illustrated by the DTW alignment of a speech-
video pair correctly retrieved by speech2sign-U in
Figure 5. In our example, speech2sign-U mistakes
the sign “more” for more frequent signs such as
“when” and “have”. Additional factors such as vi-
sual similarity also play a role in the case of “more”
and “when”, as both signs involve touching the tips
of both hands. Such factors may explain the fluc-
tuations in Figure 4. More error analysis can be
found in Appendix A.

5 Related works

Sign language recognition One way to bridge
between sign language and written/spoken lan-
guage is to build a sign language recognition (SLR)
system trained on parallel sign language and text
corpora. The earliest attempts tried to recognize
fingerspelling gestures using hand-tracking signals
from wired gloves (Grimes, 1983; Charayaphan
and Marble, 1992). Later works introduced vi-
sion to either correct the errors made by the hand-
tracking model, or to serve as a cheaper and less-
intrusive alternative (Tamura and Kawasaki, 1988).
Focusing on the problem of isolated sign recog-
nition and treating it as a classification task, a va-
riety of statistical and deep learning models have
been proposed, such as HMM (Starner and Pent-
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Figure 5: An example of the DTW alignment by speech2sign-U between a pair of speech and sign video (with its
optical flow sequence shown below)

land, 1997), 3D-CNN (Huang et al., 2015), two-
stream inflated 3D (I3D) CNN (Carreira and Zis-
serman, 2017; Joze and Koller, 2019), and trans-
former (Boháček and Hrúz, 2022), among oth-
ers. To handle multi-sign video sequences, (Koller
et al., 2016, 2017, 2018, 2019) reformulate the
problem as a sequence labeling problem and de-
velop various systems based on 2D-CNN-HMM
hybrid models for German sign language recogni-
tion. Later works improve the alignment mecha-
nism of previous models using soft DTW (Huang
et al., 2018), CTC with DTW contraints (Pu et al.,
2019) or pseudo-labeling refinement (Zhou et al.,
2019). While some aim to directly use raw RGB
images or generic action features like optical flow
as inputs (Koller et al., 2016; Huang et al., 2018;
Joze and Koller, 2019), others have found domain-
specific features like whole-body and hand key-
points to be more reliable and robust (Boháček
and Hrúz, 2022). Thanks to the rapid development
of the field, there are now many word-level and
sentence-level datasets available in different SLs,
and we refer to (Joze and Koller, 2019) for a more
comprehensive review.

Unsupervised cross-modal alignment The task
of translating between two languages without par-
allel corpora has been demonstrated between writ-
ten language pairs (MT-U) and between spoken-
written language pairs (ASR-U). (Haghighi et al.,
2008) and (Ravi and Knight, 2011; Pourdamghani
and Knight, 2017) are respectively the first to
treat word-level and sentence-level MT-U as a
distribution matching problem and built the first

such systems by training statistical machine trans-
lation systems using nonparallel corpora, which
are further improved by (Artetxe et al., 2018b).
To allow more general source and target distribu-
tions, (Zhang et al., 2017a,b; Conneau et al., 2018;
Artetxe et al., 2018a; Lample et al., 2018) instead
use neural networks to embed the source and target
distributions and match the distributions using ei-
ther shared denoising autoencoder (Artetxe et al.,
2018a), earth-mover distance minimization (Zhang
et al., 2017b) or a generative adversarial network
(GAN) with additional regularization losses (Zhang
et al., 2017a; Conneau et al., 2018; Lample et al.,
2018). (Chung et al., 2018; Liu et al., 2018;
Chen et al., 2019; Baevski et al., 2021; Liu et al.,
2022) adapt and perfect the GAN-based approach
for spoken-written language pairs by leveraging
large-scale self-supervised speech representation
learning models (Chung and Glass, 2018; Baevski
et al., 2020) as well as iterative self-training tech-
niques (Liu et al., 2018).

6 Conclusion

In this paper, we propose the task of unsupervised
speech-to-sign language recognition and a neural
network model, speech2sign-U, capable of both
character-level and word-level SSR-U. On various
unpaired speech and ASL datasets, our models con-
sistently outperform previous unsupervised models
such as wav2vec-U. Further, we found our model
reliable to train for a variety of vocabulary sizes
and robust against various types of noise in both
speech and visual modalities.
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7 Limitations

Our model currently requires high-quality word
boundaries for both speech and sign videos. How-
ever, as demonstrated by our preliminary results in
Table 5, we can overcome such limitations by incor-
porating more powerful unsupervised segmentation
algorithms to our system. Further, while our dataset
is sufficient to model the variability in speech and
videos, all experiments to date have assumed that
spoken and signed sentences share similar word
order, which may not be true of natural spoken
and signed communications. A future direction
of this research will seek to develop methods for
spoken-sign language pairs with very different syn-
tactic structures. Lastly, the vocabulary size under
our study on word-level SSR-U is relatively small
(<1000), and a promising future direction is to ex-
tend the current approach to deal with much larger
vocabulary size in more diverse conversations.

8 Ethical considerations

One potential ethical concern for our model is
the risk of miscommunication. Due to the small
amount of resources used to train our system, it
tends to be less accurate than its supervised coun-
terpart, and its mistakes may cause confusion, mis-
understanding and other psychological harm to the
users of our systems. The other ethical concern is
that the data used to train the system is demographi-
cally homogeneous, as we have noticed from some
brief inspections that most of the signers in the
ASL datasets are white middle-aged adults. This
may lead the system to worse retrieval accuracy
for people underrepresented in the training corpus,
such as black people, children and elderly people.
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A Appendix

A.1 Reproducibility checklist
All experiments are done on four 16GB NVIDIA
V100 GPUs and all models are implemented using
Pytorch (Paszke et al., 2019) and Fairseq (Ott et al.,
2019).

Character-level speech2sign-U We use the ex-
act same generator and discriminator architectures
as the wav2vec-U (Baevski et al., 2021). For the
CPC-based fingerspelling feature extractor, we use
a two-layer MLP as the encoder, with 256 hidden
units, ReLU activation and 256 output units and
a single-layer LSTM with 256 hidden and output
units as the autoregressive predictor. We found 3
prediction steps and 32 negative samples per posi-
tive sample for the CPC loss to be the best setting
for training. For the CPC-based fingerspelling fea-
ture extractor, we train for 60 epochs using Adam
optimizer (Kingma and Ba, 2015) with an initial
learning rate of 0.001, a batch size of 16 with
β1 = 0.9 and β2 = 0.999. The checkpoint with
the highest average next-frame prediction perfor-
mance during training is used for the feature ex-
traction later. For the K-means clustering, we use
FAISS (Johnson et al., 2019) and set the number of
clusters to be the same as the vocabulary size. For
the GAN training, we train the model for 10000
updates and validate the model every 1000 updates
using the UER metric. We observe similar perfor-
mance between the best and the last checkpoints for
most experiments. Again, we follow the publicly
available implementation of wav2vec-U (Baevski
et al., 2021) using Fairseq for all the distributed
training, optimizer and scheduler setting.

Word-level speech2sign-U For extracting the
optical flow features of sign images, we use the
OpenCV implementation of Dual TV-L1 method
and resized all images to 224× 224. For the Open-
Pose features, we follow the default settings to
extract the pose keypoints and set the keypoint co-
ordinates to 0 when the model fails to detect any
keypoints. We also normalize the keypoints by the
size of the video frame. The I3D model we use
are trained on the ImageNet dataset and fine-tuned
on the Charades dataset, for both RGB and flow
implementations. The same CPC sign encoder as
that in character-level experiments is used, except
with the pretrained video features as inputs and the
outputs of the MLP encoder as outputs instead of
that of the LSTM model. We then train the CPC
sign encoder for 200 epochs on ASL LibriSpeech
1000. The CPC sign encoder features are then
quantized into the same number of discrete units as
the vocabulary size (100 for ASL LibriSpeech 100,
etc.) using K-means implemented in FAISS (John-
son et al., 2019). For the speech feature clustering,
we again use the FAISS (Johnson et al., 2019) im-
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plementation of K-means with a cluster size of
about 4 times of the vocabulary size of ASL Lib-
riSpeech 100, 200 and 500, and 2000 clusters for
ASL LibriSpeech 1000. The cluster sizes are cho-
sen to ensure a cluster purity of about 90%. For
the word-level speech2sign-U, the speech genera-
tor is a linear layer with no bias. Skip grams of
a maximal step of 6 are used for experiments on
ASL LibriSpeech 100, 200 and 500, and a maximal
step of 4 are used for ASL LibriSpeech 1000. For
the unsupervised training, we train the model for
a number of updates equal to 3000×

⌊
sample size
batch size

⌋
.

We found that larger batch size generally leads to
better performance, and use a batch size of 16k for
ASL LibriSpeech 100, 200 and 500, and a batch
size of 12k for ASL LibriSpeech 1000 due to GPU
memory constraints. Adam optimizer with a initial
learning rate of 0.4 and [β1, β2] = [0.9, 0.999] is
used throughout the training.

A.2 More SSR-U retrieval examples and error
analysis

More DTW alignments between speech-video pairs
correctly retrieved by speech2sign-U are shown in
Figure 6. As we can see, our model is able to
correctly align the speech and sign video after the
DTW step. However, in order to better understand
the type of errors the model is susceptible to, we
also show the similarity map before the DTW step
in Figure 7. While the similarity maps are nois-
ier than their corresponding DTW alignments, the
high similarity regions are correctly concentrated
approximately along the diagonal most of the time.
there are, however, several common failure modes
by speech2sign-U. The most common mistake by
the model is to confuse less frequent words with
more frequent ones, for example, confuse the less
frequent word “history” with the more frequent
word “from” and “outside” in Figure 7d, or the less
frequent “more” with the more frequent “good” in
Figure 7c or the less frequent “like” with the more
frequent “when” and “man” in Figure 7b. Another
type of mistake is to confuse visually similar signs
such as “one”, “two” and “three” in Figure 7a. The
last common type of mistake for speech2sign-U is
to confuse acoustically similar words, such as the
word “they” and “their” in Figure 7c.

6796



(a)

(b)

(c)

(d)

Figure 6: DTW alignments from ASL LibriSpeech 500
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(a)

(b)

(c)

(d)

Figure 7: Similarity maps from ASL LibriSpeech 500
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