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Abstract

“He is a person”, “Paris is located on the
earth”. Both statements are correct but mean-
ingless – due to lack of specificity. In this paper,
we propose to measure how specific the lan-
guage of pre-trained language models (PLMs)
is. To achieve this, we introduce a novel ap-
proach to build a benchmark for specificity test-
ing by forming masked token prediction tasks
with prompts. For instance, given “Toronto is
located in [MASK].”, we want to test whether
a more specific answer will be better filled in
by PLMs, e.g., Ontario instead of Canada.

From our evaluations, we show that existing
PLMs have only a slight preference for more
specific answers. We identify underlying fac-
tors affecting the specificity and design two
prompt-based methods to improve the speci-
ficity. Results show that the specificity of the
models can be improved by the proposed meth-
ods without additional training. We hope this
work can bring to awareness the notion of speci-
ficity of language models and encourage the
research community to further explore this im-
portant but understudied problem.1

1 Introduction

Pre-trained language models (PLMs) such as BERT
(Devlin et al., 2019) and GPT-2/3 (Radford et al.,
2019; Brown et al., 2020) have achieved quite im-
pressive results in various natural language pro-
cessing tasks. Recent works show that the param-
eters of these models contain significant amounts
of knowledge (Petroni et al., 2019; Roberts et al.,
2020; Jiang et al., 2020a,b; Wang et al., 2020), and
knowledge stored in PLMs can be extracted by
predicting the mask token(s) using prompts. For
instance, given prompt “J. K. Rowling was born
in [MASK].”, PLMs can predict the birthplace of
Rowling based on its knowledge.

1Code and data are available at https://github.com/
jeffhj/S-TEST.

Toronto is located on the earth.

Dante is a person.

Cat is a subclass of animal.

Figure 1: Examples of language modeling that lack
specificity. More specific descriptions could be: feline,
poet, and in Ontario, respectively.

However, there may exist multiple answers for
a query, while not all answers are equally specific.
In many situations, we desire a specific answer.
For the example above, the masked token can be re-
placed by Yate (a town), Gloucestershire (a county),
or England (a country). To acquire the maximum
knowledge (in this example, the town, the county,
and the country where Rowling was born), we may
prefer the model to fill in Yate since Gloucester-
shire and England can be further predicted using
prompts, e.g., “Yate is located in [MASK].” This
means, if the prediction is more specific, we can re-
trieve more fine-grained information from language
models, and further acquire more information. Be-
sides, sometimes, the less specific answer is not
useful. For instance, it is well known that Chicago
is located in the USA, users will not get additional
information if the model only predicts Chicago is
located in the USA instead of Illinois. More exam-
ples are shown in Figure 1. To make an analogy: A
good speaker not only needs to be correct, but also
has the ability to be specific when desired. The
same is true for language models.

Although there are works on measuring how
much knowledge is stored in PLMs or improving
the correctness of the predictions (Petroni et al.,
2019; Roberts et al., 2020; Jiang et al., 2020b),
few attempted to measure or improve the speci-
ficity of predictions made by PLMs. Noteworthy
exceptions include the work by Adiwardana et al.
(2020); Thoppilan et al. (2022), who evaluated the
specificity of conversational language models. In
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their research, specificity was defined and mea-
sured within a conversational context – for instance,
the response “Me too. I love Eurovision songs” is
deemed more specific than simply “Me too” to the
statement “I love Eurovision”. Understanding how
specific the language of PLMs is can help us better
understand the behavior of language models and
facilitate downstream applications such as ques-
tion answering, text generation, and information
extraction (Liu et al., 2021a; Khashabi et al., 2020;
Brown et al., 2020; Wang et al., 2020), e.g., mak-
ing the generated answers/sentences or extracted
information more specific or fine-grained.

Therefore, we propose to build a benchmark to
measure the specificity of the language of PLMs.
For reducing human effort and easier to further
expand the dataset (e.g., to specific domains), we
introduce a novel way to construct test data au-
tomatically based on transitive relations in Wiki-
data (Vrandečić and Krötzsch, 2014). Specifi-
cally, we extract reasoning paths from Wikidata,
e.g., (J. K. Rowling, birthplace, Yate, location,
Gloucestershire, location, England). Based on
the average distance of each object to the subject
and the property of transitive relations, we form
masked-token-prediction based probing tasks to
measure the specificity, e.g., whether the masked
token in “J. K. Rowling was born in [MASK].” is
better filled by Yate than England by PLMs. The
resulting benchmark dataset contains more than
20,000 probes covering queries from 5 different
categories. The quality of the benchmark is high,
where the judgment on which answer is more spe-
cific is ∼ 97% consistent with humans.

We provide in-depth analyses on model speci-
ficity and study two factors that affect the speci-
ficity with our benchmark. As shown by our evalu-
ations in Section 4, existing PLMs, e.g., BERT and
GPT-2, similarly have only a slight preference for
more specific answers (in only about 60% of cases
where a more specific answer is preferred). We also
show that, in general, PLMs prefer less specific an-
swers without subjects given, and they only have
a weak ability to differentiate coarse-grained/fine-
grained objects by measuring their similarities to
subjects. The results indicate that specificity was
neglected by existing research on language models.
How to improve and control it is undoubtedly an
interesting and valuable problem.

Based on our observations and analyses, we pro-
pose two techniques to improve the specificity of

the predictions by modifying the prompts without
additional training: Few-shot Prompting, where
demonstrations with more specific answers are pro-
vided to guide the models to produce more specific
answers; and Cascade Prompting, where which
clauses are added as suffixes to bias the predictions
to be more specific. Results show that Few-shot
Prompting can improve the specificity for unidi-
rectional language models like GPT-2 well, while
Cascade Prompting works well for bidirectional
language models such as BERT.

The main contributions of our work are summa-
rized as follows:

• We propose a novel automatic approach to
build a benchmark for specificity testing based
on the property of transitive relations.

• We analyze the specificity of several existing
PLMs and study two factors that affect the
specificity.

• We propose two methods to improve the speci-
ficity by modifying the prompts without addi-
tional training.

• We provide in-depth analyses and discussions,
suggesting further works to explore and fur-
ther improve the specificity.

2 Background and Related Work

Pre-Trained Language Models: Pre-trained lan-
guage models (PLMs) are language models pre-
trained on large corpora. In this paper, we will
cover two types of pre-trained language models:
unidirectional language models, such as GPT-2
(Radford et al., 2019), where the prediction of the
current token is only based on previous tokens; and
bidirectional language models, such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019),
where both left and right contexts are utilized to
predict the current token.

Knowledge Retrieval from LMs and Prompt-
ing: Previous works have worked on extracting
factual knowledge from PLMs without incorporat-
ing external knowledge, which is usually achieved
by creating prompts and letting PLMs predict the
masked token(s) (Petroni et al., 2019; Bouraoui
et al., 2020; Jiang et al., 2020a,b; Wang et al., 2020).
They demonstrated that PLMs contain a significant
amount of knowledge. By creating appropriate
prompts with some additional training, such meth-
ods can even achieve performance comparable to
SOTA for some specific tasks (Shin et al., 2020;
Liu et al., 2021b). Our work is inspired by these
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works; but different from these works, where the
focus is to measure or improve the correctness of
the predictions, our work focuses on measuring and
improving the specificity of the predictions.

3 S-TEST: Specificity Testing

In this section, we introduce our specificity testing
(S-TEST) task, describe the creation process of
the dataset, and design the metric to measure the
specificity of predictions made by PLMs.

3.1 Task Formulation

Specificity is a semantic feature of language to de-
scribe things specifically in a given context. In
this work, we focus on measuring the specificity
of the predictions produced by pre-trained lan-
guage models for entity relations. Formally, if
(x, r, y)∧(y, r, z) implies (x, r, z), then y is consid-
ered as a more fine-grained object of x than entity z
under relation r, and y is more specific than z. For
instance, to extract the answer (object) for relation
(Toronto, location, X), we convert the query to a
masked token prediction task using prompts, e.g.,
“Toronto is located in [MASK].” and let PLMs pre-
dict the masked token. The answer here can be a
coarse-grained one, e.g., Canada, or a fine-grained
one, e.g., Ontario. The model is considered to be
more specific if it tends to fill in Ontario instead of
Canada. More general scenarios are discussed in
Section 7 as future work.

3.2 Test Data Construction

We build a benchmark dataset for measuring the
specificity based on Wikidata (Vrandečić and
Krötzsch, 2014), which is a knowledge base con-
taining a large number of entities and relations.
Specifically, we utilize transitive relations2 in Wiki-
data to create the test set automatically. Transitive
relations are binary relations with properties such
that (x, r, y) and (y, r, z) implies (x, r, z), where
entity y can be considered as a more fine-grained
object of x than entity z under relation r.

For instance, relation P131 is a transitive rela-
tion, whose label is “located in the administrative
territorial entity”. From Wikidata, we can extract
facts (Toronto, P131, Ontario) and (Ontario, P131,
Canada), which furthermore forms a reasoning
path (Toronto, P131, Ontario, P131, Canada). And
Ontario is considered more fine-grained (specific)

2https://www.wikidata.org/wiki/Wikidata:
List_of_properties/transitive_relation

than Canada in terms of relation P131 because
its distance to Toronto is shorter than Canada in
the reasoning path. Based on this, for a transitive
relation, we collect reasoning paths with length
≤ 5 for each subject and calculate the average dis-
tance of each object to the subject. E.g., if there
are two reasoning paths connecting the subject and
object, with lengths 2 and 3, the average distance
is 2.5. In this way, we can construct pairs with
coarse-grained/fine-grained objects for each sub-
ject, e.g., (Toronto, Ontario) and (Toronto, Canada)
for Toronto in terms of relation P131 (or a triplet
denoted as (Toronto, Ontario, Canada)). The con-
structed pairs can be used to test the specificity
with prompt: “Toronto is located in [MASK].”

We also combine different relations to form tasks.
For instance, for relation P19, whose label is “place
of birth”, we combine it with P131 and further
form a mask token prediction task, such as “[X]
was born in [MASK].” An example reasoning path
containing coarse-grained/fine-grained objects is
(John G. Bennett, P19, London, P131, England),
corresponding to pairs (John G. Bennett, London)
and (John G. Bennett, England).

Considering the representativeness and compre-
hensiveness, we select 5 relations (Table 1) and
randomly sample up to 5,000 pairs for each rela-
tion, with the difference of average distance of the
objects to the subject being greater than or equal
to 1 (to filter out entity pairs whose specificity is
difficult to differentiate). Similar to Petroni et al.
(2019), we only choose single-token objects as the
prediction targets, since multi-token generation is
still an area that needs further exploration, and the
multi-token decoding process will introduce many
tunable parameters that obscure the performance
(Welleck et al., 2019; Jiang et al., 2020a). Statistics
and examples of the resulting benchmark dataset
are shown in Table 1.

3.3 Metric
If a model tends to be more specific, it should have
higher confidence that the more specific answer is
correct. For instance, given “Toronto is located in
[MASK].”, the model should assign a higher proba-
bility for Ontario than Toronto. Therefore, we can
measure the specificity by calculating how much
times the probability of the fine-grained answer is
higher than that of the coarse-grained answer:

pr =
1

|Tr|
∑

(x,y1,y2)∈Tr
1[c(y1|x, r) > c(y2|x, r)],
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ID Relation Number Prompt Answer 1 Answer 2

P19 birthplace 5,000 John G. Bennett was born in [MASK]. London England
P106 occupation 5,000 Jenny Burton is a [MASK] by profession. singer musician
P131 location 5,000 Carey River is located in [MASK]. Victoria Australia
P279 subclass-of 5,000 Tracking ship is a subclass of [MASK]. vessel vehicle
P361 part-of 628 Hard palate is part of [MASK]. mouth head

Table 1: Statistics and examples of the S-TEST benchmark, where we use the same templates in Petroni et al. (2019)
to create prompts. Answer 1 is more specific than Answer 2.

where Tr is the set of test examples for relation r.
y1 is the fine-grained object and y2 is the coarse-
grained object. c(y|x, r) is the probability of the
model with y as the prediction of the masked to-
ken, and x refers to the subject. pr ranges from
0 to 1, and 0.5 means the model does not have
a preference in terms of specificity. The metric
is similar to the one used in Marvin and Linzen
(2018), which compares the probability of a pair
of words for creating a grammatical sentence, e..g,
The author laughs (grammatical) vs The author
laugh (ungrammatical).

4 Analysis

In this section, we first analyze the results of S-
TEST and then identify and study two underlying
factors that affect the specificity of predictions pro-
duced by pre-trained language models.

4.1 Experimental Setup

We test on the following pre-trained case-sensitive
language models: GPT-2, BERT-Base, BERT-
Large, RoBERTa-Base, and RoBERTa-Large. For
a fair comparison, following (Petroni et al., 2019),
we use the intersection of the vocabularies of all
the models as the unified vocabulary for prediction
(∼18k case-sensitive tokens). Since fine-grained
answers may be used less frequently in the corpus
(e.g., Yate is much less frequent than England), we
also design a simple method by filling the masked
tokens with less frequent answers (Freq).3

To verify the quality of the dataset, we randomly
sampled 400 examples (80 for each relation) and
asked human annotators to fill in the masked token
with both the coarse-grained and fine-grained an-
swers provided (the order of answers in each pair
is randomly shuffled). For example, we give anno-
tators both query “Toronto is located in [MASK].”
and answer pair (Ontario, Toronto) and ask them
to select the more specific one. Humans can make

3The frequency is calculated with Wikipedia dump https:
//dumps.wikimedia.org/enwiki/.

judgments based on their own knowledge or rele-
vant information about the entities on the Web.

4.2 Results of S-TEST

Table 2 reports the results of specificity testing.
We observe that existing pre-trained language mod-
els have only a slight preference for more specific
answers, where the probability that more specific
answers are preferred by them is around 60%. This
is reasonable since the training of PLMs does not
introduce any constraint/bias in terms of specificity.

In Table 3, the Freq method performs quite
well on relation birthplace and location whose an-
swers are both locations, which indicates low fre-
quency may hinder outputting more specific con-
cepts. However, for other relations, the results are
close to random guess. We also observe that the
results of “human” is high, which demonstrates
that the quality of the dataset is high.

To investigate the correctness of the predic-
tions as in Petroni et al. (2019), we also calculate
Acc@10 (the value is 1 if the coarse/fine-grained
answer is ranked among the top 10 results, which
are selected from ∼18k tokens, and 0 otherwise)
among all relations in Table 4. We draw a conclu-
sion similar to Petroni et al. (2019) that PLMs have
a good ability to recover factual knowledge.4

Another interesting finding is that for a single re-
lation, the specificity of different models is highly
correlated. For instance, for relation location, the
specificity measured by pr of all models is slightly
lower than 50%, while for relation part-of, the
specificity of all models is around 60%. The aver-
age pairwise Pearson correlation coefficient among
all relations (calculated between different rows) is
0.803. We think this is because these PLMs are
trained on large general corpora; therefore, their
knowledge overlaps to a large extent, as is the pref-
erence on the specificity of predictions.

4The results can be further improved by using techniques
such as in (Jiang et al., 2020b) or applying more advanced
language models such as GPT-3 (Brown et al., 2020) – not the
focus of this paper.
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birthplace occupation location subclass-of part-of Average

GPT-2 59.72 57.28 48.25 57.98 60.86 56.82
BERT-Base 60.68 70.46 49.09 67.64 67.41 63.06
BERT-Large 56.52 71.76 42.36 77.25 66.77 62.93
RoBERTa-Base 54.48 61.80 49.99 61.59 59.11 57.39
RoBERTa-Large 42.16 71.44 43.28 80.63 59.27 59.36

Table 2: Results of specificity testing with pr(%).

birthplace occupation location subclass-of part-of Average

Freq 85.87 52.86 95.11 51.12 49.68 66.93
Human 98.75 92.50 100.00 96.25 97.75 97.05

Table 3: Results of Freq and Human.

4.3 Factors Affecting Specificity

Some types of questions may be answered specif-
ically naturally. For instance, when discussing
anyone’s occupation, people may be inclined to
use a more specific description; but for the lo-
cation of a place, people may not be so. In
addition, specific answers may be easier to re-
late to the entities in the query than the coarse-
grained ones since their connections may be
more close, e.g., similarity(Toronto,Ontario) >
similarity(Toronto,Canada). In this case, the
models should tend to select more specific answers.
Based on the above analysis, the specificity of the
predictions mainly depends on question types (e.g.,
relations) and entities in the query (e.g., subjects),
which is also indicated by the metric for measur-
ing specificity, i.e., c(y|x, r). To investigate the
effect of each component, we split the query, e.g.,
“Toronto is located in [MASK].”, into two parts: the
relations, e.g., is located in, and the subjects, e.g,
Toronto, corresponding to naturalness and related-
ness respectively.

Naturalness: For some questions, they may be
answered more specifically naturally than others by
PLMs. For instance, for questions about the place
of birth, if in the corpora, the birthplace is usually
described more specifically, e.g., ... was born in
Honolulu, Hawaii, PLMs will also describe the
birthplace more specifically. This is intuitive since
PLMs are trained on large corpora based on tasks
like masked language modeling; therefore, it will
produce more fine-grained predictions conditioned
with contexts that are more likely to associate with
specific answers.

To measure how natural a type of questions will
be answered more specifically by PLMs, we mask
the subject in each prompt, e.g., “[MASK] was

born in [MASK].”, and let PLMs predict the second
masked token. We get the probability of each token
in the vocabulary, i.e., c(y|·, r), and use our metric
and dataset to measure the naturalness, e.g., how
natural birthplace will be described more specifi-
cally in general.

Relatedness: Considering the following situation:
the model can predict that both A and B are likely to
be the correct answers, and judges A is more related
to the the subject than B in general. Intuitively, it
will prefer answer A.

Therefore, another factor that affects the speci-
ficity of predictions made by PLMs is relatedness,
i.e., to what extent are the fine-grained objects
more related to the corresponding subjects than the
coarse-grained ones considered by PLMs. (More
generally, this is the ability of PLMs to identify
more related entities).

We measure relatedness with phrase embeddings
from PLMs. Following Yu and Ettinger (2020);
Wang et al. (2021), we use the mean-pooled repre-
sentations over the final-layer outputs from PLMs
as phrase embeddings, and calculate the cosine sim-
ilarities between the subject and the corresponding
objects. If the cosine similarity between the sub-
ject and the fine-grained object is higher than that
between the subject and the coarse-grained object,
we think PLMs consider the fine-grained one is
more related to the subject. According to this, we
can use our metric and dataset to measure the re-
latedness, with confidence, i.e., c(y|x, ·), based on
cosine similarity between x and y.

Findings. In Table 5, we report the naturalness
and relatedness with pr as the metric. We find that,
1) the highest average naturalness and relatedness
are achieved by BERT-Large and BERT-Base, re-
spectively, corresponding to the highest average
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GPT-2 BERT-Base BERT-Large RoBERTa-Base RoBERTa-Large

Acc@10 23.87 42.65 46.80 30.79 31.81

Table 4: The correctness of the predictions measured with Acc@10 (%).

birthplace occupation location subclass-of part-of Average

GPT-2 Naturalness 46.42 50.86 10.94 60.06 51.12 43.88
Relatedness 68.51 78.50 82.84 40.00 50.16 64.00

BERT-Base Naturalness 64.81 75.04 4.99 47.96 50.80 48.72
Relatedness 74.89 51.96 76.43 71.67 58.79 66.75

BERT-Large Naturalness 66.35 79.22 10.03 48.92 47.60 50.42
Relatedness 54.46 49.16 56.22 72.96 65.50 59.66

RoBERTa-Base Naturalness 44.80 61.12 23.27 42.06 36.90 41.63
Relatedness 68.73 58.50 65.73 39.51 56.87 57.87

RoBERTa-Large Naturalness 31.37 66.24 3.67 43.64 41.69 37.32
Relatedness 47.82 41.32 34.89 55.17 64.22 48.68

Table 5: Relatedness and naturalness measured with pr(%).

specificity; 2) in many cases, naturalness is lower
than 0.5, which indicates that, without the subjects
provided, PLMs are more likely to provide coarse-
grained answers, we think this is because a single
coarse-grained entity encompasses the probability
mass of many fine-grained entities; 3) relatedness
is usually higher than 0.5, which means PLMs have
a certain ability to distinguish fine-grained/coarse-
grained answers based on semantic similarities be-
tween entities. But the ability is weak since the
average scores are just around 60%.

5 Can Language Models Be MORE
Specific?

From the previous sections, we observe that exist-
ing pre-trained language models do not have much
preference for more specific answers in a vanilla
setting. We also observe that PLMs achieve natu-
ralness lower than 0.5, i.e., naturally, PLMs tend
to fill in coarse-grained answers with respect to cer-
tain types of questions, and relatedness around 0.6,
i.e., PLMs only have a weak ability to distinguish
more related entities. Naturalness depends on both
the parameters of PLMs and prompts while relat-
edness only depends on the parameters of PLMs.
Since it is expensive to change the parameters of
PLMs (both time and space), to improve the speci-
ficity, we focus on improving the naturalness by
modifying the prompts.

Intuitively, to get more specific answers, a practi-
cal approach is to ask more specific questions. For
instance, to know where Toronto is located more
specifically, we may change the prompt “Toronto is
located in [MASK].” to “Toronto is located in the
province of [MASK].” However, to achieve this,

humans are required to have additional knowledge,
e.g., Toronto is a city, and in Canada, the adminis-
trative unit larger than city is province rather than
state. Besides, designing such manually crafted
prompts can also be time-consuming and laborious
if there are a large number of queries. Furthermore,
some questions may be difficult to ask more specif-
ically. For instance, for question “Hard palate is
part of [MASK].”, it is not easy to come up with a
more specific query.

Based on the above considerations, we propose
two novel and simple techniques to improve the
specificity of the predictions. The proposed meth-
ods can apply to different models on various types
of queries while no additional training is required.

5.1 Few-Shot Prompting

We refer to using prompts in Table 1 to extract
answers as Vanilla Prompting (e.g., we let PLMs
predict the masked token in “John G. Bennett was
born in [MASK].”). Vanilla Prompting cannot elicit
specific answers since the designed prompts can not
tell the models the preference regarding specificity;
therefore, the models are not aware of whether a
more specific answer is preferred.

Based on the above analysis, we need to give the
model some “hints” in terms of specificity, which
can be achieved by providing some demonstrations.
For instance, to predict where Toronto is located,
if we provide some examples with coarse-grained
answers using prompt “Melbourne is located in
Australia, Guangzhou is located in China, Toronto
is located in [MASK].”, the model may know by
analogy that we prefer a coarse-grained answer,
which is Canada (a country). In contrast, if we pro-
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Relation Prompt

birthplace John G. Bennett was born in [MASK], which is located in [MASK].
occupation Jenny Burton is a [MASK] by profession, which belongs to [MASK].
location Carey River is located in [MASK], which is located in [MASK].
subclass-of Tracking ship is a subclass of [MASK], which is a subclass of [MASK].
part-of Hard palate is part of [MASK], which is part of [MASK].

Table 6: Example prompts for Cascade Prompting.

birthplace occupation location subclass-of part-of Average

GPT-2 (VP) 59.72 57.28 48.25 57.98 60.86 56.82
GPT-2 (FP) 81.01 71.66 50.33 64.15 57.67 64.96
GPT-2 (CP)* 59.72 57.28 48.25 57.98 60.86 56.82
BERT-Base (VP) 60.68 70.46 49.09 67.64 67.41 63.06
BERT-Base (FP) 67.85 70.54 50.11 69.11 53.83 62.29
BERT-Base (CP) 59.68 70.54 55.06 67.42 69.49 64.44
BERT-Large (VP) 56.52 71.76 42.36 77.25 66.77 62.93
BERT-Large (FP) 66.17 64.70 50.37 65.44 52.24 59.78
BERT-Large (CP) 82.25 70.02 53.55 77.67 71.88 71.07
RoBERTa-Base (VP) 54.48 61.80 49.99 61.59 59.11 57.39
RoBERTa-Base (FP) 64.85 72.38 35.85 63.01 51.11 57.44
RoBERTa-Base (CP) 63.09 64.54 54.56 61.81 62.78 61.36
RoBERTa-Large (VP) 42.16 71.44 43.28 80.63 59.27 59.36
RoBERTa-Large (FP) 70.51 71.94 42.26 73.70 62.94 64.27
RoBERTa-Large (CP) 89.00 74.02 66.09 79.87 65.18 74.83

Table 7: Results of specificity testing with different prompts. The best results in each group are bold. VP: Vanilla
Prompting, FP: Few-shot Prompting, CP: Cascade Prompting. *We do not rescore all suffixes for GPT-2 (CP).

vide some fine-grained answers with “Melbourne is
located in Victoria, Guangzhou is located in Guang-
dong, Toronto is located in [MASK].”, the model
may realize through analogy that we prefer a fine-
grained answer here, which is Ontario (a province).

We refer to the method described above as Few-
shot Prompting, which supposes to bias the predic-
tion to be more specific by providing some exam-
ples with fine-grained answers. The technique here
is similar to the few-shot setting in GPT-3 (Brown
et al., 2020) and (Adolphs et al., 2021), where sev-
eral demonstrations are given to the model as con-
dition to help the model make the prediction.

5.2 Cascade Prompting

To make the answer more specific, we can also
utilize the relationship between coarse-grained and
fine-grained objects. For instance, in Table 1, track-
ing ship is a subclass of vessel, while vessel is also
a subclass of vehicle. To combine the three entities,
we can write: Tracking ship is a subclass of vessel,
which is a subclass of vehicle. By masking the ob-
jects, we get prompt: “Tracking ship is a subclass
of [MASK], which is a subclass of [MASK].” Intu-
itively, the first masked token will be more likely to
be filled by vessel, while the second masked token
tends to be vehicle. Another example in Table 1
is to predict the birthplace, we can create prompt

“John G. Bennett was born in [MASK], which is
located in [MASK].” to bias the prediction of the
first masked token to be more specific.

We refer to the above method as Cascade
Prompting, which aims to improve the specificity
by adding “which clauses” as constraints accord-
ing to the relationship between coarse-grained and
fine-grained answers. The “which clauses” here
can be considered as suffixes and the prediction of
the first masked token is returned as the answer.

6 Experiments
In this section, we conduct experiments with the
prompt-based methods proposed in Section 5.

6.1 Experimental Setup

We follow the setup in Section 4.1. For Few-shot
Prompting, we set K, i.e., the number of demon-
strations, as 10. For Cascade Prompting, we apply
the prompts in Table 6, which are constructed au-
tomatically based on the prompts for the transitive
relations, e.g., “... is located in [MASK].” ⇒ “...,
which is located in [MASK].”

6.2 Results

Table 7 summarizes the results of specificity testing
with different prompting methods. From the re-
sults, we observe that Cascade Prompting achieves
the best performance in most cases. In addition,

722



GPT-2 BERT-Base BERT-Large RoBERTa-Base RoBERTa-Large

Acc@10 w/ FP + 10.62 + 0.05 + 2.74 + 8.09 + 16.45
Acc@10 w/ CP 0.00 - 0.07 - 4.28 + 2.06 + 0.77

Table 8: Change in correctness of the predictions compared to Vanilla Prompting (%) on fine-grained answers. w/
FP & CP means Few-shot & Cascade Prompting is used to create prompts.

GPT-2 BERT-Base BERT-Large RoBERTa-Base RoBERTa-Large

Naturalness w/ VP 43.88 48.72 50.42 41.63 37.32
Specificity w/ VP 56.82 63.06 62.93 57.39 59.36
Naturalness w/ FP 52.02 51.05 47.36 49.11 49.96
Specificity w/ FP 64.96 62.29 59.78 57.44 64.27
Naturalness w/ CP 43.88 51.44 56.54 45.81 57.69
Specificity w/ CP 56.82 64.44 71.07 61.36 74.83

Table 9: Average naturalness measured with pr(%) with different prompts, with corresponding average specificity
as reference. w/ VP means Vanilla Prompting is used to create prompts. For each model, the best naturalness is
underlined and the best specificity is bold.

the performance improvement for BERT-Large and
RoBERTa-Large with Cascade Prompting is quite
significant. We think this is because the large mod-
els can understand which clauses better than the
base models.

We also observe that Few-shot Prompting does
not always improve the specificity for bidirectional
language models. However, for GPT-2, which is a
unidirectional language model, Few-shot Prompt-
ing achieves a significant performance improve-
ment, while the results of Cascade Prompting are
the same as those of Vanilla Prompting.

To observe the impact of the two methods on
correctness, we report the change in correctness in
Table 8. We observe that the correctness of Cas-
cade Prompting is close to that of Vanilla Prompt-
ing, while the correctness of Few-shot Prompting
improves significantly. This is because Cascade
Prompting is in a zero-shot setting, while in Few-
shot Prompting, demonstrations can provide some
supervision to help the model make predictions.

We also measure naturalness of different mod-
els with different prompting methods. From Table
9, we find that, for each model, the best prompt-
ing method is usually associated with the highest
naturalness: Cascade Prompting improves the nat-
uralness for bidirectional language models signifi-
cantly, which corresponds to better performance on
specificity; while for GPT-2, the naturalness using
Few-shot Prompting is the highest, corresponding
to the highest specificity.

7 Discussion

Specificity Testing in More General Scenarios:
In this work, we test the specificity of PLMs on

several relations with manually crafted prompts,
with test data created automatically based on the
property of transitive relations. For future work, we
may test the specificity in more general scenarios.
For instance, for numerical knowledge (Lin et al.,
2020), we can test how specifically PLMs describe
the numbers, e.g., Obama was born in 1961 vs
Obama was born in 1960s, A car has four wheels
vs A car has several wheels. In addition, we may
test on multi-token answers (Jiang et al., 2020a),
and measure the specificity of sentences generated
by PLMs (Louis and Nenkova, 2011; Ko et al.,
2019; Adiwardana et al., 2020; Thoppilan et al.,
2022), e.g., This is a very good paper. I really
like it. vs This paper conducts a very novel and
interesting study, which provides a new insight for
future work on language models.
Further Improvement of Specificity: In this pa-
per, we propose Few-shot Prompting and Cascade
Prompting to improve the specificity of PLMs with-
out any additional training. Future work may im-
prove the specificity by including prompt-based
fine-tuning (Shin et al., 2020; Gao et al., 2021).
The observation also encourages future work to
take into account the specificity, e.g., adding con-
straints regarding specificity, in the pre-training
process. It is also interesting to design methods to
control the degree of specificity for different usage
scenarios (Huang et al., 2021).

8 Conclusion

In this paper, we build a benchmark to measure the
specificity of predictions produced by pre-trained
language models. To achieve this, we propose a
novel approach to construct test data for specificity
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testing automatically. From our evaluations, we
show that existing PLMs have only a slight prefer-
ence for more specific answers. We also propose
two prompt-based methods, i.e., Few-shot Prompt-
ing and Cascade Prompting, to improve the speci-
ficity of the predictions. Extensive experiments
and in-depth analyses demonstrate the effective-
ness of the proposed methods. We hope this work
can encourage future research in this direction and
give some insights to improve downstream tasks
such as question answering, information extraction,
and text generation: 1) to make the answers, the
extracted information, or the generated sentences
more specific; 2) to control the degree of specificity
for different usage scenarios.

Limitations

This work presents some limitations. Firstly, our
focus is confined to evaluating the specificity of
predictions made by pre-trained language models
for entity relations. As noted in Section 7, speci-
ficity can potentially be tested in a broader range
of scenarios. Despite this restriction, we consider
this work as an initial attempt to highlight the con-
cept of language model specificity. We believe it
will stimulate further research into this crucial, yet
under-explored, area.

A second limitation is the scale of the models
evaluated in this work. Given the swift evolution of
large language models concurrent with the drafting
of this paper, the models we examined are compar-
atively small. As pointed out in the work of Zheng
et al. (2023), large language models may fail to
answer a problem at the appropriate level of speci-
ficity. We thus encourage future investigations to
delve into the specificity of these rapidly evolving,
larger language models.
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