
OpenPI-C: A Better Benchmark and Stronger Baseline for
Open-Vocabulary State Tracking

Xueqing Wu∗, Sha Li∗, Heng Ji
University of Illinois Urbana-Champaign

{xueqing8,shal2,hengji}@illinois.edu

Abstract

Open-vocabulary state tracking is a more prac-
tical version of state tracking that aims to track
state changes of entities throughout a process
without restricting the state space and entity
space. OpenPI (Tandon et al., 2020) is to date
the only dataset annotated for open-vocabulary
state tracking. However, we identify issues
with the dataset quality and evaluation metric.
For the dataset, we categorize 3 types of prob-
lems on the procedure level, step level and state
change level respectively, and build a clean
dataset OpenPI-C using multiple rounds of hu-
man judgment. For the evaluation metric, we
propose a cluster-based metric to fix the origi-
nal metric’s preference for repetition.

Model-wise, we enhance the seq2seq genera-
tion baseline by reinstating two key properties
for state tracking: temporal dependency and
entity awareness. The state of the world after
an action is inherently dependent on the previ-
ous state. We model this dependency through a
dynamic memory bank and allow the model to
attend to the memory slots during decoding. On
the other hand, the state of the world is naturally
a union of the states of involved entities. Since
the entities are unknown in the open-vocabulary
setting, we propose a two-stage model that re-
fines the state change prediction conditioned on
entities predicted from the first stage. Empirical
results show the effectiveness of our proposed
model especially on the cluster-based metric.
The code and data are released at https://
github.com/shirley-wu/openpi-c

1 Introduction

State tracking is the task of predicting the states
of the world after an action is performed. Most
existing work operate under a simplified close-
vocabulary setting, assuming the state space and
involved entities are known (Dalvi et al., 2018;

∗ Equal contribution

Bosselut et al., 2018), which limits their applicabil-
ity. The more practical open-vocabulary setting
assumes both the entities and the state space are
unknown. The OpenPI dataset (Tandon et al., 2020)
is, to our knowledge, the first and only dataset for
this task. However, we find a series of issues con-
cerning data quality and evaluation, which may
hinder progress in this line of research.

We identify three types of issues with the dataset:
non-procedural documents, out-of-order steps, and
ambiguous state changes. In particular, ∼32% of
the state changes cannot be reliably inferred from
the input, which we find encourages model hallu-
cination. We filter out problematic data points and
build a cleaner dataset via crowdsourcing.

For evaluation, the greedy matching strategy em-
ployed by Tandon et al. (2020) allows matching
multiple predicted state changes to a single gold
state change, inadvertently inflating the score when
the model produces repetitive outputs. We propose
a cluster-based metric that automatically merges
repetitive stage changes and enforces 1-to-1 assign-
ment between clusters.

We propose two enhancements to the seq2seq
generation model proposed for this task in Tandon
et al. (2020). To capture the dependency between
world states of consecutive time steps, we introduce
an entity memory to preserve information about
the world state for all previous steps. When predict-
ing the state changes for subsequent actions, the
model can access the state information of previous
time steps. Additionally, while close-vocabulary
setting usually provides a list of involved entities to
track, such a list is inaccessible in open-vocabulary
setting. This requires the model to jointly identify
involved entities and predict their state changes. To
make the problem more tractable and help model
learning, we propose an entity-conditioned pre-
diction step where predictions are conditioned on
each single entity extracted from the predictions of
the first stage.

https://github.com/shirley-wu/openpi-c
https://github.com/shirley-wu/openpi-c

Figure 1: The baseline generation model for open-vocabulary state tracking takes the goal and previous steps as
input and generates the state changes as templated sentences. We propose to model temporal dependency between
steps using an entity memory module and increase entity awareness of the model by using a two-stage procedure
where the second state prediction is conditioned on entities from the first stage.

Our contributions can be summarized as follows:
(1) we present a clean dataset OpenPI-C for open-
vocabulary state tracking which fixes the data qual-
ity issues in the original OpenPI dataset; (2) we
design a clustering-based metric for state track-
ing evaluation that mitigates the original metric’s
preference for repetition; (3) we model temporal
dependency and entity awareness by enhancing the
generation model for open-vocabulary state track-
ing with a dynamic memory module and two-stage
prediction.

2 Related Work

Most existing work on entity state tracking (Weston
et al., 2016; Dalvi et al., 2018; Bosselut et al., 2018)
is closed-vocabulary, assuming that the number of
possible states and involved entities is limited and
known. Under this setting, state tracking can be
modeled as a tagging problem (Gupta and Durrett,
2019; Amini et al., 2020; Huang et al., 2021) which
is not applicable for the open-vocabulary case.
Tandon and Chatterjee (2022) proposed OpenPI
dataset for the more practical open-vocabulary set-
ting. They formulate the task as a generation prob-
lem to handle the open vocabulary challenge.

The design of an external memory component
has already been applied to close-vocabulary state
tracking (Bosselut et al., 2018; Yagcioglu et al.,
2018; Gupta and Durrett, 2019). However, they
rely on known entities and only track a limited
set of attributes. In this work, we use a dynamic
memory that can handle emerging entities with
open-vocabulary attributes.

3 Task and Dataset

The OpenPI dataset (Tandon et al., 2020) is, to
our knowledge, the first and only dataset for open-
vocabulary state tracking. The texts are collected

from WikiHow and the state changes are manually
annotated.

Dataset Issues We identify 3 types of quality
issues in the OpenPI dataset. For input, we find
that ∼15% input texts are not procedure texts be-
cause the steps do show any temporal continuity
(shown in Figure 2a). In valid procedure text inputs,
∼7.4% steps are invalid steps in the context of the
procedure texts (shown in Figure 2b). They either
do not explicitly describe an executable action, or
do not follow the temporal order when combined
with other steps. For output, ∼32% state changes
cannot be reliably inferred from the input (shown
in Figure 2c). Such data will encourage the trained
model to generate hallucination.

To address these issues and improve data qual-
ity, we build a cleaned dataset named OpenPI-
C through three-stage human cleaning: (1) fil-
tering out non-procedure input texts, (2) filtering
out invalid steps, and (3) filtering out unreliable
state changes. In the three stages, we assign each
data point with 3/3/2 annotators respectively and
achieve 69.4%/84.9%/71.0% agreement (defined as
the ratio of data points where all annotators agree
with each other). To verify the annotation quality,
we manually annotate 50 instances for each stage.
90%/92%/84% of the crowd-sourcing annotations
match our manual annotations for the three stages
respectively. The statistics of the original OpenPI
dataset and our OpenPI-C dataset are presented
in Table 1. Detailed annotation settings and filter-
ing criteria are in Appendix B. Though our dataset
has fewer data samples, as shown in Figure 2, the
removed data samples are mostly of low quality.
As shown in Figure 4, including such samples in
the dataset encourages hallucination and negatively
impacts model performance.

(a) The text is not a procedure
text because the steps are not
temporally related.

(b) The first and second steps are invalid steps. The
first step describes a pre-condition and is not exe-
cutable. The second step provides complementary
information and is not necessary to execute when
combined with other steps.

(c) The state change cannot be reliably
inferred from step 2. Step 2 involves
aiming and stabilizing the hand only,
not the lungs.

Figure 2: Examples of low-quality data points removed during the filtering process.

Train Dev Test Train Dev Test

procedure texts 644 55 111 539 50 74
steps 3216 274 560 2403 219 345
state changes 23.9k 1.7k 4.2k 13.8k 1.2k 2.0k

OpenPI OpenPI-C

Table 1: Statistics of the original OpenPI dataset and
our OpenPI-C dataset.

Evaluation Issues In Tandon et al. (2020), each
predicted state is matched to the ground truth state
with the highest similarity. As a result, when the
model generates near-duplicate state changes, it
will artificially boost the model’s score. We pro-
pose a cluster-based metric to address this issue.
We cluster the predicted set and the gold-standard
set respectively based on Sentence-BERT (Reimers
and Gurevych, 2019a) embedding similarity. After
obtaining the predicted and gold-standard clusters,
we assign a gold-standard cluster for each predicted
cluster through maximal matching which enforces
one-to-one mapping. Eventually, we use the assign-
ment to calculate precision, recall and F1 scores.

4 Method

Generation Baseline As shown in Figure 1, the
input to the model is the concatenation of the goal,
steps, and a prompt “Now, what happens?”. In
Tandon et al. (2020), each state change will be
represented as a templated sequence for generation.
For example, (potato, shape, whole, cut in half)
will be converted to “shape of potato was whole
before and cut in half afterwards”.

Entity Memory To capture the temporal depen-
dency across steps, we maintain a variable-size
memory bank to store historical state changes. For
each entity-attribute pair (e, a) that appears in the
prediction, we allocate a memory slot after it first
appears in the predicted state changes. Suppose it

first appears at step k0, then we initialize its mem-
ory m at the next step mk0+1 = hk0 . Here, hk0

represents the hidden states for (e, a) at step k0.
In the subsequent steps, we update the memory
every time the attribute a of entity e changes. For-
mally, at step k, k > k0, if (e, a) changes, then
mk+1 =

(
mk + hk

)
/2; otherwise, mk+1 = mk.

To compute hk, we take the text expressing its
state change from the generated sequence at step
k and compress their decoder-side hidden states
h1, . . . ,hn into hk via attention:

αi = softmax
i

(
Wk−k0hi

)
,hk =

n∑
i=1

αihi (1)

where Wk−k0 is a learnable parameter for the
(k − k0)-th step after (e, a) appears. To reduce the
number of parameters, we share the same Wk−k0

among all k, k − k0 > 0. That is, we use W0 to
initialize the memory when (e, a) first appears, and
use another parameter W>0 to update the memory.

We incorporate the memory through the decoder
side cross-attention. At step k, the keys and val-
ues for the cross-attention module include two
parts: the encoder-side hidden states henc

1 . . .henc
n

(n refers to the number of tokens encoded by the
encoder) and the memory vectors mk

1 . . .m
k
M (M

refers to the number of created memory slots). We
project them into key and value matrices K,V with
different parameters:

{K,V } =[Wenc
{K,V }h

enc
1 , . . . ,Wenc

{K,V }h
enc
n , (2)

Wm
{K,V }m

k
1, . . . ,W

m
{K,V }m

k
M]⊤,

and feed them into the cross-attention module. In
this way, the model can adaptively select between
input information and historical state change infor-
mation stored in the memory.

Entity-Conditioned Prediction A challenge for
this open-vocabulary task is the lack of access to

the entities involved. Compared to directly mod-
eling all state changes p(Y |x, g) given the steps x
and goal g, we can decompose this problem into
first predicting entities, and then modeling the state
change of each entity separately p(Ye|x, g, e). Con-
ditioning on the entity simplifies the task and eases
model training.

We reuse the baseline model and replace the
natural language prompt with “Now, what happens
to e?”. During inference, we extract all the entities
in the prediction and perform entity-conditioned
prediction for each entity e. Eventually we merge
the N sets of state changes as the final output.

Exact BLEU ROUGE Exact BLEU ROUGE

GPT-2 3.92 20.81 39.73 5.72 20.31 33.40
BART 4.88 23.35 41.88 7.10 22.72 35.44
+concat states 4.73 21.96 40.38 6.69 20.61 32.88

BART+EMem 5.27 24.06 42.71 7.65 23.40 35.79
+ECond 5.70 23.81 42.14 8.27 23.56 35.80
+EMem+ECond 5.65 23.73 42.15 8.26 22.96 35.34

F1 original F1 cluster-based

Table 2: Main results on OpenPI-C (in %). EMem
denotes Entity Memory and ECond denotes Entity-
Conditioned prediction.

Figure 3: A good case of entity-conditioned predic-
tion (ECond). Based on the same set of entities, entity-
conditioned prediction is able to correct the prediction
for entities spray bottle and oil and choose more
appropriate wording for water.

5 Experiments

Our experiments are based on pre-trained BART
(Lewis et al., 2020).1 We add another baseline

1Our proposed techniques can be applied on any encoder-
decoder model. Among the base models that we have experi-

that that concatenates all previous state changes
to the input (denoted as “BART + concat states”).
Following Tandon et al. (2020), we also use GPT-2
(Radford et al., 2019) as baseline.

Figure 4: Outputs of our model (BART+EMem+ECond)
trained on OpenPI and OpenPI-C respectively. The
model trained on OpenPI produces more hallucination
(highlighted in red).

The main results are in Table 2. Overall, our
proposed two techniques improve performance on
most metrics especially on the cluster-based met-
rics. Compared to our proposed entity memory
(EMem), “BART + concat states” takes the same
information (historical steps and historical state
changes) as input but significantly decreases the
performance compared to the baseline. This is
due to the historical state changes being too long
and distracting the model. As in Figure 3, entity-
conditioned prediction (ECond) is able to produce
more accurate outputs based on the same set of enti-
ties. We observe that performance gains brought by
entity-conditioned prediction are more significant
on cluster-based F1 metrics, because the baseline
model produces longer and more repetitive outputs
(average number of output state changes per step
is 7.71 compared to 6.76 of BART+ECond). As a
result, the original F1 gives the baseline too much
credit.

To analyze the effect of dataset cleaning, we
compare the outputs of models trained on the origi-
nal dataset and cleaned dataset. As in Figure 4, the
cleaned dataset encourages the model to stick to
the input text and produce less hallucination. To
quantify this effect, we manually examined 50 pro-
cesses randomly sampled from the test set. Of the

mented with, we found BART to work the best and hence our
experiments are based on BART.

50 processes we examined, each process consists
of multiple steps, and each step has multiple out-
put state changes. We did a binary classification
on each output state change to classify whether it
contains hallucinations or not. Overall, the model
trained on OpenPI produced 749 hallucinated state
changes while the model trained on OpenPI-C pro-
duced 393 (47.53% less).

6 Conclusion and Future Work

In this paper we study the open vocabulary state
tracking problem. We build upon the generation
formulation introduced by Tandon et al. (2020)
and propose two techniques: (1) entity memory
that models the temporal dependency by storing
world states from previous steps, and (2) entity-
conditioned prediction that simplifies the task by
predicting state changes conditioned on each single
entity. We conduct human annotation to address
data quality issues in the existing OpenPI dataset
and thus propose a cleaned version of OpenPI
dataset. We propose an improved cluster-based
metric to overcome the original metric’s preference
towards repetition. For future work, we consider us-
ing external resources such as ConceptNet (Amigó
et al., 2009) to assist entity prediction.

7 Limitations

The scope of this work is limited by the available
data. The OpenPI dataset (Tandon et al., 2020) is
derived from WikiHow 2, and focuses on everyday
scenarios and contains English only. We would
like to see resources that span more domains (e.g.
scientific domains) and more languages.

8 Ethical Considerations

Our work does not involve the creation of new
datasets. However, we would like to point out that
the existing dataset OpenPI is based on WikiHow,
which is primary crowdsourced (with partial expert
review). Thus some of the content is influenced
by the cultural and educational background of the
annotators. In our human cleaning, we recruit an-
notators from United States and Canada regions
only, which may also bring cultural bias to the con-
tent. In particular, some procedures are related to
healthcare and neither the procedure nor the model
output should be regarded as medical advice.

2https://www.wikihow.com/Main-Page

Acknowledgement

This research is based upon work supported by U.S.
DARPA DARPA KAIROS Program No. FA8750-
19-2-1004. The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official
policies, either expressed or implied, of DARPA,
or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copy-
right annotation therein.

References
Enrique Amigó, Julio Gonzalo, Javier Artiles, and Felisa

Verdejo. 2009. A comparison of extrinsic clustering
evaluation metrics based on formal constraints. Inf.
Retr., 12(4):461–486.

Aida Amini, Antoine Bosselut, Bhavana Dalvi, Yejin
Choi, and Hannaneh Hajishirzi. 2020. Procedural
reading comprehension with attribute-aware context
flow. In Automated Knowledge Base Construction.

Antoine Bosselut, Omer Levy, Ari Holtzman, Corin En-
nis, Dieter Fox, and Yejin Choi. 2018. Simulating
action dynamics with neural process networks. In
6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net.

Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen-tau
Yih, and Peter Clark. 2018. Tracking state changes in
procedural text: a challenge dataset and models for
process paragraph comprehension. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1595–1604, New Orleans, Louisiana.
Association for Computational Linguistics.

Aditya Gupta and Greg Durrett. 2019. Tracking discrete
and continuous entity state for process understanding.
In Proceedings of the Third Workshop on Structured
Prediction for NLP, pages 7–12, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Hao Huang, Xiubo Geng, Jian Pei, Guodong Long, and
Daxin Jiang. 2021. Reasoning over entity-action-
location graph for procedural text understanding. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 5100–
5109, Online. Association for Computational Lin-
guistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.

https://www.wikihow.com/Main-Page
https://doi.org/10.1007/s10791-008-9066-8
https://doi.org/10.1007/s10791-008-9066-8
https://doi.org/10.24432/C5C883
https://doi.org/10.24432/C5C883
https://doi.org/10.24432/C5C883
https://openreview.net/forum?id=rJYFzMZC-
https://openreview.net/forum?id=rJYFzMZC-
https://doi.org/10.18653/v1/N18-1144
https://doi.org/10.18653/v1/N18-1144
https://doi.org/10.18653/v1/N18-1144
https://doi.org/10.18653/v1/W19-1502
https://doi.org/10.18653/v1/W19-1502
https://doi.org/10.18653/v1/2021.acl-long.396
https://doi.org/10.18653/v1/2021.acl-long.396

BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.
Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Nils Reimers and Iryna Gurevych. 2019a. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Nils Reimers and Iryna Gurevych. 2019b. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Kushagri Tandon and Niladri Chatterjee. 2022. Team
LRL_NC at SemEval-2022 task 4: Binary and
multi-label classification of PCL using fine-tuned
transformer-based models. In Proceedings of the
16th International Workshop on Semantic Evalua-
tion (SemEval-2022), pages 421–431, Seattle, United
States. Association for Computational Linguistics.

Niket Tandon, Keisuke Sakaguchi, Bhavana Dalvi,
Dheeraj Rajagopal, Peter Clark, Michal Guerquin,
Kyle Richardson, and Eduard Hovy. 2020. A dataset
for tracking entities in open domain procedural text.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6408–6417, Online. Association for Computa-
tional Linguistics.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2016. Towards ai-complete question
answering: A set of prerequisite toy tasks. ICLR.

Semih Yagcioglu, Aykut Erdem, Erkut Erdem, and Nazli
Ikizler-Cinbis. 2018. Recipeqa: A challenge dataset
for multimodal comprehension of cooking recipes.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, Brus-
sels, Belgium, October 31 - November 4, 2018, pages
1358–1368. Association for Computational Linguis-
tics.

A Clustering Algorithm

For output clustering, we use
stsb-distilroberta-base-v2 model pro-
vided by sentence-transformers package3

to obtain sentence embeddings. We use cosine
3https://github.com/UKPLab/

sentence-transformers

similarity to compute similarity scores. The
detailed algorithm is in Algorithm 1. We set the
threshold th as 0.7. To evaluate the performance,
we manually cluster the outputs for 20 processes
(containing 85 steps) and use the annotated clusters
as gold clusters to evaluate our algorithm. We
calculate BCubed metrics (Amigó et al., 2009) and
our algorithm achieves 88.00% precision, 88.68%
recall, and 87.39% F1.

Algorithm 1: The clustering algorithm.
The input set y is the gold or the predicted
set of state changes. Each output cluster
Ck is a subset of y and all output clusters
C form a partition of y.
Input: input set y = {y1, . . . , yn};

similarity scorer S(·, ·); threshold th
Output: clusters C = {C1, . . . , CK}

1 C ← []
2 for i← 1 to n do
3 new_cluster← true
4 for k ← 1 to |C| do
5 if ∀y ∈ Cj , S(yi, y) > th then

/* Assign yi to cluster Ck */
6 Ck.add(yi)
7 new_cluster← false
8 break

9 if new_cluster then
10 C.append({yi})

B Data Details

OpenPI dataset is released by Dalvi et al. (2018).4

It is an English-only dataset crawled from Wiki-
How and annotated via crowd-sourcing.

As mentioned before, we conduct human anno-
tation to filter out low-quality data. The annotation
study is reviewed by an ethics review board and de-
termined to be a not human subjects research. The
annotation is conducted on MTurk platform. To
ensure that the annotators are native English speak-
ers, we recruit annotators from the United States
and Canada. We have informed the annotators in
the annotation instructions that we are collecting
data for research purpose. The annotation includes

4The original dataset and their baseline and evalua-
tion code are released at https://github.com/allenai/
openpi-dataset. We notice that some data has wrong tem-
plate (“a of e were v before and v′ afterwards” instead of
“was”), which will influence model training and evaluation.
Thus, we apply a preprocessing step to fix these errors.

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/2022.semeval-1.57
https://doi.org/10.18653/v1/2022.semeval-1.57
https://doi.org/10.18653/v1/2022.semeval-1.57
https://doi.org/10.18653/v1/2022.semeval-1.57
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://doi.org/10.18653/v1/d18-1166
https://doi.org/10.18653/v1/d18-1166
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
https://github.com/allenai/openpi-dataset
https://github.com/allenai/openpi-dataset

three stages:
Stage 1: filter out non-procedure texts. Each an-

notator is presented with an input text and asked to
judge whether it is a procedure text or not. Each in-
put text is annotated by three annotators; the reward
for annotating each input text is $0.03. We remove
input texts that are considered as non-procedure
texts by most annotators (i.e., at least two anno-
tators). 15% procedure texts are removed at this
stage.

Stage 2: filter out invalid steps. Each annotator
is presented with an procedure text. For each step in
the process, the annotator is asked to judge whether
it is a valid step. Each input text is annotated by
three annotators; the reward for annotating each
input text is $0.2. We then remove steps that are
considered as invalid steps by most annotators (i.e.,
at least two annotators). 7.4% steps are removed at
this stage.

Stage 3: filter out low-quality state changes.
Each annotator is presented with an input procedure
text and a state change caused by one of the steps.
The annotator is asked to decide whether the state
change is certain, uncertain and impossible. Each
state change is annotated by two annotators; the re-
ward for annotating each state change is $0.05. To
ensure data quality, we remove state changes that
receive at least one uncertain or impossible rating
from the two annotators, which empirically yield
the best results. 32% state changes are removed at
this stage.

Screenshots of the annotation interface are
shown in Figure 5. Eventually, we manually ex-
amine the data and conducted rule-based filtering
according to the following heuristics. We first re-
move steps with no state changes, and then remove
procedure texts with < 3 steps.

C Experiment Details

We use GPT2-medium and BART-large models
for the experiments. The number of parameters
for GPT-2 baseline, BART baseline, BART+EMem
and BART+ECond models are 355M, 406M, 444M
and 406M respectively. Each experiment is run on
one Telsa P100 GPU and takes about 4 hours.

In training, we use the exact training hyperpa-
rameters as Dalvi et al. (2018), i.e., the learning
rate of 5×10−5, the batch size of 8, and 30 epochs.

In decoding, we use beam search with beam
size of 4. The decoding strategy is searched from
top-p sampling (0.5 ≤ p ≤ 0.9), top-k sampling

(5 ≤ k ≤ 10) and beam search (beam= 4). The
best decoding strategy is found by manual tuning
on the original OpenPI dataset. Results are in Table
4. We show that using beam search significantly
boost the performance over top-p or top-k sampling
for all systems. We also show in Figure 6 that
length penalty can be used to control the number
of outputs, and thus to balance between precision
and recall.

Compared to Dalvi et al. (2018), our re-
implemented GPT-2 baseline is different in that:
(1) we include the process goal g in the input, and
(2) we use beam search with beam size of 4 instead
of top-p sampling.

We also run the experiments on the original
OpenPI dataset and compare with the results of
Dalvi et al. (2018). Results are shown in Table 3.

D Scientific Artifacts

Scientific artifacts we use in this work include:
(1) OpenPI dataset (Tandon et al., 2020) and
their baseline and evaluation code released un-
der the MIT License. The dataset is collected
from WikiHow and focuses on every-day scenar-
ios and contains English only. Our use is consis-
tent with the resource’s intended use, which is to
facilitate research on open-vocabulary state track-
ing tasks. (2) Three pre-trained models: GPT-2
(Radford et al., 2019) and BART (Lewis et al.,
2020) provided by transformers5 and Sentence-
BERT (Reimers and Gurevych, 2019b) provided
by sentence-transformers, all licensed under
the Apache License 2.0. We use the models for
research which is consistent with their intended
use. Our code and data are released under the MIT
license, which is compatible with the artifacts uti-
lized in our research.

5https://huggingface.co/docs

https://huggingface.co/docs

(a) Stage 1. (b) Stage 2. (c) Stage 3.

Figure 5: Screenshots of the annotation interface.

Exact BLEU ROUGE Exact BLEU ROUGE
GPT-2 (Tandon et al., 2020) 4.3 16.1 32.4 - - -
GPT-2 5.35 19.57 36.26 6.16 18.24 29.95
BART 5.51 23.19 40.45 7.40 21.44 33.22
+concat states 4.65 19.58 36.82 6.22 18.20 29.99

BART+EMem 6.15 23.63 40.60 7.81 21.69 33.30
+ECond 6.88 23.50 40.22 9.16 22.29 33.15
+EMem+ECond 7.38 23.71 40.33 9.69 22.38 33.02

F1 original F1 cluster-based

Table 3: Results (in %) on the original OpenPI dataset. EMem denotes Entity Memory and ECond denotes
Entity-Conditioned prediction.

Beam search
p=0.9 p=0.5 k=10 k=5 beam=4

GPT-2 16.78 17.38 16.49 17.29 18.24
BART 19.94 20.31 19.96 19.45 21.44
Ours 19.64 21.65 20.68 20.45 22.38

Top-p sampling Top-k sampling

Table 4: Results (in %) of GPT-2 baseline, BART baseline, and our proposed method with different decoding
strategies on the original OpenPI dataset. We report clustering-based F1 with BLEU. Among all settings, beam
search achieves the best performance.

Figure 6: Precision and recall under different numbers
of outputs for BART baseline. The length penalty is set
as 0.2, 1.0 and 2.0 respectively.

