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Abstract
Visual Question Answering (VQA) aims to an-
swer a textual question based on a given im-
age. Nevertheless, recent studies have shown
that VQA models tend to capture the biases
to answer the question, instead of using the
reasoning ability, resulting in poor generalisa-
tion ability. To alleviate the issue, some exist-
ing methods consider the natural distribution
of the data, and construct samples to balance
the dataset, achieving remarkable performance.
However, these methods may encounter some
limitations: 1) rely on additional annotations,
2) the generated samples may be inaccurate,
e.g., assigned wrong answers, and 3) ignore the
power of positive samples. In this paper, we
propose a method to Dig out Discrimination
information from Generated samples (DDG)
to address the above limitations. Specifically,
we first construct positive and negative sam-
ples in vision and language modalities, without
using additional annotations. Then, we intro-
duce a knowledge distillation mechanism to
promote the learning of the original samples by
the positive samples. Moreover, we impel the
VQA models to focus on vision and language
modalities using the negative samples. Experi-
mental results on the VQA-CP v2 and VQA v2
datasets show the effectiveness of our DDG.

1 Introduction

With the vigorous development of computer vision
and natural language processing fields, it has pro-
moted the vision-and-language (Gu et al., 2022;
Wen et al., 2023b) field to take a forward step. As
a typical task of the vision-and-language field, Vi-
sual Question Answering (VQA) (Anderson et al.,
2018; Cadène et al., 2019a) requires an agent to
fully comprehend the information of the questions
and images, and then correctly answer the textual
question according to the image. Although recent
advances (Cadène et al., 2019a) have achieved im-
pressive performance on the benchmark datasets
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(e.g., VQA v2 (Goyal et al., 2017)), numerous stud-
ies (Agrawal et al., 2018; Kafle and Kanan, 2017)
have shown that some VQA models tend to ex-
cessively rely on the superficial correlations (i.e.,
biases) between the questions and answers, instead
of adopting reasoning ability to answer the ques-
tions. For example, the VQA models can easily an-
swer “2” and “tennis” for the questions “How many
. . . ” and “What sports . . . ”, respectively, would
obtain higher accuracy, since the corresponding an-
swers “2” and “tennis” are occupied the most in
the dataset. However, memorising the biases to an-
swer the questions would signify flawed reasoning
ability, resulting in poor generalisation ability.

To mitigate the bias issues, many methods have
been proposed, which can be roughly categorised
into three types: 1) enhance visual attention (Sel-
varaju et al., 2019; Wu and Mooney, 2019), 2) di-
rectly weaken the biases (Cadène et al., 2019b;
Niu et al., 2021), and 3) balance the dataset (Chen
et al., 2020; Zhu et al., 2020). Previous studies
have shown the methods that balance the dataset
usually outperform other types of methods, since
they dig out the natural distribution of the data, and
then devise a suitable strategy to overcome the bi-
ases. Specifically, CSS (Chen et al., 2020) and Mu-
tant (Gokhale et al., 2020) methods generate coun-
terfactual samples by masking the critical objects
or words in the images and questions, respectively.
However, these methods require additional annota-
tions that are hard to obtain. To get rid of the de-
pendence on the additional annotations, MMBS (Si
et al., 2022) constructs the positive questions by
randomly shuffling the question words or removing
the words of question types, which destroys the
grammar and semantics of the original questions.
Moreover, SimpleAug (Kil et al., 2021) and KD-
DAug (Chen et al., 2022) build the new samples
by re-combining the existing questions and images,
which may be difficult to assign correct answers
for the generated samples. SSL-VQA (Zhu et al.,
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2020) and D-VQA (Wen et al., 2021) construct
the negative samples by randomly sampling the
images or questions in a mini-batch data. Neverthe-
less, these methods consider the negative samples
only, but ignoring the generated positive samples
would improve the diversity of the dataset and fur-
ther promote the robustness of the VQA models.

To overcome the above issues, we propose a
method to Dig out Discrimination information from
Generated samples (DDG). As pointed out by (Wen
et al., 2021), the bias issues exist in both vision and
language modalities, we thus construct positive and
negative samples in vision and language modali-
ties and devise corresponding training objectives to
achieve unbiased learning. Concretely, we feed the
samples to the UpDn (Anderson et al., 2018) model
pre-trained on the VQA-CP (Agrawal et al., 2018)
v2 training set, and select k objects based on the
top-k image attention weights of the UpDn as the
positive images. The positive questions can be con-
structed by using the translate-and-back-translate
mechanism, e.g., English → French → English.
We then combine the positive images and positive
questions with original questions and original im-
ages, respectively, as positive image and question
samples. Based on the positive samples, we adopt
a knowledge distillation mechanism (Hinton et al.,
2015) to help the learning of the original samples.

Moreover, inspired by (Wen et al., 2021), we
construct mismatched image-question pairs as neg-
ative samples. Generally speaking, one cannot an-
swer the question correctly given the mismatched
image-question pairs, since missing the supporting
modality information. To promote the VQA mod-
els to focus on the vision and language modalities,
we devise a training objective that aims to min-
imise the likelihood of predicting the ground-truth
answers of the original samples when given the
corresponding negative samples. Besides, we fur-
ther introduce the corresponding positive samples
to assist the training. Based on the above debiased
techniques, our DDG achieves impressive perfor-
mance on the VQA-CP v2 (Agrawal et al., 2018)
and VQA v2 (Goyal et al., 2017) datasets, which
demonstrates the effectiveness of our DDG.

Our contributions can be summarised as follows:
1) We devise a novel positive image samples gener-
ation strategy that uses the image attention weights
of the pre-trained UpDn model to guide the se-
lection of the target objects. 2) We introduce the
knowledge distillation mechanism to promote the

learning of the original samples by the positive sam-
ples. 3) We adopt the positive and negative samples
to impel the VQA models to focus on the vision
and language modalities, to mitigate the biases.

2 Related Work

2.1 Overcoming biases in VQA

Recently, researchers have proposed vast debiased
techniques (Selvaraju et al., 2019; Niu et al., 2021;
Zhu et al., 2020; Wen et al., 2023a) to alleviate
the bias issues in VQA, which can be roughly cat-
egorised into three types: 1) enhance the visual
attention, 2) directly weaken the biases, 3) balance
the dataset.
Methods that enhance visual attention. These
methods seek to adopt human-annotated informa-
tion to strengthen the visual attention of the VQA
models. Specifically, Selvaraju et al. (Selvaraju
et al., 2019) aligned the important image regions
identified based on the gradient with the human
attention maps to enhance the visual attention in
the VQA models. Wu et al. (Wu and Mooney,
2019) introduced a self-critical training objective
that matches the ground-truth answer with the most
important image region recognised by human ex-
planations. However, these methods require human
annotations that are hard to obtain.
Methods that weaken the biases. Ramakrish-
nan et al. (Ramakrishnan et al., 2018) adopted
adversarial learning to inhibit the VQA models
capture the language biases. Inspired by (Ramakr-
ishnan et al., 2018), Cadene et al. (Cadène et al.,
2019b) devised a question-only model to generate
weight to re-weight the samples. Moreover, Han et
al. (Han et al., 2021) forced the biased models to
capture different types of biases, and removed them
step by step. Different from the above, Niu et al.
(Niu et al., 2021; Niu and Zhang, 2021) introduced
the idea of cause-effect to help alleviate the biases.
Nevertheless, these methods introduce additional
parameters in training or inference phrases.
Methods that balance the dataset. CSS (Chen
et al., 2020) and Mutant (Gokhale et al., 2020)
methods generated massive counterfactual sam-
ples by masking the critical objects and words in
the images and questions, respectively. However,
these methods require additional annotations to as-
sign the answers for the generated samples. To
get rid of the dependence on the annotations, KD-
DAug (Chen et al., 2022) and SimpleAug (Kil et al.,
2021) constructed the samples by re-composing the
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existing questions and images, which however, is
hard to assign the correct answers for the gener-
ated samples. SSL-VQA (Zhu et al., 2020) and
D-VQA (Wen et al., 2021) constructed the neg-
ative samples by randomly sampling the images
or questions in a mini-batch data. Nevertheless,
these methods ignored the positive samples could
improve the diversity of the dataset, which was
helpful for improving the robustness of the VQA
models. Moreover, Si et al. (Si et al., 2022) con-
structed the positive question samples by randomly
shuffling the words or removing the words of ques-
tion types, which destroys the semantics of the
original questions.

Different from the above methods, we seek to
construct positive samples and negative samples
in both vision and language modalities, and de-
vise corresponding debiased strategies to achieve
unbiased learning.

2.2 Knowledge Distillation

Knowledge Distillation (KD) (Hinton et al., 2015)
is a universal model compression method that seeks
to train a small student model guided by a large
teacher model. Due to the effectiveness of KD,
the idea has been applied to other tasks, e.g., long-
tail classification (He et al., 2021; Xiang et al.,
2020), object detection (Chen et al., 2017; Wang
et al., 2019), and video captioning (Pan et al., 2020;
Zhang et al., 2020). Recently, some debiased VQA
methods (Niu and Zhang, 2021; Chen et al., 2022)
introduced KD to alleviate the bias issues. Specif-
ically, Niu et al. (Niu and Zhang, 2021) devised
two teachers (i.e., ID-teacher and OOD-teacher)
to generate “soft” labels to guide the training of
the student model (i.e., the baseline model) with
the KD mechanism. Inspired by IntroD, Chen et
al. (Chen et al., 2022) adopted a multi-teacher KD
mechanism to help generate robust pseudo labels
for all newly composed image-question pairs. In
our DDG, we seek to improve the reasoning ability
of the VQA models with the help of the generated
positive samples, via the KD mechanism.

3 Digging out Discrimination Information
from Generated Samples

As shown by (Agrawal et al., 2018; Kafle and
Kanan, 2017), VQA models tend to capture the
biases in a dataset to answer questions, instead of
adopting the reasoning ability, resulting in poor
generalisation ability. Moreover, bias issues exist

in both vision and language modalities (Wen et al.,
2021). To address the above issues, we seek to con-
struct both positive and negative samples in vision
and language modalities, and devise corresponding
debiased strategies to achieve unbiased learning.
The overall framework is shown in Figure. 1.

3.1 Preliminary
Visual question answering (VQA) requires an agent
to answer a textual question given a correspond-
ing image. Traditional VQA methods (Anderson
et al., 2018; Kim et al., 2018; Ben-younes et al.,
2019; Cadène et al., 2019a) regard the VQA task
as a multi-class classification problem, where each
class corresponds to a unique answer. To be spe-
cific, given a VQA dataset D = {(vi, qi, ai)}Ni=1

with N samples, where vi ∈ V (image set), qi ∈ Q
(question set) are the i-th sample in D, and ai ∈ A
(answer set) is a corresponding ground-truth an-
swer, VQA methods seek to learn a multimodal
mapping: V ×Q → [0, 1]|A| to generate an answer
distribution over the answer set A. Generally speak-
ing, most VQA models usually contain four parts,
namely, vision feature encoder ev(·), language fea-
ture encoder eq(·), multimodal feature fusion mod-
ule f(·, ·), and classifier c(·). These modules can
be formed as a traditional VQA model:

P (A|vi, qi) = c(f(ev(vi), eq(qi))). (1)

Formally, since regarding the VQA task as a multi-
class classification problem, the VQA models can
be optimised by a binary cross-entropy loss Lvqa,
which can be formulated as:

Lvqa = − 1

N

N∑

i=1

ailog(σ(P (A|vi, qi)))+

(1− ai)log(1− σ(P (A|vi, qi))),
(2)

where σ denotes the sigmoid activation function,
and ai is the target score obtained based on the
answer ai that humans annotated for (vi, qi).

3.2 Sample Generation
Our method aims to adopt the generated samples to
achieve unbiased learning. Hence we present how
to generate the positive and negative samples at first.
As pointed out by (Wen et al., 2021), biases exist in
both language and vision modalities. To overcome
the bias issue, we seek to generate positive and
negative samples regarding the vision and language
modalities for each original sample, to assist the
training process.
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Figure 1: Overview of our DDG method. we draw support from the pre-trained UpDn (Anderson et al., 2018) model
and the translate-and-back-translate mechanism to generate the positive image and question samples, respectively,
and then introduce a knowledge distillation mechanism to facilitate the learning of the original samples. Moreover,
we construct the mismatched image-question pairs by randomly sampling the images or questions in a mini-batch
data as negative samples. By using these negative samples, we enhance the attention of VQA models towards both
vision and language modalities when answering the questions, thereby mitigating biases.

Positive samples generation. To mitigate the bias
issue over vision and language modalities in VQA,
we build two types of positive samples, i.e., a posi-
tive question sample, and a positive image sample.

Specifically, to generate the positive image sam-
ples, we seek to draw support from the image
attention weights in a pre-trained baseline VQA
model. We have empirically found that although
the baseline models (e.g., UpDn (Anderson et al.,
2018)) achieve unsatisfactory performance in the
out-of-distributions (OOD) test set (e.g., VQA-CP
v2 (Agrawal et al., 2018) dataset), they still ob-
tain promising performance in the independent and
identically distributed (IID) dataset (e.g., VQA v2
dataset (Goyal et al., 2017)). In other words, the
baseline models can identify the target objects in
the images referred to in the questions to accom-
plish answering during the training process, regard-
less of whether capturing the biases. Hence, the im-
age attention weights of the pre-trained UpDn (An-
derson et al., 2018) model can help find target ob-
jects as positive image samples, which can exclude
the background information of the images.

Given the sample (vi, qi) from the VQA- CP v2
training set, we first feed it to the UpDn model pre-
trained on the VQA-CP v2 training set and would
obtain the image attention weights of the UpDn

model regarding the objects in image vi. Note
that we select k objects based on the top-k image
attention weights as the positive image samples
(v+i , qi), where k is a hyper-parameters.

To generate the positive question samples, pre-
vious methods (Si et al., 2022) seek to adopt some
data augmentation methods to expand the data, e.g.,
randomly shuffle the question words or remove
question category words. However, these methods
would severely destroy the grammar and seman-
tics of the original question, resulting in changing
the semantic information of the questions. To mit-
igate this issue, inspired by (Tang et al., 2020),
we adopt the translate-and-back-translate mech-
anism to generate the positive question samples.
Specifically, we first use pre-trained English-to-
French and English-to-German translation models
to translate the original question to French and Ger-
man, respectively. Then we use corresponding pre-
trained back-translation models to translate them
back into English. 1 Moreover, we further adopt a
pre-trained sentence similarity model to choose a
back-translated question sample that has the high-
est similarity score with the original question as the
positive question sample. Note that for some sim-

1All pre-trained translation models are obtained from the
Hugging Face repository.
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ple questions, they would still keep the same even
feeding them to the translate-and-back-translate
process. To generate positive question samples
for these questions, we substitute the words in the
question with synonyms based on the pre-trained
synonym word substitution model. 2 In this way,
we obtain the positive question samples (vi, q+i ).

Based on the above, we would obtain two types
of positive samples (i.e., (v+i , qi) and (vi, q

+
i )) for

each sample (vi, qi), in which the positive image
samples have foreground information in the im-
age and the positive question samples are semantic
equivalent to the original question.
Negative samples generation. Inspired by (Wen
et al., 2021), we construct the negative samples
over language and vision modalities by randomly
sampling one question and one image in a mini-
batch data for each sample. Specifically, given
a mini-batch data {(vb, qb)}Bb=1, for each sample
(vi, qi), we randomly sample one image v−i and
one question q−i from {(vb, qb)}Bb=1 to form the
negative samples, namely, negative question sam-
ple (vi, q

−
i ) and negative image sample (v−i , qi).

3.3 Generated Samples Driven Robust VQA

Positive samples driven robust VQA. We attempt
to achieve robust VQA with the help of the gen-
erated positive samples. Specifically, given an
original sample (vi, qi) and its counterpart posi-
tive samples (v+i , qi) and (vi, q

+
i ), we first feed

them into the VQA models to obtain the predic-
tions P (A|vi, qi), P (A|v+i , qi), and P (A|vi, q+i ).
Generally speaking, the ensemble predictions usu-
ally perform better than the predictions before
the ensemble. We thus adopt a simple ensemble
strategy (i.e., averaging these predictions) to ob-
tain ensemble predictions Pens = (P (A|vi, qi) +
P (A|v+i , qi) +P (A|vi, q+i ))/3. One intuitive way
to make the VQA models achieve better perfor-
mance with the help of the positive samples is to
adopt a knowledge distillation mechanism (Hin-
ton et al., 2015). Concretely, we regard the en-
semble prediction Pens and the original prediction
P (A|vi, qi) as a teacher and a student, respectively,
and then introduce a Kullback-Leibler (KL) Diver-
gence Ldis as the objective to optimise the VQA
models, which can be formulated as:

Ldis =
N∑

i=1

Pens log
Pens

P (A|vi, qi)
. (3)

2The pre-trained model is from the GitHub repository.

By minimising the KL divergence, the VQA mod-
els can extract discrimination information from the
positive samples to help better answer the original
questions qi correctly based on the images vi.

To guarantee the teacher (i.e., the ensemble pre-
diction Pens) performs better than the student (i.e.,
the original prediction P (A|vi, qi)), we still use the
binary cross-entropy loss Lens on Pens to further
optimise the VQA models.
Negative samples driven robust VQA. Besides
adopting the positive samples to assist the training
process, we also introduce the debiased strategy on
negative samples to alleviate the bias issues. As
shown by (Agrawal et al., 2018), the bias issue
usually denotes the VQA models tend to capture
the superficial correlations between one modality
and the answers to make a prediction on the ques-
tions. To mitigate this issue, one direct solution is
to improve the attention on both language and vi-
sion modalities information when the VQA models
answer the questions. We thus consider adopting
the negative samples to achieve this aim.

Intuitively, given a mismatched image-question
pair, the VQA models even the human being can-
not make a correct prediction. Drawing from this
insight, when given original samples and the coun-
terpart negative samples, we can alleviate the biases
by giving contrary training objectives to the neg-
ative samples. This encourages the VQA models
to answer the questions by paying more attention
to the information of each modality. Concretely,
inspired by (Wen et al., 2021), given an original
sample (vi, qi, ai) and its counterpart negative sam-
ples (v−i , qi) and (vi, q

−
i ), the VQA models cannot

answer correctly when feeding the negative sam-
ples, which can be achieved by minimising the
possibility of predicting the ground-truth answer:

Lneg = δ(P (A|v−i , qi))[x] + δ(P (A|vi, q−i ))[x],
(4)

where x is the index of ground-truth answer ai
in the answer set A, and δ is the softmax activa-
tion function. Minimising the training objective
Lneg encourages the VQA models not to give the
ground-truth answer when feeding the mismatched
image-question pairs. Thus, the VQA models are
able to consider both image and question informa-
tion before making a prediction, which implicitly
alleviates the bias issue.

Moreover, to further enhance the attention of
VQA models towards both vision and language
modalities, we introduce positive samples into the
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training process. Specifically, given positive image
samples (v+i , qi, ai) and negative image samples
(v−i , qi), when feeding them to the VQA models,
one hopes the VQA models can answer correctly
with high confidence on the positive samples, while
having low prediction confidence to the ground-
truth answer with the negative samples. This can
be formulated as:

max δ(P (A|v+i , qi))[x]− δ(P (A|v−i , qi))[x].

Maximising the objective encourages the VQA
models to make accurate predictions for the
matched image-question pairs, while discourag-
ing the models from generating the ground-truth
answer when provided with negative image sam-
ples. This impels the VQA models to allocate more
attention to the vision modality.

By leveraging the monotonicity property of the
logarithmic function log, we convert the maximisa-
tion problem into an equivalent minimisation prob-
lem. This transformation can be mathematically
formulated as follows:

Limg = − log(σ(δ(P (A|v+i , qi))[x]−
δ(P (A|v−i , qi))[x]))

(5)

Moreover, with regard to the negative samples,
the prediction scores associated with the ground-
truth answer of the corresponding positive samples
can serve as an indicator of the extent to which
VQA models capture biases. The higher the pre-
diction score δ(P (A|v−i , qi))[x]), the greater the
degree of bias it represents. Therefore, it should
be subject to a higher penalty in the loss Limg.
Inspired by the focal loss (Lin et al., 2017), we
consider the prediction score δ(P (A|v−i , qi))[x])
as a measure of the degree of bias, and thus the loss
Lweight
img can be reformulated as:

Lweight
img = −δ(P (A|v−i , qi))[x] ∗ Limg (6)

We would obtain Lweight
que in the same way. Thus

the weighted loss is formulated as follows:

Lweight = Lweight
img + Lweight

que . (7)

3.4 Overall Training Objective
In total, our overall training objective can be for-
mulated as:

L = Lvqa+Lens+Ldis+Lneg+λ∗Lweight, (8)

where λ is a hyper-parameter.

4 Experiments

4.1 Datasets
We evaluate our DDG on the OOD dataset VQA-
CP v2 (Agrawal et al., 2018) and IID dataset VQA
v2 (Goyal et al., 2017) validation set based on the
standard evaluation metric (Antol et al., 2015). Due
to the page limitation, we put the implementation
details and compared methods into the Appendix.

4.2 Quantitative results
We report the experimental results on the VQA-CP
v2 and VQA v2 datasets in Table 1. From these
results, we have the following observations: 1) On
the whole, the methods that balance the datasets
outperform the other two types of methods i.e., en-
hance visual attention and directly weaken the bi-
ases. This demonstrates that alleviating the biases
by paying more attention to the natural distribu-
tion of the data would obtain higher performance.
2) Our DDG outperforms most compared meth-
ods. Specifically, our DDG surpasses SCR (Wu
and Mooney, 2019), GGE-DQ (Han et al., 2021),
SSL-VQA (Zhu et al., 2020), and KDDAug (Chen
et al., 2022) by approximately 12%, 3%, 3%, and
1%, respectively. These results demonstrate the
effectiveness of our DDG. 3) Although our method
performs slightly worse than the Mutant (Gokhale
et al., 2020) and D-VQA (Wen et al., 2021), our
DDG achieves higher performance on the VQA v2
dataset. Moreover, Mutant constructed the counter-
factual samples highly relying on the additional an-
notations, while our method build the samples with-
out introducing additional annotations. Meanwhile,
compared to the D-VQA method, our method per-
forms better when the data is limited, which can be
shown in Table 2. These results further demonstrate
the effectiveness of our DDG.

Benefiting from the training process based on
the positive samples, our DDG performs better
than all the compared methods on the VQA v2
dataset. Specifically, our DDG outperforms SSL-
VQA (Zhu et al., 2020) and D-VQA (Wen et al.,
2021) by around 1.8% and 0.6%, respectively,
which demonstrates our DDG is able to improve
the model performance on both IID (i.e., VQA v2
dataset) and OOD (i.e., VQA-CP v2) datasets, fur-
ther implying the superiority of our DDG.

4.3 Qualitative results.
To further demonstrate the effectiveness of our
DDG on alleviating the biases, we provide the
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Case Model
VQA-CP v2 test (%) VQA v2 val (%)

All Yes/No Num Other All Yes/No Num Other

–
SAN (Yang et al., 2016) 24.96 38.35 11.14 21.74 52.41 70.06 39.28 47.84

GVQA (Agrawal et al., 2018) 31.30 57.99 13.68 22.14 48.24 72.03 31.17 34.65
UpDn (Anderson et al., 2018) 39.74 42.27 11.93 46.05 63.48 81.18 42.14 55.66

I
AttAlign (Selvaraju et al., 2019) 39.37 43.02 11.89 45.00 63.24 80.99 42.55 55.22

HINT (Selvaraju et al., 2019) 46.73 67.27 10.61 45.88 63.38 81.18 42.99 55.56
SCR (Wu and Mooney, 2019) 48.47 70.41 10.42 47.29 62.30 77.40 40.90 56.50

II

AdvReg (Ramakrishnan et al., 2018) 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16
RUBi (Cadène et al., 2019b) 44.23 67.05 17.48 39.61 - - - -
Re-Scaling (Guo et al., 2022) 47.09 68.42 21.71 42.88 55.50 64.22 39.61 53.09

DLR (Jing et al., 2020) 48.87 70.99 18.72 45.57 57.96 76.82 39.33 48.54
VGQE (KV and Mittal, 2020) 48.75 - - - 64.04 - - -

LMH (Clark et al., 2019) 52.01 72.58 31.12 46.97 56.35 65.06 37.63 54.69
IntroD (Niu and Zhang, 2021) 51.31 71.39 27.13 47.41 62.05 77.65 40.25 55.97

CF-VQA (Niu et al., 2021) 53.55 91.15 13.03 44.97 63.54 82.51 43.96 54.30
RMFE (Gat et al., 2020) 54.55 74.03 49.16 45.82 - - - -
CKCL (Pan et al., 2022) 55.05 90.33 18.99 46.46 62.55 79.17 41.94 55.38
LPF (Liang et al., 2021) 55.34 88.61 23.78 46.57 55.01 64.87 37.45 52.08

GGE-DQ (Han et al., 2021) 57.32 87.04 27.75 49.59 59.11 73.27 39.99 54.39
D-VQA (Wen et al., 2021) 61.91 88.93 52.32 50.39 64.96 82.18 44.05 57.54

III

CSS (Chen et al., 2020) 58.95 84.37 49.42 48.21 59.91 73.25 39.77 55.11
CSS+CL (Liang et al., 2020) 59.18 86.99 49.89 47.16 57.29 67.27 38.40 54.71

CSS+ (Chen et al., 2021) 59.54 83.37 52.57 48.97 59.96 73.69 40.18 54.77
ECD (Kolling et al., 2022) 59.92 83.23 52.29 49.71 57.38 69.06 35.74 54.25

Mutant (Gokhale et al., 2020) 61.72 88.90 49.68 50.78 62.56 82.07 42.52 53.28

IV

CVL (Abbasnejad et al., 2020) 42.12 45.72 12.45 48.34 - - - -
Unshuffling (Teney et al., 2021) 42.39 47.72 14.43 47.24 61.08 78.32 42.16 52.71

MMBS (Si et al., 2022) 48.19 65.00 14.05 48.75 63.84 79.61 44.23 57.05
SimpleAug (Kil et al., 2021) 52.65 66.40 43.43 47.98 64.34 81.97 43.91 56.35
RandImg (Teney et al., 2020) 55.37 83.89 41.60 44.20 57.24 76.53 33.87 48.57
SSL-VQA (Zhu et al., 2020) 57.59 86.53 29.87 50.03 63.73 - - -
KDDAug (Chen et al., 2022) 60.24 86.13 55.08 48.08 62.86 80.55 41.05 55.18

DDG (Ours) 61.14 88.77 49.33 49.90 65.54 82.92 44.80 57.80

Table 1: Comparison with the state-of-the-art methods on the VQA-CP v2 test set and VQA v2 validation set.The
best scores are bold, and the second best scores of ours are underlined. The backbone model is UpDn (Anderson
et al., 2018). I – IV denote methods that enhance visual attention, directly weaken the biases, balance the dataset
using additional annotations, and balance the dataset without introducing additional annotations, respectively.

qualitative results on the VQA-CP v2 dataset in
Figures. 2 and 3. From the results in Figure 2,
UpDn (Anderson et al., 2018) and SSL-VQA (Zhu
et al., 2020) fail to find the target objects mentioned
in the question within the image, leading to erro-
neous predictions. In contrast, our DDG demon-
strates a remarkable ability to accurately localize
the target objects with a high degree of confidence,
resulting in precise answers to the posed questions.
These visualisation results demonstrate the effec-
tiveness of our DDG. Moreover, in Figure. 3, we
provide visualisations of the answer distributions
obtained by various approaches for different ques-
tion types, namely "How many . . . ", "Is this . . . ",
and "How many people are in . . . ". From the re-
sults, we have the following observations: 1) the
training answer distribution is different from that
in the test set, which is very challenging. 2) The

UpDn model excessively fits the biases in the train-
ing set, and thus outputs a similar answer distribu-
tion with the training set given the test set, resulting
in poor performance. 3) SSL-VQA seeks to allevi-
ate the bias issue, which however is limited. Our
DDG is able to alleviate the biases effectively, and
thus achieves similar answer distributions with the
test set, embodying the better generalisation ability.

4.4 Ablation studies

Effect of the scale of the training set. To demon-
strate the effectiveness of our method in the data-
limited scenario, we conduct experiments on differ-
ent scales of the training data. Specifically, on the
VQA-CP v2 dataset, we manually split the training
set into different proportions (i.e., from 20% to 80%
of the original training data), while the test set is un-
changed. From the experimental results in Table 2,
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Q: Is the animal facing left or right?

UpDn SSL-VQA Ours

right
both

neither

left

middle

0.53
0.23

0.17
0.01

0.01both

to right
neither

right 0.98
0.01
0.001
0.001
0.001

left left

both

right

yes

0.53
0.41

0.01
0.01
0.01neither

0.14

0.12

0.21

Q: What is the woman in white holding?

hair 
dryer

nothing
towel

sink 0.24

0.12
0.07
0.05
0.05

knife hair 
dryer

knife

phone

sink

0.17

0.12
0.09

0.07
0.05camera

phone
micro-
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camera

nothing

0.41
0.12

0.08
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0.05

0.300.280.14

Figure 2: Qualitative comparison among UpDn (Anderson et al., 2018), SSL-VQA (Zhu et al., 2020), and our DDG
on the VQA-CP v2 test set. For each example, we put the bounding box with the highest attention weight in the
image and show the answers with the top-5 predictions. The bold, red answer is the ground-truth answer.
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Figure 3: Qualitative comparison among UpDn (Anderson et al., 2018), SSL-VQA (Zhu et al., 2020) and our DDG
on the VQA-CP v2 test set about the answer distributions.

Model
Proportion of Training Set

20% 40% 60% 80% 100%

UpDn† 36.22 38.90 39.40 40.61 41.53

SSL-VQA 52.71 54.42 56.83 57.31 57.59
D-VQA 52.94 56.74 58.31 59.05 61.91

Ours 55.74 57.42 58.99 59.69 61.14

Table 2: Effect of different scales of the training data of
VQA-CP v2 on the model performance. We report the
results in terms of Accuracy (%).

we find that our method performs better when the
training data is limited, which is more practical and
suitable for the real world. Specifically, our method
performs better than SSL-VQA (Zhu et al., 2020)
and D-VQA (Wen et al., 2021) on any proportions
of the training data, especially when only remains
20% of the training data, our DDG outperforms
SSL-VQA and D-VQA by around 3%. These re-
sults demonstrate the superiority of our DDG in the
data-limited scenarios.

Effect of each component of our DDG. We con-
duct ablation studies on the VQA-CP v2 dataset to
evaluate each component in our DDG, and show
the experimental results in Table 3. From these re-
sults, we have the following observations: 1) when
introducing the ensemble binary cross-entropy loss
Lens with the positive samples, the model perfor-
mance improves by around 5% compared with the
UpDn (Anderson et al., 2018) model (i.e., 41.53%
vs. 46.63%), which demonstrates the positive sam-
ples are able to assist the training process to allevi-
ate the bias issue. 2) By incorporating the KL loss
Ldis, the performance would be further improved
(i.e., 46.63% vs. 47.77%), which highlights the
ensemble prediction is able to guide the training
of the original prediction. 3) Upon introducing
Lneg and Lweight, which leverage negative sam-
ples, the performance would improve substantially
(i.e., 47.77% vs. 61.14%). This significant enhance-
ment underscores the significance of promoting the
attention of VQA models towards both vision and
language modalities when answering the questions.
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Lens Ldis Lneg Lweight VQA-CP v2 (%)

41.53√
46.63√ √
47.77√ √ √
60.85√ √ √ √
61.14

Table 3: Effect of each component of our DDG on
the model performance. We show the results on the
VQA-CP v2 dataset in terms of Accuracy (%). We use
UpDn (Anderson et al., 2018) as the backbone model.

Model k
VQA-CP v2 test set (%)

All Yes/No Number Other

DDG

3 59.73 86.98 42.36 50.22
6 60.24 88.28 41.77 50.62
8 60.74 88.41 45.54 50.41

10 61.14 88.77 49.33 49.90
12 60.65 88.79 45.92 49.95
14 60.38 88.88 41.55 50.61

Table 4: Effect of different k. We report the experimen-
tal results in terms of Accuracy (%).

These results further demonstrate the effectiveness
of each component in our DDG.
Effect of k. k denotes the number of target objects
that are selected as the positive samples, which can
be referred to in Section 3.2. To demonstrate the ef-
fect of the k on the model performance, we conduct
experiments on the VQA-CP v2 dataset regarding
different k. From the results in Table 4, we have
the following observations: 1) with the increase of
k (e.g., from 3 to 10), the model performance ex-
hibits a gradual improvement.The results indicate
that a higher value of k increases the likelihood
that the positive image samples indeed encompass
the target objects mentioned in the corresponding
questions. 2) Once k exceeds 10, the model per-
formance starts to drop, thereby illustrating that an
excessively high value of k introduces extraneous
background information that adversely affects the
model’s performance. These results demonstrate
that an appropriate k helps to obtain the best per-
formance on our DDG.
Evaluation of λ. λ is the weight of the loss Lweight.
We conduct ablation studies about different λ on
the model performance, and show the experimental
results in Table 5. From the results, the best per-
formance is obtained in our DDG when λ = 0.05,
and the performance is drop whenever λ is higher
or lower than 0.05. These results demonstrate that
a suitable weight of loss Lweight helps to obtain
better performance.

Model λ
VQA-CP v2 test set (%)

All Yes/No Number Other

DDG

0.01 60.86 88.89 47.21 49.93
0.03 60.93 88.93 47.59 49.92
0.05 61.14 88.77 49.33 49.90
0.07 60.74 88.97 44.96 50.27
0.1 60.58 88.89 43.11 50.53

Table 5: Effect of different λ. We report the experimen-
tal results in terms of Accuracy (%).

Model Yes/No Number Other Overall GapΔ ↑
SAN† 38.44 12.91 46.65 39.11 +16.41
+ DDG 85.59 24.62 48.24 55.52

UpDn† 43.45 13.64 48.18 41.53 +19.61
+ DDG 88.77 49.33 49.90 61.14

Table 6: Effect of different backbones (i.e., SAN (Yang
et al., 2016) and UpDn (Anderson et al., 2018)) on the
model performance. We report the experimental results
on the VQA-CP v2 dataset in terms of Accuracy (%). †

denotes the re-implementation of the baseline.

Evaluation of different backbones. Our DDG
is model-agnostic. To demonstrate the effective-
ness of our DDG on different backbones (i.e.,
SAN (Yang et al., 2016) and UpDn (Anderson et al.,
2018)), we conduct experiments on the VQA-CP
v2 dataset, and show the results in Table 6. From
the results, our DDG consistently achieves a sub-
stantial improvement in model performance, re-
gardless of which backbone it is. These results
further embody the superiority of our DDG.

5 Conclusion

In this paper, we have proposed a novel method
named DDG to alleviate the bias issues in VQA
from vision and language modalities. Specifically,
we construct both positive and negative samples
in vision and language modalities without using
additional annotations, in which the positive ques-
tions have similar semantics to the original ques-
tions, while the positive images contain foreground
information. Based on the positive samples, we
heuristically introduce the knowledge distillation
mechanism to facilitate the training of the original
samples through guidance from positive samples.
Moreover, we put forth a strategy that encourages
VQA models to focus more on the vision and lan-
guage modalities when answering the questions,
aided by the negative samples. Extensive experi-
ments on the VQA-CP v2 and VQA v2 datasets
show the effectiveness of our DDG.
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6 Appendix

6.1 Datasets
We conduct experiments on the VQA-CP (Agrawal
et al., 2018) v2 and VQA (Goyal et al., 2017) v2
datasets. Specifically, the training set of VQA-CP
v2 contains approximately 121k images and 483k
questions, while the test set contains around 98k
images and 220k questions.

6.2 Compared methods
We compare our DDG with existing state-of-the-
art methods, including 1) methods that enhance
visual attention: HINT (Selvaraju et al., 2019)
and SCR (Wu and Mooney, 2019). 2) Meth-
ods that weaken the biases: AdvReg (Ramakrish-
nan et al., 2018), RUBI (Cadène et al., 2019b),
Re-Scaling (Guo et al., 2022), DLR (Jing et al.,
2020), VGQE (KV and Mittal, 2020), LMH (Clark
et al., 2019), IntroD (Niu and Zhang, 2021), CF-
VQA (Niu et al., 2021), RMFE (Gat et al., 2020),
CKCL (Pan et al., 2022), LPF (Liang et al., 2021),
GGE-DQ (Han et al., 2021), and D-VQA (Wen
et al., 2021). 3) Methods that balance the dataset
using additional annotations: CSS (Chen et al.,
2020), CSS+CL (Liang et al., 2020), CSS+ (Chen
et al., 2021), ECD (Kolling et al., 2022), and Mu-
tant (Gokhale et al., 2020). (4) Methods that bal-
ance the dataset without introducing additional an-
notations: CVL (Abbasnejad et al., 2020), Unshuf-
fling (Teney et al., 2021), MMBS (Si et al., 2022),
SimpleAug (Kil et al., 2021), RandImg (Teney
et al., 2020), SSL-VQA (Zhu et al., 2020), and
KDDAug (Chen et al., 2022). Our DDG generates
positive and negative samples without introducing
additional annotations to help alleviate the biases,
which belongs to the methods in the fourth part.

6.3 Implementation Details
Following existing VQA methods (Anderson et al.,
2018; Cadène et al., 2019b; Zhu et al., 2020), we
extract the top-36 object features with a dimension
of 2048 in each image by the Faster-RCNN (Ren
et al., 2015) model that is pre-trained by (Ander-
son et al., 2018). Moreover, each question is first
truncated or padded into the same length (i.e., 14),
and then encoded by the Glove (Pennington et al.,
2014) embedding with a dimension of 300. The di-
mension of the question encoder (i.e., single layer
GRU (Cho et al., 2014)) is 1280.

Inspired by SSL-VQA (Zhu et al., 2020), we
introduce one Batch Normalisation (Ioffe and

Szegedy, 2015) layer before the classifier of
UpDn (Anderson et al., 2018). We train our method
for 30 epochs with the Adam (Kingma and Ba,
2015) optimiser. Specifically, we adopt Lens and
Ldis to train the baseline model for 12 epochs, and
introduce Lneg and Lweight at the 13-th epoch. The
learning rate is set to 1e-3, and decreases by half
every 5 epochs after 10 epochs. The batch size
is set to 256. We set k and λ to 10 and 0.05, re-
spectively. We implement our method based on
PyTorch (Paszke et al., 2019), and the model is
trained with one Titan Xp GPU. Moreover, our
method does not introduce additional parameters
except the backbone model.

Note that our method is model-agnostic and can
be applied to different backbones of VQA mod-
els. To better demonstrate the effectiveness of
our DDG, we conduct experiments based on differ-
ent backbones, including UpDn (Anderson et al.,
2018), and SAN (Yang et al., 2016) in the same
settings. Moreover, we perform experiments over
three rounds using varying seeds, and present the
results in terms of mean values. The source code
and the pre-trained models are available at DDG.

6.4 Training Method
We provide the training method of our DDG in Al-
gorithm 1. Specifically, when the training epoch
is lower than the threshold τ , we forward the base
model Mb with the original and positive samples
to calculate the knowledge distillation loss Ldis and
binary cross-entropy loss Lens. Moreover, when
the training epoch is higher than threshold τ , we
construct the negative image and question sam-
ples without introducing additional annotations,
and then forward Mb with the negative samples
and obtain the loss Lneg and Lweight. Finally, we
update Mb based on the overall loss L.

6.5 More Ablation Studies
Effect of the training strategy. As shown in Algo-
rithm 1, we adopt knowledge distillation loss Ldis

and ensemble binary cross-entropy loss Lens to
train the base model for 12 epochs. To demonstrate
the effectiveness of the training strategy, we con-
duct experiments about the training strategies on
the VQA-CP v2 dataset, and the results are shown
in Table 7. From the results, the strategy that trains
the model with the KL loss in the whole training
process performs worse than that training for 12
epochs. We infer that the KL loss may accelerate
the fitting of the training dataset, which hinders the
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Algorithm 1 Training method of our DDG.

Require: Training data {(vi, qi, ai)}Ni=1, generated positive image samples
{
(v+i , qi, ai)

}N

i=1
, generated

positive question samples
{
(vi, q

+
i , ai)

}N

i=1
a base model Mb, batch size b, threshold τ .

1: Randomly initialise the parameters of Mb.
2: while not converge do
3: Randomly sample a mini-batch data {(vi, qi, ai)}bi=1 from the training data, and obtain the corre-

sponding positive samples {(v+i , qi, ai)}bi=1, and {(vi, q+i , ai)}bi=1.
4: Forward Mb with the training data and the positive samples, and then obtain the predictions

P (A|vi, qi), P (A|v+i , qi), P (A|vi, q+i ), and the ensemble prediction Pens.
5: Calculate the binary cross-entropy loss Lvqa for P (A|vi, qi) by Eq.(2).
6: if the training epoch lower than τ then
7: // Introduce Knowledge Distillation Mechanism
8: Calculate the Knowledge Distillation Loss Ldis based on P (A|vi, qi) and Pens via Eq. (3).
9: Calculate the binary cross-entropy loss Lens for Pens by Eq. (2).

10: else
11: // Introduce Negative sample loss
12: Randomly sample images and questions from the mini-batch data {(vi, qi, ai)}bi=1 to form the

negative samples as {(v̄i, qi, ai)}bi=1 and {(vi, q̄i, ai)}bi=1.
13: Forward Mb with negative samples, and obtain the predictions P (A|v−i , qi) and P (A|vi, q−i ).
14: Calculate the loss Lneg based on the predictions of the negative samples via Eq. (4).
15: Calculate the loss Lweight based on the predictions of both positive and negative samples by

Eqs. (6) and (7).
16: end if
17: Update Mb by minimising the overall loss L (obtained via Eq. (8)).
18: end while

training process of the negative sample losses Lneg

and Lweight.

The objective of the KL loss is to make the two
distributions close. In our method, we seek to make
the predictions of the original samples approach to
the ensemble predictions. Thanks to the generated
high quality positive samples, the KL loss can im-
prove the robustness of the VQA models (Refer to
in Line 1-2 of Table 7), to some extent. However, if
we adopt the KL loss in the whole training process,
the VQA models will fit the data distributions ex-
cessively, and thus may hinder the training process
of the negative sample losses. The experimental
results in Table 7 also confirm it. For example, our
DDG with the training strategy that introduces KL
loss in the overall training process still performs
better than that training using only (Ldis and Lens),
but performs worse than that training the model
using KL loss for 12 epochs.

Comparison with the state-of-the-art methods
regarding of the number of training samples.
As shown in Table 8, the VQA-CP v2 dataset
comprises 438k training samples, while KDDAug,
SimpleAug, and our DDG generate an additional

Strategy
VQA-CP v2 test set (%)

All Yes/No Number Other

UpDn† 41.53 43.45 13.64 48.18
+ Ldis + Lens (all epochs) 47.77 63.49 13.91 48.83
+ DDG (KL for all epochs) 56.35 86.05 21.30 50.40
+ DDG (KL for 12 epochs) 61.14 88.77 49.33 49.90

Table 7: Effect of the training strategy. We report the
experimental results in terms of Accuracy (%). “Ldis +
Lens (all epochs)” denotes we additionally introduce
Ldis and Lens losses to train the UpDn model in the
whole training process. “DDG (KL for all epochs)”
means we train the UpDn model with the DDG method,
where the KL loss exists in the whole training process.
“DDG (KL for 12 epochs)” denotes we train the UpDn
model with the DDG method, and the KL loss exists in
the first 12 epochs.

4088k, 3081k, and 1752k augmented training sam-
ples, respectively. Despite using fewer augmented
samples than KDDAug and SimpleAug, our DDG
outperforms these methods by around 8% and 1%,
respectively, which demonstrates the effectiveness
of our DDG.
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Model
VQA-CP v2
test set (%)

# Samples

UpDn (Anderson et al., 2018) 41.53 438k
SimpleAug (Kil et al., 2021) 52.65 +3081k
KDDAug (Chen et al., 2022) 60.24 +4088k

DDG (Ours) 61.14 +1752k

Table 8: Comparison with the state-of-the-art data aug-
mentation based methods (e.g., SimpleAug and KD-
DAug) on the VQA-CP v2 dataset.

6.6 More Visualisation Results
Qualitative results. We provide more visualisation
results in Figure. 4 to present the effectiveness of
our DDG. From the results, our DDG localise the
target objects more accurately than the UpDn (An-
derson et al., 2018) model and SSL-VQA method,
and thus makes a more correct prediction than the
compared methods. These visualisation results
demonstrate the effectiveness of our DDG.
Visualisation of the generated samples. As
shown in Section 3.2, we have generated both posi-
tive image and question samples. To evaluate the
generated methods, we provide some visualisation
results about the augmented questions and selected
target objects in Table 9 and Figure. 5, respectively.
From the results in Table 9, our augment questions
have similar semantics to the original questions,
which demonstrates our generated questions are
reasonable as the positive samples. Moreover, al-
though the baseline model UpDn (Anderson et al.,
2018) trained on the VQA-CP (Agrawal et al.,
2018) v2 dataset achieves poor performance on
the test set, the UpDn model still can obtain good
performance on the training set. Thus, we adopt the
image attention weights of the pre-trained UpDn
model to help find the objects that are relevant to
the questions. As shown in Figure. 5, we show
the objects with the top-3 attention weights of the
pre-trained UpDn model in the images. From the
results, the pre-trained UpDn model can localise
the target objects referred to in the questions, which
demonstrates that selecting the objects with top-k
image attention weights of the pre-trained UpDn
model is reasonable, and can exclude background
information.
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Q: What color bike still stands?

UpDn SSL-VQA Ours

blue
red and 

blue
yellow

red

blue and 
red

0.20

0.15
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0.05blue and 
yellow

yellow
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green
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green yellow

blue and 
green

blue

green

0.27
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yellow

0.14
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Q: What color is the sheet behind the computers?

black

white
brown

pink 0.71
0.10
0.06
0.04

0.001

red pink
orange
brown

red

maroon

0.63
0.13

0.08
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purple
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Q: What is the object in the lower right hand corner?

monitor

mouse 
pad

computer

keyboard 0.82
0.14

0.02
0.01

0.01

mouse keyboard
mouse 

pad
monitor

mouse

computer

0.83
0.08
0.03

0.01

0.01
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0.01
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0.51 0.65

0.57

0.260.200.22
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0.01
0.001
0.001
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Q: Which hand is he pointing with?

both
right

neither

left

right 
hand

0.30

0.28

0.27
0.03

0.02

yes

both

right

left

0.29

0.28
0.23
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Figure 4: Qualitative comparison among UpDn (Anderson et al., 2018), SSL-VQA (Zhu et al., 2020), and our DDG
on the VQA-CP v2 test set. For each example, we put the bounding box with the highest attention weight in the
image and show the answers with the top-5 predictions. The bold, red answer is the ground-truth answer.

Original Question Augment Question

What color is the bike? What color does the bike have?
Is this plane landing? Is the plane going to land?

How many pans are visible? How many pans can be seen?
Is the zebra’s tail up? Is the tail of the zebra raised?

How do you turn on the cold water? How do you turn the cold water on?
What is the woman in the room doing? What does the woman do in the room?

What type of silverware is on the plates? What kind of silverware is there on plates?
What direction are the animals heading? In what direction are animals going?

Are there lots of healthy options on the table? Are there many healthy options on the table?
What does the black machine next to the man produce? What is the black machine producing next to the man?
How many floors do you think the highest building has? How many floors does the tallest building have in your opinion?

Table 9: We provide some visualisation results of the augmented questions based on our generation technique
referred to in Section 3.2.
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Q: What is the green stuff? Q: What does the man in the 
blue shirt have in his hand?

Q: What is the man holding 
in his right hand?

Q: What vegetable is on the 
plate? Q: What color is his shirt? Q: What color is the baby 

wearing?

Figure 5: We provide some visualisation results of the augmented images based on our generation technique referred
to in Section 3.2. We put the bounding box with the top-3 attention weight of the pre-trained UpDn (Anderson et al.,
2018) model in the image.
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